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Crosstalk between microRNA expression
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Miriam Ragle Aure1,2 , Thomas Fleischer2 , Sunniva Bjørklund1,2, Jørgen Ankill2 , Jaime A. Castro-Mondragon3 ,
OSBREAC4, Anne-Lise Børresen-Dale2,5, Jörg Tost6 , Kristine K. Sahlberg2,7, Anthony Mathelier1,2,3 ,
Xavier Tekpli1,2*† and Vessela N. Kristensen1,2,8*†

Abstract

Background: Abnormal DNA methylation is observed as an early event in breast carcinogenesis. However, how
such alterations arise is still poorly understood. microRNAs (miRNAs) regulate gene expression at the post-
transcriptional level and play key roles in various biological processes. Here, we integrate miRNA expression and
DNA methylation at CpGs to study how miRNAs may affect the breast cancer methylome and how DNA
methylation may regulate miRNA expression.

Methods: miRNA expression and DNA methylation data from two breast cancer cohorts, Oslo2 (n = 297) and The
Cancer Genome Atlas (n = 439), were integrated through a correlation approach that we term miRNA-methylation
Quantitative Trait Loci (mimQTL) analysis. Hierarchical clustering was used to identify clusters of miRNAs and CpGs
that were further characterized through analysis of mRNA/protein expression, clinicopathological features, in silico
deconvolution, chromatin state and accessibility, transcription factor binding, and long-range interaction data.

Results: Clustering of the significant mimQTLs identified distinct groups of miRNAs and CpGs that reflect important
biological processes associated with breast cancer pathogenesis. Notably, two major miRNA clusters were related to
immune or fibroblast infiltration, hence identifying miRNAs associated with cells of the tumor microenvironment,
while another large cluster was related to estrogen receptor (ER) signaling. Studying the chromatin landscape
surrounding CpGs associated with the estrogen signaling cluster, we found that miRNAs from this cluster are likely
to be regulated through DNA methylation of enhancers bound by FOXA1, GATA2, and ER-alpha. Further, at the hub
of the estrogen cluster, we identified hsa-miR-29c-5p as negatively correlated with the mRNA and protein
expression of DNA methyltransferase DNMT3A, a key enzyme regulating DNA methylation. We found deregulation
of hsa-miR-29c-5p already present in pre-invasive breast lesions and postulate that hsa-miR-29c-5p may trigger early
event abnormal DNA methylation in ER-positive breast cancer.

Conclusions: We describe how miRNA expression and DNA methylation interact and associate with distinct breast
cancer phenotypes.
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Background
Breast cancers are highly heterogeneous at the clinical
and molecular level. Alterations of methylation at
CpGs are found already in breast pre-invasive lesions
[1] and are thought to shape the methylation patterns
found in the different clinical and molecular breast
cancer subtypes [2, 3]. The epigenome contributes to
the cancer cells’ phenotype by regulating gene expres-
sion and the accessibility of regulatory regions. Previ-
ous studies have identified aberrant DNA methylation
at gene promoters in breast cancer associated with
clinically relevant subgroups. We recently showed that
DNA methylation at enhancers identifies distinct
breast cancer lineages [2]. The epigenome and the
chromatin landscape are important features to explain
breast cancer development and also progression, as
recently demonstrated for endocrine resistance in
breast cancer [4]. It is therefore essential to under-
stand the crosstalk between the genome and the epi-
genome and its role in defining tumor phenotypes.
Key enzymes, such as DNA methyltransferases
(DNMTs) and ten-eleven translocation enzymes
(TETs), regulate the DNA methylation machinery,
and alterations of their expressions have been de-
scribed in cancers with serious consequences in terms
of cancer cell phenotype [5, 6]. However, how such
enzymes may be early deregulated during carcinogen-
esis is still unclear.
MicroRNAs (miRNAs) are small (~ 22 nucleotides)

non-coding RNAs regulating protein expression
through targeting of messenger RNA (mRNA) for
degradation or by inducing translational repression
[7]. miRNAs play crucial roles in the regulation of
cancer-associated processes such as proliferation,
apoptosis, and differentiation and are known to elicit
context and cell type-specific expression [8, 9]. In
breast cancer, expression of miRNAs has been associ-
ated with clinical and molecular subtypes [10–12],
progression [13–15], prognosis [16, 17], and expres-
sion of oncogenes [18]. Importantly, miRNAs have
been shown to regulate the expression of epigenetic
regulators such as DNMTs and TETs [19, 20]. Con-
versely, miRNA expression is regulated by DNA
methylation of their respective promoters and aber-
rant methylation patterns of miRNA promoters has
been associated with cancer [21–24]. We have previ-
ously shown how concerted alterations in copy num-
ber or promoter methylation affect miRNA expression
in cis, resulting in upregulation of oncogenic miRNAs
and downregulation of tumor-suppressor miRNAs
[25]. Interestingly, methylation at regions flanking
miRNA precursor sequences has recently been shown
to impact miRNA expression and direct miRNA bio-
genesis [26]. However, how DNA methylation at distal

