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Abstract
We present a study whose objective is to compare several dependency parsers for English applied to a specialized corpus for building
distributional count-based models from syntactic dependencies. One of the particularities of this study is to focus on the concepts of the
target domain, which mainly occur in documents as multi-terms and must be aligned with the outputs of the parsers. We compare a set of
ten parsers in terms of syntactic triplets but also in terms of distributional neighbors extracted from the models built from these triplets,
both with and without an external reference concerning the semantic relations between concepts. We show more particularly that some
patterns of proximity between these parsers can be observed across our different evaluations, which could give insights for anticipating
the performance of a parser for building distributional models from a given corpus.
Keywords: Dependency parsing, distributional semantics, specialized corpus, biomedical domain

1. Introduction
This work takes place in the broader context of study-
ing distributional semantic analysis methods for special-
ized corpora. This type of corpora are usually small-sized
(a few million words or less), which poses a challenge for
distributional methods, and contain specific, highly tech-
nical vocabulary, meaning that adapting methods based on
large generic corpora might be difficult. We make the hy-
pothesis, supported by the work of (Tanguy et al., 2015),
that the small amount of data may be circumvented by a
method based on syntactic contexts. Such methods have
already been investigated by a large body of work. The
largest part of it is dedicated to count-based approaches
(Grefenstette, 1994; Habert et al., 1996; Lin, 1998; Cur-
ran and Moens, 2002; Padó and Lapata, 2007; Baroni and
Lenci, 2010) but it also includes work adding dimensional-
ity reduction methods (Lapesa and Evert, 2017) or more re-
cently, work about word embeddings (Levy and Goldberg,
2014). One of our focuses is to select the best-suited tools
for semantic analysis of specialized corpora. In particular,
given that syntactic contexts will be a building block for the
task, which syntactic parser should be used to extract these
contexts? The goal of this article is, thus, to study the im-
pact of the choice of parser on the construction of a distri-
butional model with a frequency-based method. Our work
is not the first work on comparing different parsers. Sev-
eral evaluation campaigns were previously organized for
various languages: the Easy (Paroubek et al., 2008), Pas-
sage (De La Clergerie et al., 2008), SPMRL (Seddah et
al., 2013) and CoNLL (Zeman et al., 2018) campaigns as
well as more focused studies like (Candito et al., 2010) or
(De La Clergerie, 2014). However, the benchmarks used in
these studies, adopting the kind of diverse, generic corpora
on which the tools have been trained, might not be the most
relevant option for specialized corpus parsing. Moreover,
even though some of these campaigns are recent, the main
tools available have not been compared on the same evalu-
ation sets. We previously performed a first study (Tanguy

et al., 2020), comparing 11 different versions of parsers on
a small specialized corpus made up of Natural Language
Processing papers for French. However, we lacked a reli-
able external reference to measure the results of the parsers
against. So our evaluation was only a qualitative compari-
son.

2. Overview
To go beyond the limitation in (Tanguy et al., 2020), we
have chosen, in the work we present in this article, to run a
new evaluation on a small, specialized biomedical corpus,
whose building is described in Section 3.1 and for which
we may compare the relations implied by the extracted
syntactic contexts against an external resource, the Unified
Medical Language System (UMLS) (Bodenreider, 2004),
which contains relations between medical and biomedical
concepts (see Section 3.3).
More precisely, we defined the following process: we ap-
plied each of the 10 studied parsers we present in Sec-
tion 3.2 to the corpus, outputting morphological, syntactic
and grammatical information. In parallel, we ran MetaMap
(Aronson and Lang, 2010), a biomedical entity linker, to
identify biomedical concepts as defined and recorded in
the UMLS. Then, we aligned these concepts with the to-
kens outputted by the parsers (see Section 4.1). From this
alignment, we were able to extract grammatical relations
between concept-mapped tokens and other tokens, which
gave us syntactic contexts for concept-mapped tokens, and,
therefore, for biomedical concepts themselves (see Sec-
tion 4.2). We then built distributional thesauri for each of
the parsers (see Section 5.1), leading to a large set of distri-
butional similarity relations between biomedical concepts.
Finally, we compared these similarity relations to the re-
lations between biomedical concepts given by the UMLS
(see Section 5.3) and used this comparison for characteriz-
ing our studied parsers.



