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Abstract
Neuroimaging-genetics cohorts gather two types of data: brain imaging and genetic data. They allow the discovery of
associations between genetic variants and brain imaging features. They are invaluable resources to study the influence of
genetics and environment in the brain features variance observed in normal and pathological populations. This study
presents a genome-wide haplotype analysis for 123 brain sulcus opening value (a measure of sulcal width) across the whole
brain that include 16,304 subjects from UK Biobank. Using genetic maps, we defined 119,548 blocks of low recombination
rate distributed along the 22 autosomal chromosomes and analyzed 1,051,316 haplotypes. To test associations between
haplotypes and complex traits, we designed three statistical approaches. Two of them use a model that includes all the
haplotypes for a single block, while the last approach considers each haplotype independently. All the statistics produced
were assessed as rigorously as possible. Thanks to the rich imaging dataset at hand, we used resampling techniques to assess
False Positive Rate for each statistical approach in a genome-wide and brain-wide context. The results on real data show that
genome-wide haplotype analyses are more sensitive than single-SNP approach and account for local complex Linkage
Disequilibrium (LD) structure, which makes genome-wide haplotype analysis an interesting and statistically sound
alternative to the single-SNP counterpart.

Introduction

Numerous population-imaging studies have been built since
the beginning of years 2000 based on earlier pioneering
studies [1] to support researches mainly in vascular, neu-
rodegenerative diseases or psychiatric syndromes [2] and
now include genetics [3–5]. Our work is based on the UK
Biobank resources [6–8], currently the most emblematic
imaging-genetics cohort available as open data. The UK

Biobank cohort brings the unique opportunity to study the
genetic and environmental dissection of numerous diseases
or complex traits related to brain via imaging endopheno-
types. These endophenotypes are structural or functional
imaging-derived characteristics (or imaging-derived phe-
notypes—IDP [7] in UK Biobank) and DNA genotyping
arrays provide the genetic measures [6]. In aging of normal
and pathological brains, we observe the phenomenon of
sulcal widening for which several related IDP like sulcal
depth, sulcal opening and grey matter thickness in brain
were shown by our group to be highly heritable [9]. In the
case of grey matter thickness and sulcal opening, our group
in [10] has also shown associations with several new mar-
kers using Genome-Wide Association Study (GWAS).

In order to yield robust inferences and interpretations
from GWAS approaches, one should only consider the hits
passing a strict genomic significance threshold [11] to
account for the large number of tests. Moreover, in
imaging-genetics studies, an additional correction for mul-
tiple phenotype testing is mandatory. After these corrections
and in the case of a non-synonymous SNP hit, a straight-
forward interpretation can be carried out to hypothesise an
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association with the disease. In most cases, GWAS results
are harder to interpret because the association is carried by a
group of SNPs located in a non-coding region. In some
cases, the grouping can be explained by a leading causal
SNP, which signal is spread amongst the neighbouring
SNPs via Linkage Desequilibrium (LD). Using imputed
SNPs, one can identify putative unmeasured causal variants.
Nowadays more and more GWAS are using imputed SNPs
to perform fine-mapping or allow for replication study and
meta-analyses. An alternative to imputation is haplotype
analysis that can also capture unmeasured variants.

One might also suspect that the association is actually
carried by more than one SNP in the same region. In the
case of multiple causal SNPs, burden-test or collapsing test
have shown a high power to detect small effect sizes [12]. A
gain in sensitivity can also be obtained by considering the
combinations of alleles from several genotyped SNPs in the
form of haplotypes [13].

Haplotypes in one individual consist in the combinations
of several SNP alleles to form nucleotide sequences. These
sequences of alleles can be obtained from phased SNPs that
define which alleles are on the same chromosome and
inherited together from each parent.

Both phased SNPs and imputed variants are available in
the UK Biobank resources, based on large reference panels
(1000 Genomes and the Haplotype Reference Consortium
(HRC), see [6]). Our method builds on the work done by
UK Biobank to provide high quality phasing dataset
(assessed using trios of parents-child), where the phase of
individual SNPs can be used for haplotype association in a
less computationally heavy framework than methods such
as [14]. The method described in this paper differs from the
commonly used haplotype-based approaches on several
points. First, we investigate its behaviour on a genome-wide
scale. Second, the haplotype-based tests rely on individual
phased data rather than estimating haplotype frequencies,
which is unusual: out of the 9 haplotype-based methods
cited in [15], only one (WHaIT, [16]) uses phase informa-
tion as input, and the others use an estimation of haplotype
frequencies rather than individual phase data. Moreover, our
method identifies individual haplotype associations by
testing all haplotypes in a given genomic interval, while the
WHaIT method only performs a global test, i.e. it does not
identify which individual haplotype in the block is asso-
ciated with the phenotype. Also of note is that the WHaIT
method is only designed for categorical traits.

In this work, we propose to push the genome-wide
haplotype association approaches to fit the specificity of the
IDP obtained in imaging-genetics, more precisely sulcal
opening measurements derived from the UK Biobank high-
quality imaging data. The aim of the paper is three-fold.
First, we present this set of quantitative IDP and a nor-
malization of their distributions across the subjects. We

show their spatial variability, which reveals that IDP are
many and varied, and which motivates our search for even
more sensitive association methods to compensate for the
multiple testing issue. Second, we detail three tests for
genome-wide haplotype associations with the traits. This
part includes definition of blocks along the genome based
on a genetic map, which is a prerequisite to any haplotype-
based test definition. Third, we compare association hits
obtained from these three haplotype-based tests and also
with the regular genome-wide association test based on
single SNPs. Finally, we carried out phenotype permuta-
tions to check the validity of our tests on the whole genome.

Material and method

Samples

The UK Biobank is a health research resource including
genotypic data of about 500,000 people aged between 45
and 73 years old, that were recruited in the general popu-
lation across United Kingdom. The original data considered
in this study were obtained as part of the application
#25251, which was approved by the UK Biobank ethics
committee. The phenotypes computed from the original
data were submitted to the UK Biobank Returns results
catalogue and can be retrieved with reference to
application id.