regulatory regions is associated with miRNA expres-
sion in breast cancer remains poorly understood.
The aim of this study was to elucidate how miRNA ex-

pression associates with genome-wide DNA methylation
patterns in breast cancer in cis (any association between
a miRNA and CpG on the same chromosome) and in
trans (any association between a miRNA and CpG on
different chromosomes). Specifically, we studied the
interplay between miRNA expression and DNA methyla-
tion and how it differs between breast cancer subtypes.
To this end, we integrated whole-genome miRNA ex-
pression with CpG DNA methylation and performed a
genome-wide correlation analysis identifying miRNA-
methylation Quantitative Trait Loci (mimQTLs). We
combined and integrated mimQTLs with mRNA/protein
expression, clinicopathological information,
ChromHMM genome segmentation, Assay for
Transposase-Accessible Chromatin using sequencing
(ATAC-seq) data, transcription factor (TF) binding, and
long-range interaction data to elucidate miRNA-
methylation crosstalk in breast cancer.

Methods
Clinical materials
Two independent breast cancer cohorts with DNA
methylation and miRNA expression available were here
used in parallel; the Oslo2 breast cancer cohort [17, 18]
and The Cancer Genome Atlas Breast Invasive Carcin-
oma (TCGA-BRCA) cohort [12].
The Oslo2 breast cancer cohort has been previously

described [17, 18] and is a consecutive study collecting
material from breast cancer patients with primary oper-
able disease at several hospitals in south-eastern Norway.
Patients were included in the years 2006–2019. The
study was approved by the Norwegian Regional Com-
mittee for Medical Research Ethics (approval number
1.2006.1607, amendment 1.2007.1125), and patients have
given written consent for the use of material for research
purposes.
The Illumina Infinium HumanMethylation450k micro-

array was used to measure the DNA methylation levels
of more than 450,000 CpG sites for 330 patient tumors
from the Oslo2 cohort as previously described [1, 27].
Each CpG probe returns a value called “beta” which is
calculated as the methylated signal divided by the sum
of the methylated and the unmethylated signal. The
range of beta values is between 0 and 1 and thus repre-
sent the percentage of methylation of a given CpG site
in the sample. Preprocessing and normalization involved
steps of probe filtering, color bias correction, back-
ground subtraction, and subset quantile normalization.
The DNA methylation data have been previously pub-
lished [2]. For comparison of Oslo2 CpG DNA methyla-
tion levels to normal tissue, data from normal breast

Aure et al. Genome Medicine           (2021) 13:72 Page 2 of 21



tissue from reduction mammoplasty (n = 17) were avail-
able [1].
The one-color microarray Human miRNA Microarray

Kit (V2) design ID 029297 from Agilent Technologies
was used to measure miRNA expression for 425 tumors
of the Oslo2 cohort using 100 ng total RNA as input.
Scanning was performed on the Agilent Scanner
G2565A. Samples were processed using Feature Extrac-
tion version 10.7.3.1 (Agilent Technologies). The data
were log2-transformed and for each tumor sample, con-
sidering only expressed miRNAs, the data were median
centered. All non-expressed miRNAs across tumors
were set to a common minimum value. The miRNA and
mRNA expression data have been previously published
[17]. In total, 297 Oslo2 tumor samples had matched
methylation and miRNA expression data. Furthermore,
of these, 45 samples had protein expression available
measured by mass spectrometry and published in
Johansson et al. [28].
The TCGA-BRCA cohort [12], from here on named

TCGA, has been previously described [12]. For the DNA
methylation data (level 3; beta values), probes with more
than 50% missing values were removed, and further
missing values were imputed using the function
pamr.knnimpute (R package pamr) with k = 10. The
log2(RPM+ 1) miRNA mature strand expression data
(level 3) measured by IlluminaHiseq were downloaded
from the UCSC Xena browser [29]. In case of NAs, these
were replaced with 0. Altogether, 439 TCGA breast can-
cer samples had matched methylation and miRNA ex-
pression data. In addition, DNA methylation level and
miRNA expression data were available for 97 and 76 ad-
jacent TCGA normal tissue samples, respectively. TCGA
gene expression data in the form of log2(norm_count+
1) measured by IlluminaHiseq_RNASeqV2 were down-
loaded from the UCSC Xena browser [29].
miRNA expression from ductal carcinoma in situ

(DCIS) samples were available from Lesurf et al. [13]. In
this data set, 26 DCIS samples and 14 invasive ductal
carcinoma (IDC) had miRNA expression data, and out
of these, 18 and 14, respectively, had estrogen receptor
status available.