3. Experiment Framework
3.1. Corpus
For this experiment, we used a small part of the Open Ac-
cess subset of the PubMed Central corpus (PMC)1, a col-
lection of more than 5 million full-text articles from thou-
sands of biomedical and life science journals. This corpus,
originally in a very rich XML format, was cleaned up by re-
moving a lot of non-parsable content like tables, formulas,
links, then converted to raw text for parsing. We chose a
subset based on a specialty domain centered on stem cells.
Articles in PMC OA are indexed by the MeSH index, which
tags each article with their themes (or subject headings),
with an indication of whether the theme is a main theme of
the article or not. To obtain a corpus that was the right size
for our purposes, we chose to include any article that was
tagged with a heading containing the words ”Stem Cells“,
which includes headings such as ”Stem Cells“, ”Adult Stem
Cells“, ”Totipotent Stem Cells“, ”Mouse Embryonic Stem
Cells“, and others. This was done regardless of whether the
heading was indicated as a main theme of the article or not.
The resulting corpus is comprised of 23,094 articles, and
104 million words.

3.2. Syntactic Parsers
We selected 5 tools able to perform dependency parsing
in English, focusing on easily available and ready-to-use
parsers, i.e. those that take in charge the whole process-
ing chain, from raw text to dependencies. These tools were
applied with their default options.
All these tools use statistical models trained on annotated
corpora. Their differences concern implementation choices
like parsing techniques (graph- or transition-based, for in-
stance), learning models (SVM, maximal entropy or more
recently, recurrent neural networks), and upstream or side
processing (segmentation, lemmatization). There is much
less choice among the training corpora, given the high cost
of the annotation and validation processes.

CoreNLP (Manning et al., 2014), the main tool of the
Stanford team, implements a maximum entropy tag-
ger, which uses the Penn Treebank tagset (Marcus et
al., 1993), and a transition-based parser.

StanfordNLP (Qi et al., 2018) is a tool that, on top of giv-
ing access to the CoreNLP chain in Python, imple-
ments an entirely different parsing chain. Its graph-
based parser relies on a LSTM neural network. Stan-
fordNLP offers 3 English models, trained on the UD
EWT (Silveira et al., 2014), LinES (Ahrenberg, 2015)
and ParTUT (Bosco et al., 2012) corpora. We used all
three of these models.

Spacy is an industry-targeting tool whose main character-
istic is its speed compared to most other parsers. The
tagger is based on a perceptron, with attributes based
on Brown clusters, following (Koo et al., 2008). It
implements a non-monotonous transition-based parser
which can revise previous decisions (Honnibal and
Johnson, 2015). The default model we used was

1http://www.ncbi.nlm.nih.gov/pmc

trained on OntoNotes (Hovy et al., 2006) and uses the
ClearNLP dependency labels2.

UDPipe (Straka and Straková, 2017) uses a neural network
with a Gated Recurrent Unit mechanism to do both to-
kenization and segmentation at once. For PoS tagging,
it generates possible tags for words from their suffix
and performs disambiguation with a perceptron. The
transition-based parsing relies on a simple one-layer
neural network. UDPipe includes four English mod-
els. We used all of them, trained on the UD GUM
(Zeldes, 2017), EWT, LinES and ParTUT corpora.

Talismane (Urieli and Tanguy, 2013) uses a mix of statis-
tic models and language-specific features and rules in-
corporating linguistic knowledge. It was trained on the
Penn Treebank.

We are fully aware that these parsers can only be compared
on a practical level since the technologies used, their goals,
their training data, and even the times at which they were
created can scarcely be compared.

3.3. Terminological Reference Resource
The UMLS is a set of knowledge sources related to biomed-
ical sciences. The main part of the system is the UMLS
Metathesaurus, which aggregates nearly 200 biomedical
controlled vocabularies in an attempt to provide a refer-
ence frame for medical and biomedical concepts and links
the different names under which they are known in differ-
ent vocabularies as synonyms. The Metathesaurus is orga-
nized around these concepts, which, in theory, have only
one meaning, and are unique in the Metathesaurus. Each
concept has a unique identifier called CUI and is linked to
one or more names, in specific vocabularies, for this con-
cept, which have identifiers called AUI.
For example, the concept ”Headache“ (CUI: C0018681)
can be found as the following variations (among others):
in vocabulary SNOMED, ”Headache“ (AUI: A2882187),
in vocabulary MeSH, ”Headache“ (AUI: A0066000) and
”Cranial Pain“ (AUI: A1641293), and in vocabulary DxP,
”HEAD PAIN CEPHALGIA“ (AUI: A0418053).
On top of these concepts, the Metathesaurus provides some
relations between concepts3. Most of these relations come
from individual source vocabularies; some of these are
added by the Metathesaurus maintainers and the others by
the users.
All relations have general REL labels, which specify the
type of relations: synonym, parent, child, sibling, broader,
narrower, qualifier, qualified by, or unspecified (several de-
grees). There are 14 possible REL labels.
Around one-fourth of relations also have a RELA la-
bel, which further specifies the relation, like is_a,
has_ingredient, property_of. . . These labels come from the
source vocabularies. As such, they are more diversified

2https://github.com/clir/
clearnlp-guidelines/blob/master/md/
specifications/dependency_labels.md