The UK Biobank is expected to provide multi-modal MR
brain images in 100,000 participants and, by March 2018 it
had 20,060 subjects with a T1-weighted MRI [8]. These
data were processed locally through BrainVisa/Morpholo-
gist pipeline [17] and quality controlled yielding a set of
labelled cortical sulci for each of 18,175 subjects (see [10]
for details).

We relied on the Quality Control carried out by the UK
Biobank consortium on the genotyping data which excluded
individuals with high missingness, high heterozygosity, first
degree related individuals or sex mismatches [6]. With
658,720 phased SNPs (Haplotype dataset), 784,256 geno-
typed SNPs and 93,095,623 imputed variants, 16,304 sub-
jects identified as white British ancestry (as described in [6])
passed the image processing and the genetic QC (48% of
males and 52% of females).

Replication sample

We processed subjects of non-white British ancestry and
additional T1-weighted MRI images that were made avail-
able after the March 2018 release with BrainVisa/Mor-
phologist sulci labelling pipeline. We obtained a replication
dataset comprising 5070 individuals, 48% of males and
52% of females, 54% of white British ancestry.
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Data processing

Imaging data, sulcal opening

For each subject, 123 labelled sulci were extracted from T1-
weighted images. For each sulcus, a measure of its width—
a feature called opening—is computed as the ratio of the
volume of the Cerebrospinal Fluid the sulcus contains to the
surface of the sulcus (Supplementary Fig. 1).

For each sulcus, after adjusting for age and sex using
linear regression, we identified and excluded outliers in the
residual distribution using the robust interquartile range
(IQR) method [18].

Then, since the distributions of sulcal opening values
could exhibit deviation from the normal distribution, we
evaluated this deviation and normalized them using a one-
parameter Box-Cox transformation (power transformation)
[19], see Supplementary Material 1. We selected the opti-
mal power λ using goodness-of-fit for normal distribution
(available in MASS R package) for each sulcus. The value
of λ quantifies the similarity with a normal distribution. For
a sulcus with an original normal distribution, λ= 1 and for a
sulcus with an original log-normal distribution, λ= 0.

In the following, the Box-Cox transformations of the
sulcal openings, Ỹ, were considered as phenotypes.

Definition of Haplotypes blocks in UK Biobank

When a group of SNPs are in linkage disequilibrium (LD),
the assortment of their alleles is not random: the presence/
absence of one allele at one locus depends on the alleles of
neighbouring loci in LD. Using allele frequencies and LD
information available in reference panels, the phasing pro-
cess consists in estimating the sequence of SNP alleles that
are on the same chromosome.

Using this approach, the UK Biobank consortium has
released a curated genome-wide dataset of 658,720 phased
SNPs over the 22 autosomal chromosomes [6]. The phasing
was carried out using SHAPEIT [20] with the 1000 Gen-
omes phase 3 dataset as reference panel. From these phased
data we define haplotypes, which are combinations of
neighbouring SNP alleles on a single chromosome. We
propose the following twofold procedure to ensure the
correct haplotype estimation.

First, we determine haplotype blocks that includes
adjacent SNPs in high LD or in other words, present a low
recombination rate. We used the GRCH37 genetic map that
includes positions in base pairs (bp) and centiMorgans (cM)
based on the 1000 Genomes project. For variants of the UK
Biobank arrays that are not present in the genetic map, the
position in cM was estimated using linear interpolation
based on the local recombination rate (in cM/bp) within the
interval defined by the two closest neighbouring variants in

the map. For first (resp. last) assessed variants on a chro-
mosome that fall outside the genetic map, recombination
rates were estimated by linear extrapolation on the whole
chromosome. The complete genetic map allows to define
non-overlapping haplotype blocks in which any two con-
secutive SNP loci are less distant than δ cM. A distance
greater than δ cM defines the start of a new block. Second,
using the phased SNPs dataset and the blocks described
above, we determine the haplotypes.

As a compromise between haplotype length and uncer-
tainty, we chose δ value equal to 0.001 cM, leading to
119,548 haplotype blocks across the whole genome (see
Supplementary Material 4 and [21]). For individual SNP
phase, UK Biobank estimated a median switch error rate of
0.229% on chromosome 20 taken as an example [6], corre-
sponding to a median value of 37 or 38 individual SNPs with
phase errors. If all these errors were located in the 3048
haplotype blocks we obtained on that same chromosome, it
would represent about 1% of errors in haplotype estimation,
which is probably largely overestimated. In fact, we expect
the error rate (or phase uncertainty) on haplotypes to be much
less. The reason is the following: SNPs affected by a phase
switch are most probably located in regions of high recom-
bination rate, which are excluded from our haplotype blocks.

Genome-wide haplotype association

Count matrix of each haplotype block

For each haplotype block obtained previously, we defined
the reference haplotype h0 as the most common one, and the
count matrix:

H ¼ h1; ¼ ; hm½ � 2 0; 1; 2f gðN�mÞ;

with N the sample size and m the number of alternative
haplotypes denoted by h1; :::; hm. Each element hi, j of H
corresponds to the number of copies of the alternative
haplotype hj; 1 � j � m for the individual i; 1 � i � N. In
this way, the count matrix H codes for an additive
haplotype model - the effect of each haplotype block
corresponds to the sum of the effects of observed alternative
haplotypes. Supplementary Material 2 shows an example of
matrix H, obtained with 3 phased SNPs and 3 subjects

Association tests

We defined three association tests between haplotypes hj
included in matrix H, and the phenotypes ~Y , the sulcal
opening values obtained after Box-Cox transformation as
described previously. In the following, X denotes the matrix
of covariates containing age, sex and the first ten principal
components of genetic data provided by UK Biobank to
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account for population stratification. Although all presented
methods are using similar statistics, the three tests are
addressing three different questions.