Statistical and bioinformatical analysis
All analyses were performed in the R software v. 3.5.3
[30] unless otherwise specified. mimQTL analysis R code
is ava i lab le f rom GitHub: ht tps : / /g i thub .com/
miriamragle/mimQTL.git [31].

Genome-wide correlation analysis
Within each data set, CpGs with an interquartile range
(IQR) > 0.1 and miRNAs expressed in > 10% of the sam-
ples were selected. Considering only CpGs and miRNAs
present in both data sets resulted in 142,804 CpGs and

346 miRNAs (Additional file 1: Fig. S1). To test the cor-
relation between the level of DNA methylation of CpGs
and miRNA expression, the Spearman correlation statis-
tics was applied (function cor.test with method = “spear-
man” in R). An association was considered statistically
significant if a Bonferroni-corrected p value was < 0.05.
Only significant correlations with the same direction
(sign) were kept.

Hierarchical clustering of mimQTLs
The significant correlations overlapping the two data
sets from the genome-wide correlation analysis were
transformed into binary terms with − 1 for a significant
negative correlation and + 1 for a significant positive
correlation. The hierarchical clustering of CpGs and
miRNAs was performed on these values using the R
package pheatmap version 1.0.12 [32] with correlation
distance and average linkage. CpGs and miRNAs with at
least one significant association were included in the
clustering analysis. To identify and decide upon the
number of CpG and miRNA clusters, the dendrograms
were visually inspected using different cut-offs for the
cutree_rows and cutree_cols functions of the pheatmap
package. Cut-offs were manually selected to define the
clusters depicted in Fig. 1a (with cutree_rows = 2 and
cutree_cols = 3). Manhattan plots of mimQTL miRNAs
and CpGs were made using the R package qqman ver-
sion 0.1.4 [36].

Biological annotation of miRNA clusters
The expression of each miRNA in a given cluster was
correlated to the mRNA expression of all genes. The
miRNA-mRNA pairs that were positively (Spearman
correlation > 0.4, p value < 0.05) and negatively corre-
lated (Spearman correlation < − 0.3, p value < 0.05) in
both the Oslo2 and TCGA cohorts were used in the
downstream analysis (a negative threshold of < − 0.4 in
both cohorts was too stringent and resulted in zero
genes for miRNA cluster B). For each miRNA cluster,
the list of positively or negatively correlated genes were
selected and used as input to Enrichr [33] to perform
gene set enrichment analysis (the analyses were per-
formed on September 13th, 2019, and January 20th,
2021, for the positively and negatively correlated genes,
respectively). Results obtained from the KEGG 2019 Hu-
man Pathways database were reported.

Lymphocyte and fibroblast infiltration scores
The Nanodissect algorithm [34] (http://nano.princeton.
edu/) was used for in silico estimation of lymphocyte in-
filtration as previously described [2]. The xCell algo-
rithm [35] was used to obtain a fibroblast score for
Oslo2 samples. For TCGA, xCell scores were down-
loaded from https://xcell.ucsf.edu/xCell_TCGA_RSEM.
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txt. To assess enrichment of positive or negative correla-
tions between miRNA expression and infiltration scores
for a given miRNA cluster, the phyper function in R was
used with all miRNAs (n = 346) as background.

miRNA expression modeled with generalized linear
models
Generalized linear modeling (glm function in R) was
used to model miRNA expression as a function of
lymphocyte infiltration, fibroblast infiltration, and ESR1
mRNA expression to estimate which variable(s) signifi-
cantly associated with miRNA expression. The estimates
plotted in Fig. 1e–g represent the multivariate analysis
estimates with their 95% confidence intervals and the
corresponding levels of significance (p values) are
indicated.

Pathway enrichment of genes mapped to mimQTL CpGs
For each of the CpGs in the two mimQTL CpG clusters,
the corresponding gene was obtained by intersecting the
Illumina450k array annotation file. The two gene lists
were used as input to Enrichr [33] to perform gene set
enrichment analysis (on 11.10.2019). As output, we
exported the results from the KEGG 2019 Human Path-
ways database.