3https://www.ncbi.nlm.nih.gov/books/
NBK9684/#_ch02_sec2_4_
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than the REL labels, with nearly 900 different labels in to-
tal, and we cannot assume that they are coherently used
throughout the Metathesaurus.
We observed that the distribution of relations among con-
cepts (CUI) is not very well balanced:

number of relations / CUI

mean 23.7
standard deviation 160.0
median 6.0
max 14,112
min 1

Some concepts have a very large number of relations but
most of them are only linked to a restricted number of
other concepts. As a consequence, since our objective in
this study is to characterize the distributional neighborhood
of the largest number of concepts as possible, we chose to
keep for our evaluation as many reference relations as pos-
sible and not to select them according to their type in the
UMLS Metathesaurus.
The only selection was performed in relation to our target
domain. We had no indication in the Metathesaurus for se-
lecting the relations specifically tied to the domain of stem
cells. Hence, this selection was done indirectly by keeping
only the relations between the concepts identified in our
corpus for this domain. In practice, starting from an ini-
tial set of 112,790 concepts linked by 2,845,112 relations
for the whole Metathesaurus, we obtained a set of 45,762
concepts linked by 1,272,224 relations. The selection rate
is quite comparable for concepts and relations – 40.6% for
concepts and 44.7% for relations – and the distribution of
the number of relations by concept after this selection is
close to that for the whole Metathesaurus:

number of relations / CUI

mean 24.6
standard deviation 135.9
median 7.0
max 8,338
min 1

4. From Corpus to Dependency Triples
4.1. Concept Identification
The first step in our study is to match tokens, as segmented
by various parsers, to biomedical concepts, as recognized
by a biomedical entity linking tool. This task was greatly
impeded by various alignment issues.
There are some available tools for biomedical UMLS con-
cepts extraction from text. After testing several of them,
among which cTakes (Savova et al., 2010) and Quick-
UMLS (Soldaini and Goharian, 2016), we decided to use
MetaMap (Aronson, 2001), the reference tool for this task,
because it had the clear advantage of providing disambigua-
tion between possible candidate concepts for a phrase.
MetaMap splits the input documents into sentences, which
are further split into phrases. It analyzes these phrases in-
dividually and outputs candidate mappings of UMLS con-
cepts to the phrase. These mappings are given an evaluation

score based on 4 metrics: centrality, variation, coverage,
and cohesiveness. The mapping with the highest score may
be selected as the most likely to be correct but MetaMap
also provides a disambiguation module based on context.
We exploited the possibility of MetaMap to output only
the most likely mapping based on score and context dis-
ambiguation.
For instance, the phrase ”Generation of single-copy trans-
genic mouse embryos“ is linked to UMLS concepts ”Gen-
erations“ (C0079411), "Singular“ (C0205171), ”Copy“
(C1948062), ”Mice, Transgenic“ (C0025936) and ”Em-
bryo“ (C0013935).
The linguistic analysis performed by MetaMap for identi-
fying concepts in documents is, of course, different from
the analysis performed by our target parsers. More pre-
cisely, the tokenization step is particularly important for
aligning the concepts it identifies with the tokens issued
from the various tokenizations of our parsers. MetaMap
gives two position data for each match. The first one gath-
ers the character offset in the phrase and the length of
the matched words. This information is highly difficult to
match with parsers’ offsets because of imprecisions and dif-
ferent counting conventions from both MetaMap and the
various parsers.
The second position information is the rank of the matched
words in the phrase. For instance, in the above ex-
ample, the concept ”Generations“ has both a TextMatch-
Start and TextMatchEnd attributes equal to 1 while ”Mice,
Transgenic“ has a TextMatchStart attribute of 5 and a
TextMatchEnd attribute of 6. However, this information
cannot be directly matched with the tokenization of a parser
since it depends on both the tokenization and MetaMap’s
phrase splitting.
The first step is then to associate each concept identified by
MetaMap with its own tokenization, which we later align
with each parser’s tokenization.

4.1.1. Matching MetaMap’s tokens with MetaMap’s
concepts

This first step is not trivial as the tokenization performed by
MetaMap is not directly accessible in its output. However,
each phrase in this output is segmented into syntactic units
and each of these units is associated with a list of tokens.
For example, ”single-copy“ is a syntactic unit associated
with the token list [”single“, ”copy“]. From these syntactic
units, we can collect the associated tokens and number them
according to their order, which gives us something close to
the behind-the-scene MetaMap tokenization. This number-
ing can be used to match the tokens with the biomedical
concepts, but with the necessity to take two additional prob-
lems into account. First, the punctuation is not considered
in MetaMap’s numbering, but must obviously be recorded
for the later alignment with the parsers’ tokenization. Sec-
ond, MetaMap’s numbering sometimes skips the first or the
first few tokens in a phrase if they are not associated with
a concept, which is more troublesome. For example, in the
phrase ”from cells“, MetaMap may declare that the ”Cells“
concept starts from 1 or 2. We were not able to determine
the cause of this behavior but we found a workaround for
the problem by comparing the offset of the matched start-



ing position to the offset of the phrase starting position. If
a discrepancy was found, the character count of each word
was added until the discrepancy was filled to compute the
number of skipped words.
With this process, we were able to match MetaMap’s con-
cepts to its tokenization with very good accuracy.