Haplotype block model test In this test, referred to as
“block-test”, the following linear model is considered:

Y ¼ β0 þ Xβ þ Hγ þ ε ð1Þ
with ~Y the phenotype vector, X the matrix of covariates and
H the matrix of the m alternative haplotypes, included with
fixed effects β and γ respectively, and ε the error vector. β0 is
the intercept containing the effect of the reference haplotype.
This first test assesses the association between a given

block, defined as the set of its haplotypes, and each
phenotype i.e. H0 : γ ¼ 0m vs. H1 : ; 1 � i � m γi ≠ 0. The
significance of the association is estimated using a total
variance test for nested linear model.

Complete model individual haplotype test

The second test is a complete model individual haplotype
test and is referred to as “complete-test”. It aims to test the
association between one phenotype and each haplotype hj
inside the block, while considering in the model the other
haplotypes of the block. For this purpose, we used the same
linear model regression as in the block-test (Eq. 1) and
considered for each haplotype hj, 1 � j � m, the null
hypothesis: H0 : γj ¼ 0 vs. H1 : γj ≠ 0. For this test, we
computed a two-sided p value of the t-statistic.

Single haplotype model test

To test the effect of each haplotype versus the others, the
third test referred to as “single-test” is based on the fol-
lowing linear model:

Y ¼ β0 þ Xβ þ hjγj þ ε for 0 � j � m ð2Þ

with ~Y the phenotype vector, X the matrix of covariates and
hj the count vector for the haplotype, included with fixed
effects β and γj respectively, and ε the error vector. β0 is the
intercept containing the mean effect of all haplotypes
excluding the considered haplotype j. As previously, we
computed a standard two-sided p value of the t-statistic for
the null hypothesis H0 : γj ¼ 0 vs. H1 : γj ≠ 0.

All three tests were implemented in R v.3.6.0 to run on a
distributed HPC (code available upon request).

Comparison with single-SNP association used in
classical GWAS

To our knowledge, a comprehensive power analysis of
haplotype association for quantitative traits on large

cohorts (more than 10,000 subjects) has not been done. To
gain insight into the genome-wide significant p values yield
by the haplotype association tests, we propose a com-
parative study, where we match the results of haplotype-
based tests with the results from the single-SNP association
used in classical GWAS considering both genotyped and
imputed SNPs. The test used in classical GWAS using
linear model in PLINK [22] is described in Supplementary
Material 3.

Genome-wide significance threshold

Correction of p values and significance threshold for SNP
associations For single-SNP associations with imputed
and genotyped SNPs, we used Bonferroni correction with
the common estimated number of 106 independent SNPs
[23]. Furthermore, to account for testing 123 phenotypes,
p values were corrected for NGWAS= 123 × 106 tests.
Therefore, the threshold for genome-wide significance at
risk α= 0.05 is

PGWAS ¼ 0:05=NGWAS ¼ 4:0650407� 10�10

Correction of p values and significance threshold for
haplotype associations For haplotype associations, we
used Bonferroni correction for multiple testing, with NT the
number of hypotheses tested. For the nb haplotype block
tests, NT ≈ 123 × nb. For the nh individual haplotype
(complete or single) tests, NT ≈ 123 × nh. The genome-wide
significance threshold at risk α= 0.05 is PNT= α ∕NT

that is: PNT= α ∕14,703,239= 3.4 × 10−9 for the block-test;
PNT= α ∕107,904,126= 4.63 × 10−10 for the complete-test
and PNT= α ∕125,218,783= 3.993 × 10−10 for the single-
test.

False positive rates in the genome-wide haplotype
association tests

In order to evaluate the validity of the different haplo-
type association tests scrutinized in this study, we con-
structed datasets under the null hypothesis using
permuted phenotypes. Then, we computed the p values
distributions and the associated False Positive Rate
(FPR). The FPR is the percentage of tests that show a
significant association in the permuted dataset at the
significance threshold.

Correlations between variables are present in genetic and
imaging datasets; between parts of the genome and within
the brain respectively. To quantify the impact of these
correlations, we computed the FPR under null hypothesis
for several scenarios that keep or not the correlation struc-
tures among haplotype blocks and among phenotypes.

Genome-wide haplotype association study in imaging genetics using whole-brain sulcal openings of 16,304. . . 1427



False positive rate while preserving the correlation within
each haplotype block In the first permutation scenario, a
phenotype is randomly permuted for each block. Therefore,
correlations between haplotype blocks across the genome
present in the original dataset were removed in this sce-
nario, preserving only the correlation within each haplotype
block. The complete-test and the single-test produced sev-
eral statistics per haplotype block (depending on the number
of haplotypes), while the block-test produced a unique
statistic per block. We computed FPRp ¼ NFP=Nt;p where
NFP is the observed number of false positives and Nt;pis the
number of statistics produced by each of the three tests for
the permuted phenotype p.
This permutation scenario was replicated on three pheno-

types of sulcal opening: two that represent the range of λ values
and one for the highest association found in previous study
[10], with λ values ≈0.2, ≈0.8 and ≈0.6, respectively. The same
permutation order was applied to the three phenotypes.

False positive rate while preserving the correlation within
the genome In the second permutation scenario, we used
all the phenotypes and produced a permutated dataset where
the phenotypes were randomly shuffled with the same per-
mutation for all haplotype blocks along the genome. For each
of the three tests, we considered all the statistics produced
and computed FPRp ¼ NFP=Nt;p where Nt, p is the number
of statistics produced for a given permutated phenotype
p. This analysis produced three FPRs per permuted pheno-
type that preserves the structure of the correlation within the
genome. Reporting FPRs for each phenotype will enable the
detection of phenotypes with low-quality measurements.
This procedure was replicated 25 times. To reduce the

computational burden in this case, we considered the
residuals ~Y� ¼ ~Y � bβ0 þ Xbβ

� �

, that is, the phenotypes
~Y adjusted for the covariates

False positive rate while preserving the correlation within
the genome and among the phenotypes Last, we used the
permutated dataset preserving the correlation within the genome
and, instead of considering each phenotype independently, we
pooled the results across the phenotypes. For each permutation
and each haplotype test, we considered all the statistics pro-
duced. We computed FPRT = NFP / NT where NTis the number
of statistics produced by each test for all permutated pheno-
types. This analysis produced three FPRs per permutation, that
preserve both the structure of the correlation within the genome
as well as the correlation among phenotypes.

