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1 Methods

We explored methods based upon:

1. String representations of concepts, with incrementally more aggressive string normalizations
(lower-casing, stop word removal, etc.). These methods match input mentions to entries (sub-
mitted to the same string normalizations) in a string-to-concept dictionary obtained:

• from the training examples: a “rote learner” returns the most frequent concept seen for a
given mention in the training corpus;

• from the UMLS 2017AB Metathesaurus terms (including synonyms) for all Concepts
Unique Identifiers (CUIs) in SNOMED CT and RxNorm, preprocessed and filtered with
JuFiT [1] (Run2 and Run3) to remove metalanguage.

These methods aim at handling the easiest cases with maximal precision. If no concept is found
for a mention at a given step, control is passed to the next, possibly less precise, step.

2. MetaMap [2] (Run1 only), which provides more elaborate matching, including linguistic trans-
formations, against UMLS Metathesaurus terms.

3. Word embeddings of mentions and concept terms (Run2 and Run3), obtained by fastText [3]
trained on MIMIC-III [4]. Mention and concept term embeddings are computed using smooth
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inverse frequency (SIF) [5] which applies an inverse-frequency weighting before removing the
first principal component of the term representations. The k nearest neighbor concept terms are
retrieved for each mention, using the Faiss library [6] with HNSW indexing [7] for efficiency.

Fusion: We combined these methods in a sieve-style pipeline (Fig. 1). Processing stops as soon as
one of the string-based methods returns exactly one concept, as in [8]. If multiple concepts are in
a tie, the embeddings-based nearest neighbor among these concepts is selected (Run2 only). If the
string-based methods return no concept, the embeddings-based nearest neighbor is returned (Run2

and Run3 only).

2 Results and Discussion

We submitted three runs (Table 1):

• Run1 implements a more sophisticated dictionary-based approach in which preprocessing and
filtering of UMLS terms are more accurate, MetaMap is used, but word embeddings are not
used. This gives it a very good precision (P=90.74) and a reasonable recall (R=75.52).

• Run2 and Run3 implement fusion with the embeddings method, and obtain higher recall and
accuracy but lower precision. Run2 does not perform disambiguation when several CUIs are
selected for a mention while Run3 does. This only increases scores by 0.1pt.

Run Features Acc Pre Rec F1
Run1 RM 75.78 90.74 75.52 82.43
Run2 RUE 78.43 78.18 79.65 78.91
Run3 RUE 78.54 78.30 79.77 79.03

Table 1: Detailed scores on test set. R=Rote, M=MetaMap, U=UMLS, E=Embeddings. To compute
precision and recall, we only consider non CUI-less mentions, for both gold standard and system.

Table 2 shows how accuracy increases as more steps are cumulatively tried in Run3. The embeddings-
based method alone obtains 60.75 accuracy but adds 6pt to the previous step. Similarly, combining
it to Run1 adds 4.4pt (post-submission test: Acc=80.17). This shows a clear complementarity of the

Rote UMLS lower case UMLS . . . stemming Embeddings
53.60 67.81 72.56 78.54

Table 2: Cumulative accuracy of best run (Run3) as more steps are tried

string-based and embeddings-based methods that we might better exploit with a more sophisticated
fusion strategy (e.g., voting or stacking).

We also experimented with, but did not have the time to finalize, contextual embeddings [9] and
ontology embeddings [10]. We plan to include them before the shared task workshop.
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Figure 1: Global architecture of the LIMSI-CEA-INRA@n2c2 system (Run2 and Run3)
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