4.1.2. Matching MetaMap’s tokens with parsers’
tokens

The next step matches MetaMap’s tokenization with each
parser’s tokenization. Another solution could have con-
sisted in feeding MetaMap’s tokenization to the parsers, as
most of them are modular enough to allow it. We rejected
the idea for two reasons. First, the tokens we retrieved from
MetaMap could be different from the initial text: for ex-
ample, by modifying some punctuations, destroying case
information and even expanding acronyms. Second, we
wanted to use the parsers out of the box, with their own
tokenization suited to their own tagging and parsing pro-
cesses.
The algorithm for matching these different tokenizations
is based on the fact that the tokenizations are essentially
similar. The majority of words are tokenized similarly by
MetaMap and the parsers. Thus, for each document, we
can align the outputs of MetaMap and the considered parser
by relying on their common tokens and use a small set of
heuristics to deal with discrepancies. The discrepancies we
handle are of several types. They may come from parser-
specific issues, such as Spacy inserting ”SPACE“ tokens
when confronted with large breaks in the text. One of
the two tokenizations may have inserted a sentence break
while the other may not, in which case the sentence break
is skipped. One of the tokenizations may have split a token
while the other may not, such as ”single-copy“ on one side
and ”single“ followed by ”copy“ on the other side. In such
cases, we add the next tokens on the shorter side, separat-
ing them with both spaces and ”-“ until they stop matching
the longer side or the whole split token is covered. If the
process has been successful, the longer token is matched
with all the smaller ones. If it has failed, we skip tokens on
both sides and see if the next ones match. This is especially
useful for cases where MetaMap or the parser modifies the
tokens in some way, like ”99%“ becoming ”99“. Failing
that, we are only concerned with finding some part of the
text where the tokens match again, ideally as close as pos-
sible to the failure point. We implement this strategy by
recording, from the failure point, the list of tokens from
both MetaMap and the target parser and checking at each
step if the last two tokens seen on one side can be found in
the list of the other side4. If so, we skip up to this part and
start matching from there.
This algorithm works fairly well and a very large percent-
age of tokens are matched.

4.2. Dependency Triple Extraction
The next step is to extract dependency relations between
words to build the contexts that will be used for distribu-
tional analysis. This follows a similar process to the work

4We tested the use of one token instead of two but found better
results with two tokens.

of (Lin, 1998) and produces, from the dependency relations
outputted by syntactic parsers, typically illustrated by Fig-
ure 1, the representation of the contexts of a word in a cor-
pus under the form of syntactic triplets (dependent, relation,
governor).

Generation of single-copy transgenic mouse embryos

root
case

amod compound compound

nmod

Figure 1: Dependencies identified by the Stanford NLP
parser trained on the LinES corpus for the phrase ”Gen-
eration of single-copy transgenic mouse embryos“.

Not all relations provide useful context information. Gen-
erally, relations including closed-class words (determiners,
conjunctions, pronouns, etc.) are not considered for build-
ing distributional contexts. For this study, we performed
our selection not on the PoS tag of the governor and de-
pendent, but on the dependency relation itself, choosing to
exclude some of them.
For parsers following the Universal Dependency scheme,
the excluded relations were root, cc, cc:preconj,
punct, case, mark, det, det:predet, cop, neg,
aux, and nmod:poss. Typically, relations such as neg,
aux or det include negation markers (not. . . ), auxiliary
verbs (have, be, can.̇.) or determiners (the, a. . . ) that we
don’t want to see in distributional contexts. For Spacy,
it was root, ccc, case, prep, det, neg, expl,
predet, aux, auxpass, and mark. For Talismane,
given its specific dependency scheme, we had to rely on
PoS tags for achieving the same kind of filtering, excluding
IN, DT, MD, CC, EX, PDT, PRP, PRP$, TO and, RP.
Relations with prepositions had to be modified to link the
actual related words and include the preposition in the rela-
tion. We illustrate the different ways this kind of grammat-
ical constructions are parsed with the phrase ”region within
the cluster“. Figure 2 shows the output produced by UD
dependency scheme-following parsers.

region within the cluster

case

nmod

Figure 2: Dependencies identified by Universal Dependen-
cies scheme-type parsers for the phrase ”region within the
cluster“.