Results

In this part, we present results obtained on real data, the
opening measurements of 123 brain sulci and genome-wide

haplotypes of 16,304 subjects. First, we present the effects
of normalization of the phenotype distributions, and the
characteristics of the haplotypes generated with the phased
data provided by UK Biobank. Second, we present the
significant association hits obtained with our genome-wide
haplotype association study and provide the genomic
location and length of significant haplotype blocks. Finally,
we compare the differences in sensitivity on real data for the
three tests proposed above and we propose a comparison
study with the single-SNP association test.

A study of the False Positive Rate is also presented,
where we study the FPR for the three models under the null
hypothesis, using permutated datasets as described in sec-
tion “False Positive Rates in the Genome-wide haplotype
association tests”.

Imaging data processing

The distributions of sulcal opening measurements across
the brain exhibit a large range of density shapes from
quasi-normal distributions (max. λ= 0.8) to log-normal dis-
tributions (min λ= 0.2). Figure 1 displays the λ parameter
associated with the opening distribution for each sulcus across
the brain. The spatial distribution of the λ parameter across the
brain highlights the necessity of such a transformation.

We observed a pattern, with larger (in terms of median
value) and more normally distributed sulcal opening mea-
surements in parietal and occipital lobes. Conversely, we
observed narrower, more log-normally distributed opening
values for lower and inferior temporal sulci. This could be
related to the differential aging rate of brain structures, such
as the widening sulci rates that might differ across the brain
[24]. Based on the results from FPR study, we show that
this procedure ensures a relatively homogeneous specificity
of the analysis across the brain sulci.

Genomic data processing

Across the 22 autosomal chromosomes, we tested over 1
million haplotypes from 119,548 blocks for association with
the opening of 123 sulci. Candidate haplotypes had a
length, on the genetic map, ranging from 1.4 × 10−8 to 1.7 ×
10−2 cM (see Fig. 2, right panel), with a median value of
6 × 10−4 cM, corresponding to consecutive SNP runs of
length ranging from 2 to 64, with an average of 7.498
haplotypes per block (min. 2, max. 1588, median 3),
including the major haplotype. Left panel of Fig. 2 shows
the coverage of the blocks along the 22 autosomal chro-
mosomes. Details regarding the distribution can be found in
Supplementary Material 4. Of note is that the variation of
the block length across the chromosomes remains small as it
can be seen from the curve on the right of Fig. 2 (similar
distributions).

1428 S. Karkar et al.



Sulcal opening patterns are associated with
haplotypes

In this study we show significant associations of sulcal
opening measurements with haplotypes in a genome-wide

approach; bringing about genome-wide inferences that dif-
fer from a local haplotype fine-mapping operation per-
formed after a classical genome-wide single-SNP analysis.
Along with the previous findings in the upstream region
of KCNK2 (chr1:215MB) [10], the haplotype block test

Fig. 2 (Left) Genome coverage of haplotype blocks, in percent per
Mbp. For each window of 1 Mbp, we computed the total length in bp
covered by the 119,912 haplotype blocks (see section “Data proces-
sing” for details). (Right) Distributions of L(h) (block length in cM), as
defined by the genetic distance between bordering markers of each

block. Blocks were defined over the 22 autosomal chromosomes using
δ= 0.001 cM, a parameter that account for the maximal length in cM
between two consecutive markers in a same haplotype (see section
“Data processing” and [21] for details). The distribution of block
lengths is homogeneous across the 22 autosomal chromosomes.

Fig. 1 In a sample of 16,
304 subjects, sulcal opening
measurements have different
distributions across the brain,
from normal distribution
(red, λ= 1) to log-normal
(blue, λ= 0). (Top)
Distributions of uncorrected
sulcal opening measurements,
for 123 sulci, coloured
according to λ values. Inlet
panels are histograms of opening
values for two sulci with fitted
curves superimposed: (left)
Anterior occipito-temporal
sulcal opening distribution is
almost log-normal (blue line);
(right) Superior parietal sulcal
opening distribution is almost
normal (red line). (Bottom)
Spatial map of λ values for sulci
of the left hemisphere, coloured
according to the λ value of their
distribution. From left to right:
top view, interior view, parietal
view and bottom view.

Genome-wide haplotype association study in imaging genetics using whole-brain sulcal openings of 16,304. . . 1429



revealed four other hits on chromosomes 7, 9, 12 and 16,
detailed in Table 1. For the following genes, located in these
regions, that are predominantly expressed in the brain:
LPAR1 (chr9); NUAK1 (chr12), lncRNA RP11-178L8.8
and FBXO31 (chr16), we provide an overview of expres-
sion data, publicly available, in Supplementary Material 6.
We also display brain regions associated with each hit in
Supplementary Material 9. Except for chr9:114, all hits
reported on Table 2 are associated bilaterally with sulci such
as (FCMpost_L, FCMpost_R) for chr1:215, (STster-
ascant_R, STsterascpost_L) for chr12:106 and (SFinfant_L,
SFinfant_R) for chr16:87.

The bilateral associations of the insula (left and right) in
chr7:134 were not found on the replication study. However,
it stands out since the associated brain areas are not asso-
ciated with any other genome region. Further studies could
be motivated to investigate this genomic region since the
insula is a cortical region known to integrates emotional,
cognitive, and motivational signals, and that haplotypes of
the block chr7:13441632-134416604 are located in a region
carrying several genes and markers associated with Autism
Spectrum disorders ([25–27], see details in Table 1).