Functional annotation of mimQTL CpGs
For functional annotation of the CpGs, we utilized the
ChromHMM segmentation from Xi et al. [37] obtained
from cell lines representing different breast cancer mo-
lecular subtypes [37]: MCF7 and ZR751 (luminal A),
MB361 and UACC812 (luminal B), AU565 and
HCC1954 (HER2) and MB469 and HCC1937 (basal).
These segmentations were derived from Chromatin Im-
munoprecipitation Sequencing (ChIP-seq) data for five
histone modification marks (H3K4me3, H3K4me1,
H3K27me3, H3K9me3, and H3K36me3) to predict thir-
teen distinct chromatin states: active promoters (PrAct)
and promoter flanking regions (PrFlk), active enhancers
in intergenic regions (EhAct) and genic regions (EhGen),
active transcription units (TxAct) and their flanking re-
gions (TxFlk), strong (RepPC) and weak (WkREP) re-
pressive polycomb domains, poised bivalent promoters
(PrBiv) and bivalent enhancers (EhBiv), repeats/ZNF
gene clusters (RpZNF), heterochromatin (Htchr), and
quiescent/low signal regions (QsLow). We assessed en-
richment of CpG sets within each of the 13 chromatin
states using hypergeometric tests (the R function phyper)
with all Illumina Infinium HumanMethylation450k
BeadChip CpGs as background. P values were corrected
using the Benjamini-Hochberg procedure [38].
Normalized ATAC-seq peak signals (log2((count+

5)PM)-qn) for 74 TCGA breast tumors were down-
loaded f rom the Xena browse r [ 29 ] (h t t p s : / /

xenabrowser.net/datapages/). The CpG positions from
the Illumina 450k array were intersected with the peaks
using BEDTools v2.29.2 [39]. To test for differential
open regions between estrogen receptor (ER)-positive
and ER-negative tumors, the average normalized counts
of the peaks containing each CpG within a CpG cluster
was calculated per tumor and a Wilcoxon rank-sum test
was applied to test for statistical significance using R.

Enrichment of mimQTL CpGs at TF binding regions
To assess the enrichment of mimQTL CpGs close to tran-
scription factor binding sites (TFBSs), we considered the
direct TF-DNA interactions (i.e., TFBSs) stored in the
UniBind database (version 1) [40] at https://unibind.uio.
no. These TFBSs were obtained by combining both ex-
perimental (ChIP-seq) and computational (position weight
matrices from JASPAR [41]) evidence of direct TF-DNA
interactions (see Gheorghe et al. [40] for more details) for
231 TFs in 315 cell lines and tissues. Note that a TF can
have multiple sets of TFBSs derived from different ChIP-
seq experiments. The genomic positions of all CpGs from
the Illumina 450k array were lifted over from hg19 to
hg38 and extended with 100 bp on each side using Bed-
Tools (v2.26.0). The enrichment of UniBind TFBS sets in
regions surrounding clusters 1 and 2 CpGs were assessed
against a universe considering all CpG regions with the
UniBind enrichment tool (https://unibind.uio.no/
enrichment/ and https://bitbucket.org/CBGR/unibind_
enrichment/). Specifically, the enrichment is computed
using the LOLA R package (version 1.12.0) [42] using
Fisher’s exact tests. Figure 2 c, h plots the Fisher’s exact p
values using beeswarm plots (swarmplot function of the
seaborn Python package, https://doi.org/10.5281/zenodo.
824567) with annotations for the TFs associated with top
10 most enriched TFBS sets [43].

Hierarchical clustering of methylation and miRNA
expression
Hierarchical clustering of CpG DNA methylation or
miRNA expression was performed using the R package
pheatmap version 1.0.12 [32] with Euclidean distance
and average linkage. For visualization, miRNA expres-
sion values were centered and scaled with scale = “row”.