Figure 3 gives the result of the parsing by Spacy.
Finally, Figure 3 presents the output of Talismane for this
phrase.
These three cases are the three basic patterns of how prepo-
sitions are managed in each scheme. We normalize all these

6http://www.mathcs.emory.edu/~choi/doc/
cu-2012-choi.pdf
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region within the cluster

prep

pobj

Figure 3: Dependencies identified by SpaCy (Clear Style
dependencies)6for the phrase ”region within the cluster“.

region within the cluster

NMOD

POBJ

Figure 4: Dependencies identified by Talismane (Penn
Treebank dependencies) for the phrase ”region within the
cluster“.

variants with a prep/within dependency relation, as il-
lustrated in Figure 5.

region within the cluster

prep/within

Figure 5: Dependency constructed from the existing depen-
dencies for the phrase "region within the cluster“.

For the example of Figure 1, the resulting list of triplets is:

(embryos, prep/of, generation)
(generation, prep/of-1, embryos)
(single-copy, amod, transgenic)
(transgenic, amod-1, single-copy)
(transgenic, compound, mouse)
(mouse, compound-1, transgenic)
(mouse, compound, embryo)
(embryos, compound-1, mouse)

However, we need to adapt this representation of context
to our task, which is specifically to extract the contexts of
biomedical concepts. Thus, we only extract the relations
where at least one side, the dependent or the governor, is a
token that is part of a concept and the other side is not part
of the same concept. Moreover, we only consider nomi-
nal concepts, which we define here as concepts where at
least one word was tagged as a noun by the MetaMap tag-
ger. Furthermore, for each side of a triplet, we include the
following data:

• CUI: the unique UMLS id if it is a concept, _ other-
wise;

• PREF: the preferred form of the concept in the UMLS
if it is a concept, _ otherwise;

• NORM: the normalized form of the concept as it oc-
curs in the text if it is a concept, _ otherwise. Con-
cretely, it corresponds to the concatenation of all the
lemmas of the concept;

• LEMMA of the token actually part of the relation;

• PoS of the token actually part of the relation.

In the above phrase, five concepts were recognized by
MetaMap: ”Generation“ (noun), ”Singular“ (adj), ”Copy
(object)“ (adj), ”Mice, Transgenic“ (noun), and ”Embryo“
(noun). The corresponding triplets are given in Table 1.

4.3. Comparison of Parsers in Terms of
Dependency Triples

Several previous studies (starting with (Grefenstette, 1994)
and (Lin, 1998)) have considered subsets of syntactic rela-
tions for distributional models. More recent works (Padó
and Lapata, 2007; Baroni and Lenci, 2010) have selected
a short list of core relations, and we decided to limit our
experiment to these, which we regrouped in the categories
described below. They follow the main syntactic rela-
tions identified by dependency parsers and correspond to
the minimal configuration of (Padó and Lapata, 2007), to
which we added the last one from (Baroni and Lenci, 2010),
that consider the prepositions themselves as relations be-
tween a head and a dependent word, as described in sec-
tion 4.2.

N suj V : nominal subject of a verb;

N obj V : nominal direct object of a verb;

ADJ mod N : adjective modifying a noun;

ADV mod ADJ/V : adverb modifying an adjective or a
verb;

X coord X : coordination between two nouns, adjec-
tives, adverbs, or verbs (note: the conjunction itself
is not considered);

X prep_P X: prepositional binding between nouns, ad-
jectives, or verbs.

This brings down the number of triplets (occurrences) ex-
tracted from each parser from around 60M to around 40M,
with SpaCy having the least (38.3M) and the version of
UDPipe trained on ParTUT having the most (52.4M, far
ahead of the others).
We compare the triplets’ coverage between parsers but first,
we reduce the triplets to some core elements: the CUI of the
left-hand side, the CUI or lemma (depending on whether it
is a concept or not) and the PoS tag of the right-hand side,
and the relation between the two.
Our triplets now look like the following:

C0040648 N:C0237753_prep/of
C1883221 ADJ:distinct_mod-1

We also limit ourselves to triplets in which the left-hand
side (CUI) appears at least 10 times in each parser’s out-
put, and in which the right-hand side (CUI/lemma and PoS)
appears at least twice in each parser’s output. This re-
sults in 39M unique triplets, of which 21M appear for at
least two parsers and 3.5M appear for all parsers. Among
these 39M triplets, each parser has found around 13M of
them, with the least being CoreNLP with 12.2M and SpaCy
with 12.5M. The parser with the highest number of com-
mon triplets is the ParTUT version of UDPipe, with 16.8M
triplets.