Haplotype tests exhibit different sensitivity
compared to single SNP-based associations

We carried out a comparative study of the genome-wide
significant p values yield by the three haplotype tests. To do
so, all significant phenotype-haplotype associations for the
three tests were matched with the conventional SNP asso-
ciation results. In Fig. 3 top panel, the hits obtained with the
three tests were matched with genotyped SNPs and with the
imputed SNPs in the bottom panel of Fig. 3. For each
significant phenotype-haplotype association, we used the

lowest p value of single-SNP associations observed in the
SNPs of that haplotype block. For the complete-test and the
single-test, if more than one haplotype per block was sig-
nificantly associated, we selected the one with the lowest
p value. When comparing results among the three tests, we
found that:

(i) the block-test, that combines all haplotypes present in
one block, leads to the lowest p values for the
strongest associations. However it appears globally
more conservative than the single-SNP approach,
particularly for associations in a range close to the
genomic threshold (10−2 to 10−4, corrected). The
negative intercept of the fitted linear trend (red lines in
Fig. 3) indicates that, in the significant blocks, p values
from this test are on average less significant than their
single-SNP counterparts.

(ii) the complete-test shows the highest sensitivity for
moderate associations with some p values being more
than 3 orders of magnitude lower than their single-SNP
counterparts (resp. 8.121 × 10−07 and 1.09 × 10−03).

(iii) the single-test performs similarly to the single-SNP
approach, with p values being slightly closer to those
obtained with genotyped SNPs (R2= 0.959) compared
to those obtained with imputed SNPs (R2= 0.951),
while the opposite was observed for block and complete
test. Indeed, a large number of haplotypes are
differentiated from the other haplotypes by a single
SNP in the same block, and thus are expected to carry
the same signal.

In Table 2 we used three available SNP datasets:
(a; genotyped SNPs): SNPs called from the UK-Biobank
arrays (no MAF filtering); (b; Imputed SNPs): imputed

Table 1 Genes or regions of interest related to haplotypes significantly associated with the opening of at least one sulcus. All positions are given
for GRCh37/hg19 assembly.

Haplotype position Gene / Region Description

chr1: 215146807-
215154276

upstream of KCNK2 eQTL of KCNK2 [10]

chr7: 13441632-
138543686

chr7: 134346283- 134446935 autism susceptibility region7q32.3-q33 [24]

chr7: 129202420- 138543686 AUTS1 region: D7S530 to D7S684 [25, 26]

chr9: 113659382-
113665419

chr9: 113635543- 113800981
(intronic)

LPAR1: Homo sapiens lysophosphatidic acid receptor 1, transcript variant 2,
mRNA. Protein, most expressed in Brain - Spinal cord (cervical c-1) (GTEx V7)

chr12: 106476140-
106477376

chr12: 106457118- 106533811
(intron, exon 3 & 4)

NUAK1: Homo sapiens NUAK family, SNF1-like kinase, 1, mRNA. Protein,
most expressed in Brain - Frontal Cortex (BA9) (GTEx V7), involved in axon
branching [32]

chr16: 87226206-
87257820

chr16: 87360593- 87361190
(102kpb, upstream)

RP11-178L8.8 (AC010531.7): novel transcript, antisense to FBXO31 and
C16orf95 readthrough LncRNA, most expressed in Brain - Cerebellum(GTEx V6)

chr16: (102kpb, upstream)
87360593- 87422364

FBXO31: F-box protein 31,mRNA. Protein, most expressed in Brain -
Cerebellum(GTEx V8)

1430 S. Karkar et al.
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SNPs see [6] with a MAF > 0.01; (c; Rare SNPs): imputed
SNPs with MAF < 0.01. All MAF were computed using
–maf options in PLINK, joining discovery, and replication
dataset. Similarly to Fig. 3, in order to match a given
haplotype hit with a single-SNP hit in Table 2, we used the
lowest p value of single-SNP associations observed in the
SNPs of that significant haplotype block.

The comparative analysis given in Table 2 revealed the
following salient points:

(i) Haplotype association tests yield similar or better
p values than imputed or genotyped SNP counterparts.
Indeed, in the majority of hits, there was at least one
haplotype model that was more significant than the
single-SNP test (19 vs. 10). Moreover, for six

phenotype/genotype significant associations, haplotype
p values were at least 10-fold lower than their single-
SNP counterparts while the opposite was not observed.

(ii) For strong associations involving several haplotypes in
the same block, haplotype approaches can lead to
p values that are several order lower, for example,
haplotypes association in block chr1:215146807-
215154276 with FCMpost Left leads to corrected
p values in the range of 10−17 compared to 10−11 with
single-SNP associations (resp. (10−24 and 10−19

uncorrected). Additionally, for 5 other phenotypes,
p values obtained using haplotype associations are also
2 or 3 orders of magnitude lower (6 phenotypes for
uncorrected values).

(iii) Imputed rare variants do not exhibit any significant

Fig. 3 Comparison for main hits using the three proposed haplo-
type association tests (Y-axis) and single-SNP association (PLINK,
X-axis) with: (top) genotyped SNPs and (bottom) imputed SNPs.
For each significant haplotype-phenotype association (Y-axis), the
lowest p value observed for the SNPs inside the block was reported (X-
axis). For points above the grey line at x= y, p values for haplotype
associations test are lower than their single-SNPs counterpart. Red
lines indicate the fit of haplotype block test p values (y= 1.34 x+
−1.77, R2= 0.827) with imputed SNPs and (y= 1.42 x+ −2.07, R2

= 0.765) with genotyped SNPs; Green lines indicate the fit of

complete model individual haplotype test p values (y= 1 x+ 0.0716,
R2= 0.744) with imputed SNPs and (1.05 x+ −0.031, R2= 0.709)
with genotyped SNPs; Blue lines indicates the fit for single haplotype
test p values (y= 0.922 x+ 0.099, R2= 0.959) with imputed SNPs
and (y= 0.98 x+ −0.0531, R2= 0.951) with genotyped SNPs. Ver-
tical, blue dashed lines indicate genome-wide significant threshold for
SNPs, Horizontal, red dashed lines indicate genome-wide significant
threshold for haplotype associations. All p values are corrected using
Bonferroni correction (see details in section “Genome-wide sig-
nificance threshold”).
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associations, so we did not run any test on rare variants
in the replication dataset. Indeed, the smallest uncor-
rected p values associated with rare variants are 6 to 20
orders of magnitude higher than the significant
haplotype hits (data not shown), indicating a potential
lack of power given the sample size.