Statistical testing of methylation and miRNA expression
between clinical/molecular groups
For two-group comparisons, Wilcoxon rank-sum tests
were used considering a significance level of p < 0.05.
For three or more groups, Kruskal-Wallis tests were
used with the same significance level. When many
tests were performed simultaneously, the resulting p
values were corrected using the Benjamini-Hochberg
procedure [38].
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Long-range interaction estimates and ChIP-seq peaks
measurements
Chromatin Interaction Analysis by Paired-End Tag Se-
quencing (ChIA-PET) RNA polymerase II (Pol2) loop
data from the MCF7 cell line was retrieved from EN-
CODE, accession number ENCSR000CAA [44]. Compu-
tational chromatin interactions predicted by the
Integrated Methods for Predicting Enhancer Targets
(IM-PET) algorithm [2] were retrieved from the 4Dge-
nome data portal for the ER-negative cell line HCC1954
[45]. The HiChIP-H3K27ac-DNA data for the ER-
negative MDAMB231 cell line was obtained from GEO,
accession number GSE97585 (samples GSM2572593 and
GSM2572594) [46, 47]. The MDAMB231 data was con-
verted from allvalidPairs.txt.gz files to bedpe format
using an inbuilt script in the cLoops loop calling tool
[48]. The output file was then directly processed using
the cLoops loop calling algorithm with the default pa-
rameters (GitHub - YaqiangCao/cLoops: Accurate and
flexible loops calling tool for 3D genomic data; https://
github.com/YaqiangCao/cLoops. We investigated over-
laps between long-range interaction loops and in cis (on
the same chromosome) mimQTLs in R. A mimQTL
(CpG-miRNA pair) were considered to be in a ChIA-
PET loop if the CpG and the miRNA precursor were
found in two different feet of the same loop. Enrichment
was calculated using hypergeometric tests (phyper R
function) with all possible in cis (i.e., on the same
chromosome) pairs between miRNAs and CpGs of the
450k array as background. For the specific analyses of
TF ChIP-seq data sets, we retrieved hg19 ENCODE
ChIP-seq peak regions from the ReMap 2018 [49] data-
base for the MCF7 and MDAMB231 cell lines (ENCS
R000BST.GATA3.MCF7, ERP000783.ESR1.MCF7,
GSE72249.FOXA1.MCF7, GSE66081.JUN.MDAMB231,
and GSE48602.MYC.MDAMB231).

miRNA super-enhancer (SE) breast tissue overlap with
CpGs
miRNA SEs were retrieved from Suzuki et al. [50]. Data
from the breast-associated cell lines HCC1954, HMEC,
and MCF7 were considered. The overlap between CpG
genomic positions and miRNA SEs was obtained using
the GenomicRanges R package version 1.32.7 [51].

Global methylation alteration (GMA) score
To obtain one score per tumor measuring the global
methylation pattern deviation of a tumor from that of
normal breast cells, a global methylation alteration
(GMA) score was defined. Starting with the processed
methylation data, for each CpG, the median beta value
of all normal breast tissue samples (n = 17 for Oslo2 and
n = 97 for TCGA, respectively) were calculated. The
GMA score of a tumor i was then computed as:

GMA scorei ¼
X

CpG j;i - median CpG j;normals

� ����
���

with CpGj,i corresponding to the beta value of CpG j
in tumor i and CpGj,normals corresponding to the median
of the beta values for CpG j in the normal breast tissue
samples.

In silico miRNA-target predictions
In silico-predicted miRNA-target interactions were
downloaded from TargetScan release 7.2 [52] (http://
www.targetscan.org/cgi-bin/targetscan/data_download.
vert72.cgi), and both the Conserved and Nonconserved
Site Context Scores were considered. From these predic-
tions, we extracted the Homo sapiens in silico predic-
tions for six selected genes: TET1, TET2, TET3,
DNMT1, DNMT3A, and DNMT3B.

Results
Identification of miRNA-methylation quantitative trait loci
(mimQTLs)
To identify robust associations between the expression
of miRNAs and DNA methylation at CpG sites, we cor-
related genome-wide miRNA expression and DNA
methylation in two independent breast cancer cohorts:
Oslo2 (n = 297) and The Cancer Genome Atlas (TCGA)
Breast Invasive Carcinoma cohort (n = 439; see Add-
itional file 1: Fig. S1 for workflow outline). Only miRNAs
and CpGs found in both cohorts were considered for es-
timation of the Spearman correlation between the ex-
pression of 346 miRNAs and methylation of 142,804
CpGs, resulting in 140,443 (0.28%) and 1,351,887
(2.74%) significant miRNA-CpG associations (Bonfer-
roni-corrected p value < 0.05) in the Oslo2 and TCGA
cohorts, respectively (see “Methods”). With a greater
sample size for TCGA, a larger number of significant as-
sociations were observed, as expected (Additional file 1:
Fig. S2). We identified 89,118 significant correlations
with the same sign in both cohorts, pointing to consist-
ent associations between miRNA expression and DNA
methylation (Additional file 2), hereafter referred to as
miRNA-methylation Quantitative Trait Loci
(mimQTLs). These significant correlations involved 119
unique miRNAs and 26,746 unique CpGs (Additional
file 3a, b). The observed correlations were more often
negative than positive (64% negative vs. 36% positive:
Additional file 1: Fig. S3a). A negative correlation in this
context represents opposite trends, i.e., low CpG methy-
lation and high miRNA expression (or vice versa), while
a positive correlation represents the same trend, i.e., high
CpG methylation is accompanied with high miRNA ex-
pression (or low CpG methylation and low miRNA ex-
pression). The genomic positions of the mimQTLs are
displayed as Manhattan plots (Additional file 1: Fig.
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S3b). Although our analysis was not restricted to any
distance parameter, a subset of mimQTLs (5125, 5.8%)
were in cis, i.e., the miRNA and CpG were located on
the same chromosome with the potential of direct func-
tional interaction. The most significant in cis mimQTLs
were found on chromosomes 1, 12, and 17 (Additional
file 1: Fig. S3c). The frequency of negative in cis correla-
tions was 63%, similar to the frequency across all
mimQTLs. While causality cannot be directly inferred
from such correlations, the mimQTL associations to-
gether reflect the global degree of coordination between
CpG methylation and miRNA expression encompassing
both direct and indirect interactions.