Dependent Relation Governor

CUI1 PREF1 NORM1 LEMMA1 PoS1 CUI2 PREF2 NORM2 LEMMA2 PoS2

C0013935 Embryos embryo embryo NOUN prep/of C0079411 Generations generation generation NOUN
C0079411 Generations generation generation NOUN prep/of-1 C0013935 Embryos embryo embryo NOUN
C0025936 Mice,Transgenic transgenic_mouse transgenic NOUN amod-1 _ _ _ single-copy ADJ
C0025936 Mice,Transgenic transgenic_mouse mouse NOUN compound C0013935 Embryos embryo embryo NOUN
C0013935 Embryos embryo embryo NOUN compound-1 C0025936 Mice,Transgenic transgenic_mouse mouse NOUN

Table 1: Syntactic triplets with concepts identified by MetaMap

UDpipe-Gum

UDpipe-Ewt

UDpipe-Lines

UDpipe-Partut

StanfordnNLP-Gum

StanfordNLP-Lines

Spacy

StanfordNLP-Ewt

CoreNLP

0.40 0.45 0.50 0.55 0.60 0.65 0.70

Spacy

CoreNLP

StanfordnNLPGum

StanfordNLPEwt

UDpipeGum

UDpipeEwt

UDpipePartut

UDpipeLines

StanfordNLPLines

0.08 0.10 0.12 0.14 0.16

Figure 6: Hierarchical clustering of parsers according to their correlation on the triplets found by at least two parsers (right
side) and all parsers (left side).

We computed the agreement of the parsers about the triplets
they produced by computing Spearman’s correlation coef-
ficient (ρ) both for the 21M triplets shared by at least two
parsers and the 3.5M triplets common to all parsers. The
first measure focuses on the differences between parsers in
terms of diversity of triplets while the second measure looks
more precisely at their differences in terms of frequency for
the common triplets. We did not include Talismane as it
was difficult to adapt its PoS tags and dependency labels to
our normalization, as was done for CoreNLP and SpaCy.
Figure 6 shows the hierarchical clustering of the parsers
according to these correlations (more precisely, 1 - ρ for
having a distance).
Globally, we can observe that the type of parser has a sig-
nificant impact on the triplets, which is not a surprise: the
UDPipe parsers are particularly close to each other but most
of the StanfordNLP models are also grouped. However,
the training corpus can also have an impact when we con-
sider the triplets shared by all parsers, with StanfordNLP-
Lines much closer to UDpipe-Lines than to the two other
StanfordNLP models. This is why the clusterings built
for the two sets of triplets are a little bit different, even if
they also share some patterns: for instance, SpaCy is close
to CoreNLP, which is close to StanfordNLP-Ewt while
UDpipe-Gum and UDpipe-Ewt form a group for the two
sets.

5. Distributional Models
5.1. Building of Distributional Models
Following the distinction made in Baroni et al. (2014),
we built our distributional models according to a count-
based approach, such as in (Lin, 1998), rather than ac-
cording to a predictive approach such as in (Mikolov et al.,
2013). The first justification of this choice is that, except for
(Levy and Goldberg, 2014), the number of studies relying
on dependency relations is very limited among predictive
approaches. More importantly, some recent studies (Pier-
rejean and Tanguy, 2018) have shown that predictive ap-
proaches are unstable to some extent concerning the search
of the nearest distributional neighbors of a word. Since
we want specifically to concentrate on the effects result-
ing from the use of different syntactic parsers, we adopted
a count-based approach.
We implemented this approach by building on the findings
of recent studies in the field (Kiela and Clark, 2014; Baroni
et al., 2014; Levy et al., 2015) and more particularly took
up two main options from (Ferret, 2010): the use of Pos-
itive Pointwise Mutual Information (PPMI) for weighting
the context elements and the application of very loose fil-
tering that removes the elements of these contexts with only
one occurrence. The second choice is justified by both the
fairly small size of our target corpus and the experiments of
(Ferret, 2010) with linear co-occurrents. The main partic-
ularity of our work is the fact that the entries of our distri-
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Figure 7: Hierarchical clustering of models according to their agreement on the first nearest neighbor (left side) and
according to the RBO measure (right side).

butional models are not words but UMLS concepts. More
precisely, each entry is made of the triple (CUI, PREF, PoS)
under the form PREF_CUI#PoS. The elements of contexts
can be either words or concepts since dependency triples
can include concepts or words.
However, this particularity did not influence on the way we
built our distributional models and we classically computed
the similarity of two concepts by measuring the Cosine sim-
ilarity score between their contexts vectors. For a given
model, this computation was done for each pair of concepts
with contexts sharing at least one element. The results of
this process can also be viewed as a distributional thesaurus
in which each entry corresponds to a concept of the consid-
ered vocabulary and is associated with the list of all other
concepts of this vocabulary, sorted in descending order of
their similarity value with the entry. In practice, only the
nearest 100 distributional neighbors are kept, which is a
fairly large number compared to the average number of re-
lations by concept – 24.6 – but is justified by the fact that
some concepts may have a much higher number of rela-
tions.