False positive rates in the Genome-wide haplotype
association tests

In Supplementary Material 5, we investigated FPR in the two
first scenarios of null hypotheses as described in section “False
positive rates in the Genome-wide haplotype association tests”
and reported results in Supplementary Fig. 1 (for scenario 1)
and Supplementary Table 1 (for scenario 2). We show that in
the second permutation scenario, the three tests seem to control
the family-wise error rate for most phenotypes, as well as on
average overall phenotypes. The spatial pattern in the λ values
does not reflect the spatial distribution of the FPR across the
brain given in Supplementary Table 1 (t-test with p values >
0.05 for all three haplotype testing strategies, using Pearson’s
correlation moment between all phenotypes’ λ values and
average FPR) and we observed an overall homogeneous
behaviour across the brain for the three haplotype tests.
Moreover, out of the two phenotypes (FCalant.ScCal_left and
SRh_left) showing systematic inflated FPR, none of them
were involved in significant hits on real data. In Supplemen-
tary Fig. 4, we did not observe any inflation of FPR under the
first permutation scenario. In addition, we did not observe any
false positive.

Table 3 shows an estimation, for each test, of FPRT=NFP /
NT, the FPR for the null distributions that preserve the cor-
relation among phenotypes and within the genome (scenario 3
described in section “False positive rates in the Genome-wide
haplotype association tests”). When using Bonferroni correc-
tion for significance thresholds (see section “False positive
rates in the Genome-wide haplotype association tests”), only
the block test seems to control for Family-Wise Error Rate,
while the complete and single-tests show an inflation of FPR
(see Table 3). The Q-Q plots presented in Fig. 4 indicate that

in this permutation scenario, the inflation of FPR was caused
by extreme p values (probably due the two phenotypes with
an FPR inflation in the permutation scenario by phenotype)
rather than a systematic inflation of the statistic. In order to
identify the phenotypes associated with these extreme
p values, we first removed phenotypes for which more than
25% of individuals are missing but this did not reduce FPR
inflation (see Supplementary Table 2 and Supplementary
Fig. 5). Then we also removed the two phenotypes with an
FPR inflation, which allowed us to control the Family-Wise
Error rate (see Supplementary Table 2 and Supplementary
Fig. 6).

Significant haplotype associations are found in
replication dataset

For all significant associations, we conducted a replication
study and, with the exception of the hits on block
chr7:134416326-134416604, all hit locations were found
significantly associated in the replication study (see
Table 4). However, the replication rate of haplotype asso-
ciations was average for the block test (58%), and high for
complete and single-tests (resp. 91% and 86%). Overall
single-SNP test hits were less frequently replicated than hits
from haplotype tests. For the haplotype block model test,
out of 13 phenotypes significantly associated in the original
dataset, 7 (53%) were found significant in the replication
study. This ratio was comparable in Imputed SNPs and
Genotyped SNPs (resp. 45 and 57%) but well below single-
test and complete haplotype test (resp. 84 and 94%).

Discussion

Choosing δ value to define blocks

We studied a range of values for the δ parameter from 10−3

to 2.5 10−2 cM, that balance (i) the size of haplotype blocks,
by including SNPs further apart on the map, while ensuring
(ii) the reliability of the phase along the block [21]. We set
the δ parameter to the smallest value (smallest probability of

Table 3 False positive rate under null hypothesis for 25 runs of permutations using the third scenario (see section “False positive rates in the
Genome-wide haplotype association tests”).

Test Average
number of
tests per run

Average discovery
threshold α′=α/NT

Average
FPR
per run

Average
# FP
per run

# of runs # of runs with
FPR ≥ 1/NT

proportion of runs
with FPR ≥ 1/NT

Min
FPR

Max FPR

block 14,700,330 3.40E−09 2.72E−09 0.04 25 1 0.04 0 6.80E−08

complete 110,575,583 4.52E−10 1.81E−09 0.2 25 5 0.2 0 9.06E−09

single 124,659,108 4.01E−10 9.59E−10 0.12 25 3 0.12 0 8.00E−09

For each run of permutation, tests were corrected by the Bonferroni procedure PT= α ∕NT for NT tests with risk α= 0.05 (see section “Genome-
wide significance threshold”). The FPR should be lower than 1/NT in 5% of the runs in absence of inflation.
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recombination). Of note, we observed that the distribution
of the block genetic length L(h) for this value is the most
homogeneous across the different chromosomes. In addi-
tion, in Supplementary Material 4 we show that with δ
increasing from 0.001 to 0.025, the distribution becomes bi-
modal. Moreover, with a higher δ value, a larger number of
recombination events is allowed within the same haplotype
block which may lead to a lower sensitivity. One could see
our dataset as a good representation of the UK Biobank
overall dataset and for any other representative subsets of
UK Biobank or genetic datasets based on the same panel

and genetic map, we could recommend using the same
value. Moreover, for genetic datasets of the same quality
and based on the same or related panel and genetic map
(namely 1000 Genome Phase 3 or HRC panel), the FPR
study suggests that one can safely use our method on sev-
eral related phenotypes. For genetic datasets based on
another panel that might harbour different correlation
structures across the genome, or phenotypes that follow
particular distributions, one might need to perform a new
FPR study using permutations such as described in
this work.