Identification of mimQTL clusters
To identify mimQTLs sharing similar features with po-
tential biological relevance, we performed unsupervised
hierarchical clustering of the Spearman correlation p
values binarized as − 1 (negative) and + 1 (positive),
which led to the identification of three miRNA clusters
(x-axis) and two CpG clusters (y-axis) (Fig. 1a). miRNA
clusters A, B, and C consisted of 23, 59, and 37 miRNAs,

respectively. CpG clusters 1 and 2 contained 14,040 and
12,706 CpGs, respectively. For each miRNA cluster, the
number of associated mimQTL pairs were 66,202 (74%
in cluster A), 9252 (11% in B), and 13,664 (15% in C).
All clusters were characterized by predominantly nega-
tive correlations, but the fraction of negative to positive
correlations varied between the miRNA clusters (Add-
itional file 1: Fig. S3a). Of the CpGs associated with miR-
NAs in cluster C, 60% were also associated with
miRNAs in cluster A but with the opposite sign of the
correlation as indicated by the opposite blue or red
colors on the heatmap (Fig. 1a). In contrast, most of the
CpGs associated with miRNAs in cluster B were unique
to this cluster. The number of CpG associations per
miRNA varied from one up to 14,469 (hsa-miR-155-5p)
with a median of 79 CpG associations (Additional file 1:
Fig. S4a and Additional file 3 a). For the CpGs, the num-
ber of associations to miRNAs ranged from one up to 30
with a median of 3; only a small subset (1.2%) of almost
exclusively cluster 1 CpGs had more than 10 miRNA as-
sociations (Additional file 1: Fig. S4b and Additional file
3b). As expected, a high degree of co-expression and co-

Fig. 1 Identification of miRNA-methylation Quantitative Trait Loci (mimQTL) clusters and corresponding annotation. a Heatmap showing
hierarchical clustering of the 89,118 significant mimQTLs found in both the Oslo2 and TCGA cohorts. miRNAs are shown in columns and CpGs in
rows. In the heatmap, blue color indicates a negative correlation and red color indicates a positive correlation between miRNA expression and
CpG methylation. Three main miRNA clusters (cluster A, B, and C) and two main CpG clusters (cluster 1 and 2) were identified. b–d Barplots
showing the top five most enriched pathways for genes co-expressed (miRNA-mRNA expression Spearman correlation > 0.4) with the miRNAs of
cluster A (b), B (c), and C (d). The x-axis show the − log10(p value) of the pathway enrichment obtained from Enrichr [33]. Bars are color-coded
according to the associated miRNA cluster. e–g Results from fitting generalized linear models (GLM) to model miRNA expression as a multivariate
function of lymphocyte infiltration (obtained by Nanodissect [34]), fibroblast infiltration (obtained by xCell [35]), and ESR1 mRNA expression. The
GLM coefficients are depicted with 95% confidence intervals for each of the miRNAs with the highest number of CpG associations in each
cluster. Asterisks (***) denote a p value < 0.001 and “ns” denotes not significant (p value > 0.05)
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methylation was observed by the members of a given
cluster (Additional file 1: Fig. S5). These initial analyses
led us to identify for the first time global and consistent
correlations between miRNA expression and CpG
methylation across two breast cancer cohorts.

miRNA clusters highlight important processes of breast
cancer pathogenesis
To identify biological functions shared by miRNAs in
the same cluster (x-axis of the heatmap Fig. 1a), we
identified genes positively co-expressed with the miR-
NAs of each cluster (mRNA-miRNA Spearman correl-
ation > 0.4 in both cohorts; Additional file 3c) and
performed gene set enrichment analyses (GSEA) using
Enrichr [33]. We also performed the corresponding
GSEA analysis on the negatively correlated genes separ-
ately (Additional file 3c).