5.2. Comparison of Distributional Models
The first step for comparing our distributional models, and
more indirectly the parsers used for extracting the distribu-
tional data they rely on, was to compute their agreement
of our models on the nearest neighbors retrieved for each
word. Among the concepts shared by all models, 47,647
concepts had at least one distributional neighbor. For each
pair of models, the agreement on the nearest neighbor re-
trieved for each concept was computed7 and used for build-
ing a similarity matrix. Hierarchical clustering was per-
formed from this matrix, which leads to the left side of Fig-
ure 7. First, we can observe that the model built from Tal-

7Ratio of the number of words sharing the same nearest neigh-
bor to the size of the considered vocabulary.

ismane is clearly aside from the others. The second main
trend is that the training corpus of the parsers can be more
important than the type of parser. For instance, the Stan-
fordNLP and UDPipe parsers trained on the LinES cor-
pus are grouped together and fairly distant from the same
parsers trained on the GUM and EWT corpora. However,
among the parsers trained on these two corpora, which are
fairly heterogeneous compared to the LinES corpus, the
proximity between the models they contributed to build is
guided by the type of parser.
Even if the overall aspect of the dendrogram is a little
bit different due to the position of the model built from
Spacy, these trends are globally confirmed by comparing
the neighbors of concepts by the means of the Rank-Biased
Overlap measure (Webber et al., 2010), as illustrated by
the right side of Figure 7. This measure is applied to all
neighbors of our thesaurus’ entries (100 neighbors in prac-
tice) and extends the notion of average overlap – the av-
erage of the overlap between two lists at different ranks –
by decreasing the importance of overlap as the rank of the
considered neighbors increases. As a consequence, nearest
neighbors are given greater importance. This importance is
defined by the p parameter, which can be interpreted as the
probability, starting from the beginning of the list of neigh-
bors, to continue to consider the following neighbors in the
list. The value p = 0.98 used in our case means that the first
50 nearest neighbors of an entry account for around 85% of
the evaluation. Figure 7 is based on the distance 1−RBO,
which can be considered as a metric.
The clusterings of Figure 7 can also be compared to those of
Figure 6: Talismane is absent from Figure 6 but has a very
limited impact in Figure 7 since it is clearly distant from the
other parsers. This comparison shows that the clustering
based on the distributional neighbors is much closer to the
clustering based on the triplets shared by all parsers than
to the clustering based on the triplets shared by only two
parsers. This suggests that the triplets of the first set are



Model #concepts
#eval.

concepts
#rel./

concept Recall Rprec MAP P@1 P@5 P@10 P@100

StanfordNLP-Ewt 49,002 42,340 25.4 4.9 3.5 3.0 9.4 5.4 3.9 1.3
CoreNLP 49,022 42,360 25.3 4.7 3.4 2.9 9.2 5.2 3.8 1.2
StanfordNLP-Gum 48,524 41,998 25.4 4.5 3.1 2.6 8.7 4.9 3.6 1.1
StanfordNLP-Lines 47,671 41,275 25.7 4.5 3.1 2.6 8.6 4.8 3.6 1.1
UDpipe-Ewt 47,883 41,366 25.6 4.5 3.1 2.6 8.5 4.8 3.5 1.1
Spacy 49,895 43,112 25.2 4.1 3.1 2.5 8.4 4.6 3.4 1.0
UDpipe-Gum 47,133 40,832 25.7 4.3 3.0 2.5 8.4 4.6 3.4 1.1
UDpipe-Partut 47,233 40,859 25.8 4.3 3.0 2.5 8.3 4.7 3.4 1.1
UDpipe-Lines 46,645 40,408 25.8 4.0 2.7 2.3 7.6 4.2 3.1 1.0
Talismane 48,411 41,812 25.3 3.2 2.2 1.9 6.1 3.3 2.4 0.8

Table 2: Evaluation of our distributional models with UMLS relations as reference (measures x 100).

globally more frequent than the triplets of the second set
and can be used for having a first indication of the proximity
of the distributional models built from them.