Fig. 4 Aggregation of Q–Q plots for 25 runs of permutated data-
sets (see section “False positive rates in the Genome-wide haplo-
type association tests”, third scenario). From left to right: block-test,
complete-test and single-test. The shaded area define the hull

(minimum and maximum values) of the Q–Q plots for the 25 per-
mutated datasets and the Q–Q plot obtained on real data is given by the
coloured, dotted line. The red, dashed line at y= x indicates where the
expected distribution lies.
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Recommended strategy for genome-wide haplotype
associations in imaging genetics study

When applied on a single phenotype (second permutation
strategy), the three tests showed control of FPR for most
phenotypes (see Supplementary Table 1). However a few
phenotypes may lead to abnormally low p values, especially
with the complete and the single-tests, that even resist the
Bonferroni correction applied in the third permutation
strategy (when all phenotypes are tested at the same time).
In this third scenario, only the block test controls the family-
wise error rate.

Our results on real data show that in the presence of a
complex association signal, like in the region upstream of
KCNK2, the haplotype modelling underlying the block-test
model produces p values several orders of magnitude lower.
This result calls for the development of innovative multi-
variate approaches based on haplotypes, such as those the
authors have proposed in [28].

In our case, the block on Chr1:215 harbouring the
strongest signal is also the block with the most complex
associations (with several significant SNPs, see [10]).
However one could expect complex signals currently lying
below the GWAS detection threshold to be picked up by the
haplotype block test. Individual haplotype tests (single and
complete tests) could be ran in a second step to identify
haplotypes of interest inside the significant blocks.

Limitations of the study

We choose to use a low δ value in order to obtain the most
reliable haplotypes. One drawback is that this also allows
higher LD between the blocks, meaning a greater corre-
lation between blocks than with higher δ values. Using
Bonferroni correction for multiple testing is expected to be
conservative in the presence of such dependencies. In this
situation, Howard et al. [29] proposed a correction using
an estimation of the number of independent haplotypes,
which would be less stringent than the Bonferroni
correction.

In our study of FPR, we purposely focus on realistic null
distributions of measurements, that exhibit the true corre-
lation between all the phenotypes and along the whole
genome. To have a better estimation of the FPR, one would
need to run a larger number of runs which is computa-
tionally intensive and out of reach using our realistic null
distributions. However, with 25 permutations used, we still
could reasonably detect when an inflation of FPR occurs.

By comparing with single-SNP analyses, we did not
estimate the discovery power of our tests. To our knowl-
edge, for whole-genome haplotype associations, there is no
practical way to create a synthetic and realistic ground truth
signal for multiple correlated phenotypes.

Conclusion and future works

In the context of imaging-genetics, we studied three haplotype
tests on a genome-wide and phenotype-wide approach to find
associations between haplotypes and quantitative traits mea-
sured on brain MRI. Beyond the process of extracting features
from the imaging data, we normalized the measurement dis-
tributions of the sulcal openings using Box-Cox transforma-
tions and obtained spatially homogeneous distributions across
the brain. We compared three haplotype association tests and
achieved the best performance with the haplotype block
model test (lowest p values observed and best control of
FPR). The complete model individual haplotype test can then
be used to identify the haplotypes of interest within the
associated block. These two tests use a multivariate model of
haplotypes that accounts for the whole set of haplotypes
occurring in the studied population for a given block. Based
on the results of this work, we do not argue for the systematic
use of haplotype modelling over classical GWAS based on
imputed variants. More particularly, in the case of the UK
Biobank, all samples come from a homogeneous population
with an extensive imputation panel [6] and haplotype asso-
ciation tests often yield p values in the same range as that of
imputed SNPs. However, in case of complex signals, we
argue that the haplotype block test could provide a com-
plementary approach that detects associations that lie below
GWAS discovery threshold. Moreover haplotype associations
seem to be easier to replicate than single-SNP associations.
This study relies on the definition of blocks using a genetic
map and a single value of δ. Future works could take a step
further and locally define block boundaries in order to find the
more relevant ones in terms of association [30, 31].

Acknowledgements This work was funded by CEA—Université
Paris-Saclay and FRM grant number DIC20161236445.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

1436 S. Karkar et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

1. Vermeer SE, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MM.
Prevalence and risk factors of silent brain infarcts in the
population-based Rotterdam Scan Study. Stroke 2002;33:21–25.

2. de Wilde A, van Maurik IS, Kunneman M, Bouwman F, Zwan M,
Willemse EAJ, et al. Alzheimer’s biomarkers in daily practice
(ABIDE) project: Rationale and design. ”Alzheimer’s Dement:
Diagnosis, Assess Dis Monit”. 2017;6:143–51.

3. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust
W, et al. The Alzheimer’s disease neuroimaging initiative. Neu-
roimaging Clin N. Am. 2005;15:869–77.

4. Schumann G, Loth E, Banaschewski T, Barbot A, Barker G,
Buchel C, et al. The IMAGEN study: reinforcement-related
behaviour in normal brain function and psychopathology. Mol
Psychiatry. 2010;15:1128–39.

5. Loth E, Charman T, Mason L, Tillmann J, Jones EJH, Wooldridge
C, et al. The EU-AIMS Longitudinal European Autism Project
(LEAP): design and methodologies to identify and validate stra-
tification biomarkers for autism spectrum disorders. Mol Autism.
2017;8:24.

6. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K,
et al. The UK Biobank resource with deep phenotyping and
genomic data. Nature. 2018;562:203–9.

7. Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud
G, et al. Genome-wide association studies of brain imaging phe-
notypes in UK Biobank. Nature. 2018;562:210–16.

8. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR,
Griffanti L, Douaud G, et al. Image processing and Quality
Control for the first 10,000 brain imaging datasets from UK
Biobank. NeuroImage. 2018;166:400–24.

9. Le Guen Y, Leroy F, Auzias G, Riviere D, Grigis A, Mangin JF.
et al. The chaotic morphology of the left superior temporal sulcus
is genetically constrained. NeuroImage. 2018;174:297–307.

10. Le Guen Y, Philippe C, Riviere D, Lemaitre H, Grigis A, Fischer
C, et al. eQTL of KCNK2 regionally influences the brain sulcal
widening: evidence from 15,597 UK Biobank participants with
neuroimaging data. Brain Struct Funct. 2019;224:847–57.