miRNA cluster A—the immune cluster
miRNAs in cluster A were co-expressed with genes in-
volved in immune cell differentiation and signaling and
negatively correlated to genes associated with the estrogen
signaling pathway (Fig. 1b and Additional file 3d). The top
five miRNAs with most correlations to CpGs in cluster A
(and also overall) were hsa-miR-155-5p (n = 14,469), hsa-
miR-146a-5p (n = 12,546), hsa-miR-150-5p (n = 11,679),
hsa-miR-142-5p (n = 8320), and hsa-miR-135b-5p (n =
5766). Concordant with the GSEA, we have previously
shown in a third independent breast cancer cohort that
these miRNAs are highly associated with immune re-
sponse processes [10]. Importantly, previous studies have
established functional roles for several of these miRNAs in
immune cell differentiation and function [53–58]. To fur-
ther confirm the association between miRNA cluster A
and immune response, we used gene expression to score
lymphocyte infiltration in each tumor using Nanodissect
[34]. We found an enrichment of positive correlations

between cluster A miRNA expression and tumor immune
infiltration in both cohorts (hypergeometric test p value <
0.001 considering the correlation between all miRNAs and
the lymphocyte score as background; Additional file 1: Fig.
S6a, b and Additional file 3e). Altogether, these results
suggest that miRNAs in cluster A are either expressed by
tumor infiltrating immune cells or shape the tumor
microenvironment. This is further supported by their
higher expression in ER-negative tumors (Additional file
1: Fig. S7a, b and Additional file 3 f), which have higher
immune infiltration compared to ER-positive tumors [59,
60].

miRNA cluster B—the fibroblast cluster
miRNAs in cluster B were co-expressed with genes
enriched for extracellular matrix (ECM) and focal adhe-
sion and negatively correlated to genes associated with
cell cycle processes (Fig. 1c and Additional file 3d). As fi-
broblasts are strongly associated with biophysical forces
of the tumor microenvironment and in shaping the
ECM through the deposition of collagen [61], we com-
puted a score reflecting the relative amount of fibro-
blasts in each sample using gene expression and the
xCell [35] algorithm. We found that the expression of
miRNAs in cluster B was significantly enriched for posi-
tive correlations to the fibroblast score (hypergeometric
test p value < 0.001 considering the correlation between
all miRNAs and the fibroblast score as background;
Additional file 1: Fig. S6c, d and Additional file 3e). miR-
NAs of this cluster showed in general higher expression
in ER-positive compared to ER-negative tumors of the
Oslo2 cohort, and consistent differential expression be-
tween PAM50 subtypes with highest expression found in
the luminal A and normal-like subtypes (Additional file
1: Fig. S7c, d and Additional file 3f). In support of these
findings, a recent single-cell study observed enrichment

(See figure on previous page.)
Fig. 2 Functional annotation of the CpG clusters. a Genomic location enrichment of mimQTL CpGs in cluster 1 according to ChromHMM data
from cell lines representing different breast cancer subtypes [37]. Only regions with fold-enrichment > 2 are shown. Active Genic Enhancer =
Act_Gen_Enh, Active Transcription Flanking = Act_Transc_Flank, Bivalent Enhancer = Biv_Enh, Active Intergenic Enhancer = Act_Intergen_Enh,
observed = obs, expected = exp. b Average normalized counts per tumor sample for all ATAC-seq peaks mapped to CpGs of cluster 1 (TCGA
data). c Beeswarm plot showing enrichment of TF binding sites (−(log10(p value) using Fisher’s exact tests) on the y-axis for CpGs of cluster 1
(n = 14,040) according to UniBind [40]. TF names of the top 10 enriched TF binding sites data sets are provided with dedicated colors. Data sets
for the same TFs are highlighted with the corresponding colors. d Heatmap showing hierarchical clustering of tumor methylation levels of CpG
cluster 1 (n = 14,040) in the Oslo2 cohort (CpGs in rows and tumors in columns). Tumors are annotated according to PAM50 molecular subtypes;
lymphocyte infiltration (LI) quartile groups 1(low)–4(high); fibroblast infiltration quartile groups (Fibro): 1(low)–4(high); human epidermal growth
factor receptor 2 (HER2) status; estrogen receptor (ER) status. CpGs are annotated according to overlap with regions annotated as “Active
Intergenic Enhancer” from ChromHMM of subtype-specific cell lines [37]; Her2 (pink), Basal (red), LumB (light blue), and LumA (dark blue). e
Boxplot showing average DNA methylation of CpGs from cluster 1 in normal breast tissue (n = 17), ER-positive (pos; n = 223) and ER-negative
tumors (neg; n = 60) of the Oslo2 cohort. f Enrichment of mimQTL CpGs in cluster 2 according to ChromHMM data. Quiescent_Low signals =
Quies_Low_Sign. g Average normalized counts for ATAC-seq peaks mapped to CpGs of cluster 2. h Enrichment of TF binding sites for CpGs of
cluster 2 (n = 12,706). i Hierarchical clustering of tumor methylation levels of CpG cluster 2 (n = 12,706). j Boxplot showing average DNA
methylation of cluster 2 CpGs when Oslo2 tumors were separated into lymphocyte infiltration quartile groups from low (1) to high (4). Wilcoxon
rank-sum p values (two-group comparisons) and Kruskal-Wallis p values (three or more groups) are indicated
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of several fibroblast phenotypes among ER-positive/lu-
minal breast tumors [62].