5.3. Evaluation of Distributional Models
The comparison of our distributional models according to
the neighbors of their entries gives some insights about their
proximity but no information about their relevance for rep-
resenting the semantic relations in the target domain. This
second type of evaluation has to rely on a reference resource
accounting for these relations, which can be done in our
case by exploiting the UMLS relations we have presented
in Section 3.3.
More precisely, we adopted the evaluation framework pro-
posed in (Ferret, 2010), based on the Information Retrieval
paradigm: each entry of our models is considered as a query
and the sorted list of its distributional neighbors as the list of
retrieved documents. In this context, a neighbor is consid-
ered as relevant if the pair (entry, neighbor) corresponds to
a UMLS relation8. As mentioned in Section 3.3, no restric-
tions are applied to the type of these reference relations for
two main reasons. First, we wanted to have a large enough
set of relations for making our evaluation as reliable as pos-
sible. Second, even at the first level, with the REL labels,
the relation types are fairly fuzzy in their definition, which
makes the selection of a specific type of relations difficult
in practice.
For measuring the relevance of the neighbors of an entry
according to the UMLS relations, we adopted the classi-
cal measures used in the Information Retrieval field: R-
precision, MAP (Mean Average Precision) and precision
at various ranks (P@r). R-precision (Rprec) is the preci-
sion after the first R neighbors were retrieved, R being the
number of reference relations while Mean Average Preci-
sion (MAP) is the average of the precision values calcu-
lated each time a reference relation is found. All these mea-
sures are given for each of our distributional models with a
scaling factor equal to 100 by the six last columns of Ta-
ble 2. The second column of this table corresponds to the
number of concepts in each model while the third column
is the number of these concepts with at least one UMLS

8More precisely, it means that the neighbor is part of a UMLS
relation including both the entry and the neighbor.

relation. The fourth column gives the average number of
UMLS relations for a concept in a model and the fifth col-
umn provides the average percentage of these relations that
are present in the first 100 neighbors of each concept.
The results of this evaluation lead to several observations.
First, their overall level seems to be fairly low. However,
this is not abnormal given the size of our corpus. For in-
stance, Ferret (2010) reports a value of 7.7 for Rprec with
his most complete reference (38.7 reference relations by
entry on average) but with a corpus nearly four times the
size of ours. We can also observe from the second column
that using different syntactic parsers has a limited but not
negligible influence on the number of concepts extracted
from the corpus: the model based on UDpipe-Lines has
5% fewer concepts than the model based on StanfordNLP-
Ewt. In terms of global trends, the first two models,
StanfordNLP-Ewt and CoreNLP, are slightly better than a
group of seven models with fairly close results while the
last model is more clearly distant in terms of performance.
This last observation is fully consistent with the separate
position of the corresponding model in the dendrograms of
Figure 7. More globally, similarities between models in
Table 2 are consistent with their similarities in Figure 7,
which suggests that even without an external reference, the
distributional models can be compared in terms of seman-
tic relevance by focusing on the neighbors retrieved for
their entries. For instance, StanfordNLP-Ewt, CoreNLP,
and StanfordNLP-Gum are close to each other in the two
evaluations. This is also the case for UDpipe-Ewt, Spacy,
and UDpipe-Gum. The main difference between the two
evaluations concerns the relative importance of the training
corpus and the type of the parser: in Table 2, the type of the
parser seems to be the main factor while in Figure 7, the
two factors are more intertwined.
Figure 8 gives a more global view of similarities between
models according to the UMLS relations they retrieve by
reporting the same type of analysis as Figure 7 but restricted
to neighbors having a UMLS relation with their entry. This
view confirms the main observations resulting from the
analysis of Table 2. The model built with Talismane is sig-
nificantly different from the others and the main patterns in
terms of clustering are present, with a group made up of
CoreNLP, StanfordNLP-Gum, and StanfordNLP-Ewt and
a group with UDpipe-Gum and UDpipe-Ewt. As a con-
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Figure 8: Hierarchical clustering of models according to their agreement on the first nearest neighbor with an UMLS
relation with its entry (left side) and according to the RBO measure for all the neighbors having a UMLS relation with their
entry (right side).

sequence, this evaluation emphasizes that the type of the
parser used for extracting dependency triplets is the first cri-
terion in terms of impact on the distributional models built
from them but it also shows that in this context, the cor-
pora used for training these parsers also have an influence
and that heterogeneous corpora such as GUM and EWT are
probably better for this training than a much more homoge-
neous corpus such as LinES.

6. Conclusion and Perspectives
In this article, we have investigated the influence of syntac-
tic parsers on the distributional count-based models built
from syntactic dependencies. More precisely, we have per-
formed this study in the context of a specialized domain in
the biomedical area with a moderate-size corpus made of
scientific articles. One particularity of this study is to fo-
cus on the concepts of a reference ontology in the medical
and biomedical areas. These concepts are mainly present
in documents through multi-terms and identified by a ref-
erence tool, MetaMap, which requires aligning MetaMap’s
results with the results of the considered parsers. We have
investigated the differences between parsers in terms of
syntactic triplets but also in terms of distributional neigh-
bors extracted from the models built from these triplets,
both with and without an external reference concerning the
semantic relations between concepts. We have more par-
ticularly shown the influence of the type of parser in these
different evaluations but also the impact of the corpus used
for training the parsers. Finally, we have found that some
patterns of proximity between parsers are stable across our
evaluations, which means that some measures applied to the
output of syntactic parsers may perhaps be used to antici-
pate the performance of a parser for building distributional
models from a given corpus. This will be the focus of our
future work.
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