11. Spencer CC, Su Z, Donnelly P, Marchini J. Designing genome-
wide association studies: sample size, power, imputation, and the
choice of genotyping chip. PLoS Genet. 2009;5:e1000477.

12. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. Sequence
kernel association tests for the combined effect of rare and com-
mon variants. Am J Hum Genet. 2013;92:841–53.

13. Lin WY, Yi N, Zhi D, Zhang K, Gao G, Tiwari HK, et al.
Haplotype-based methods for detecting uncommon causal variants
with common SNPs. Genet Epidemiol. 2012;36:572–82.

14. Browning SR. Missing data imputation and haplotype phase
inference for genome-wide association studies. Hum Genet.
2008;124:439–50. Publisher: NIH Public Access

15. Datta AS, Biswas S. Comparison of haplotype-based statistical
tests for disease association with rare and common variants. Brief
Bioinform. 2015;17:657–71.

16. Li Y, Byrnes AE, Li M. To identify associations with rare var-
iants, just WHaIT: Weighted haplotype and imputation-based
tests. Am J Hum Genet. 2010;87:728–35.

17. Rivière D, Geffroy D, Denghien I, Souedet N, Cointepas Y.
BrainVISA: an extensible software environment for sharing
multimodal neuroimaging data and processing tools. NeuroImage.
2009;47:S163

18. Mcgill R, Tukey JW, Larsen WA. Variations of box plots. Am
Stat. 1978;32:12–16.

19. Box GEP, Cox DR. An analysis of transformations. J R Stat Soc
Ser. B. 1964;26:211–52.

20. O’Connell J, Sharp K, Shrine N, Wain L, Hall I, Tobin M, et al.
Haplotype estimation for biobank-scale data sets. Nat Genet.
2016;48(07):817–20.

21. Karkar S, Le Guen Y, Philippe C, Dandine-Roulland C, Pierre-
Jean M, Mangin JF, et al. A study of feasibility for genome-
wide haplotype association of complex traits in imaging
genetics. In: Proceedings of the 2018 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM); Madrid,
Spain; 2018. pp. 2764–2766.

22. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA,
Bender D, et al. PLINK: a tool set for whole-genome association
and population-based linkage analyses. Am J Hum Genet.
2007;81:559–75.

23. Pe’er I, Yelensky R, Altshuler D, Daly M. Estimation of the
multiple testing burden for genomewide association studies of
common variants. Genet. Epidemiol. 2008;32:1–1.

24. Alexander-Bloch AF, Mathias SR, Fox PT, Olvera RL, Goring
HHH, Duggirala R, et al. Human cortical thickness organized into
genetically-determined communities across spatial resolutions.
Cereb Cortex. 2019;29:106–18.

25. S Beyer K, M Klauck S, Wiemann S, Poustka A. Construction of
a physical map of an autism susceptibility region in 7q32.3-q33.
Gene 2001;08:85–91.

26. International Molecular Genetic Study of Autism Consortium
I. A full genome screen for autism with evidence for linkage to
a region on chromosome 7q. Hum Mol Genet. 1998;7:571–8.

27. Shao Y, Wolpert CM, Raiford KL, Menold MM, Donnelly SL,
Ravan SA, et al. Genomic screen and follow-up analysis for
autistic disorder. Am J Med Genet. 2002;114:99–105.

28. Karkar S, Gloaguen A, Le Guen Y, Pierre-Jean M, Dandine-
Roulland C, Le Floch E, et al. Multivariate haplotype analysis of
96 sulci opening For 15,612 UK-biobank sujects. In: Proceedings
of the 2019 IEEE 16th International Symposium on Biomedical
Imaging; Vcnice, Italy; 2019. pp. 392–5.

29. Howard DM, Hall LS, Hafferty JD, Zeng Y, Adams MJ, Clarke
TKK, et al. Genome-wide haplotype-based association analysis of
major depressive disorder in Generation Scotland and UK Bio-
bank. Transl Psy. 2017;7:1263.

30. Guinot F, Szafranski M, Ambroise C, Samson F. Learning the
optimal scale for GWAS through hierarchical SNP aggregation.
BMC Bioinform. 2018;19:459459.

31. Balliu B, Houwing-Duistermaat JJ, Bohringer S. Powerful testing
via hierarchical linkage disequilibrium in haplotype association
studies. Biom J. 2019;61:747–68.

32. Courchet J, Lewis TL, Lee S, Courchet V, Liou DY, Aizawa S,
et al. Terminal axon branching is regulated by the LKB1-NUAK1
kinase pathway via presynaptic mitochondrial capture. Cell
2013;153:1510–25.

Genome-wide haplotype association study in imaging genetics using whole-brain sulcal openings of 16,304. . . 1437


	Genome-wide haplotype association study in imaging genetics using whole-brain sulcal openings of 16,304 UK Biobank subjects
	Abstract
	Introduction
	Material and method
	Samples
	Replication sample
	Data processing
	Imaging data, sulcal opening
	Definition of Haplotypes blocks in UK Biobank
	Genome-wide haplotype association
	Count matrix of each haplotype block
	Association tests
	Haplotype block model test
	Complete model individual haplotype test
	Single haplotype model test
	Comparison with single-SNP association used in classical�GWAS
	Genome-wide significance threshold
	Correction of p values and significance threshold for SNP associations
	Correction of p values and significance threshold for haplotype associations
	False positive rates in the genome-wide haplotype association tests
	False positive rate while preserving the correlation within each haplotype block
	False positive rate while preserving the correlation within the genome
	False positive rate while preserving the correlation within the genome and among the phenotypes

	Results
	Imaging data processing
	Genomic data processing
	Sulcal opening patterns are associated with haplotypes
	Haplotype tests exhibit different sensitivity compared to single SNP-based associations
	False positive rates in the Genome-wide haplotype association tests
	Significant haplotype associations are found in replication dataset

	Discussion
	Choosing &#x003B4; value to define blocks
	Recommended strategy for genome-wide haplotype associations in imaging genetics study
	Limitations of the study
	Conclusion and future works
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