miRNA cluster C—the estrogen signaling cluster
miRNAs in cluster C were co-expressed with genes
associated with hormone-regulated processes lead by
estrogen signaling and negatively correlated to genes
associated with cell cycle and immune-related path-
ways (Fig. 1d and Additional file 3d). Indeed, in both
Oslo2 and TCGA the expression of cluster C miRNAs
was significantly enriched for positive correlations to
estrogen receptor mRNA (ESR1) expression (hyper-
geometric test p value < 0.001 considering the correl-
ation between all miRNAs and ESR1 mRNA as
background; Additional file 1: Fig. S6e, f and Add-
itional file 3e), and the miRNAs were mostly upregu-
lated in ER-positive compared to ER-negative tumors
(Additional file 1: Fig. S7e, f and Additional file 3f).
We identified hsa-miR-29c-5p as the hub of cluster C
with the highest number of associations to CpG
methylation (n = 4764). This miRNA has been previ-
ously identified as one of the most significantly differ-
entially expressed miRNAs between ER-positive and
ER-negative tumors [10]. Thus, while miRNAs in
cluster A and B reflect heterogeneity within the
tumor microenvironment, miRNAs in cluster C are
associated with estrogen signaling and ER-positive
versus ER-negative breast cancer disease.
To further investigate the association between miRNA

expression and the three characteristics of the clusters
identified above (immune and fibroblast infiltration, and
ER status), we modeled miRNA expression as a multivari-
ate function of lymphocyte and fibroblast infiltration as
well as ESR1 mRNA expression (Additional file 3g). Fig-
ure 1e–g shows the coefficients for each characteristic to
predict the expression of the miRNA with the highest
number of CpG associations in each cluster. For nine out
of 23 miRNAs in cluster A (Additional file 3 g), including
hsa-miR-155-5p, the ‘hub’ of cluster A (Fig. 1e), the
lymphocyte infiltration score was the most significant
positive explanatory variable for expression (across both
cohorts). In cluster B, the fibroblast infiltration score was
significantly positively associated with miRNA expression
for 51 out of 59 miRNAs across both cohorts as demon-
strated for hsa-miR-99a-5p (Fig. 1f and Additional file 3g).
For cluster C (Fig. 1g), ESR1 mRNA expression (surrogate
for ER status) was significantly positively associated with
15 out of 37 miRNAs, including hsa-miR-29c-5p expres-
sion, the hub of cluster C. Altogether, our analysis of
miRNA expression in the three mimQTL-miRNA clusters
clearly identified distinct signaling pathways and processes
associated with different biological and molecular aspects
of breast cancer.

CpGs in mimQTL clusters reside in chromatin contexts
associated with breast cancer subtypes
Next, we aimed to biologically annotate the CpGs of
clusters 1 and 2, starting with their genomic position.
First, we assessed pathway enrichment of their closest
associated gene to infer any functional pathway associ-
ation. Second, ChromHMM segmentation of the gen-
ome of several cell lines spanning breast cancer subtypes
and ATAC-seq data was analyzed to study the genomic
context of the CpGs within each cluster. Finally, we
assessed their overlap with TFBSs derived from compu-
tational TF binding models and ChIP-seq data [40].

Cluster 1 CpGs
CpGs in cluster 1 mapped to 4809 genes according to
the annotation of the Illumina HumanMethylation450k
array. With GSEA using Enrichr [33], we found these
genes enriched in signaling and cancer-associated path-
ways such as the Ras and PI3K-Akt signaling pathways
(Additional file 3h). According to the ChromHMM gen-
ome segmentation of breast cancer cell lines [37], cluster
1 CpGs were enriched at enhancers, especially of ER-
positive/luminal cell lines (Fig. 2a and Additional file 3i).
ATAC-seq data from TCGA confirmed that the regions
surrounding these CpGs were more accessible (open) in
ER-positive than in ER-negative tumors (Wilcoxon p
value = 6.38 × 10− 5; Fig. 2b). Furthermore, using the Uni-
Bind [40] database storing direct TF-DNA interactions
for 231 TFs using 1983 human ChIP-seq data sets, we
found cluster 1 CpGs enriched at FOXA1/2, GATA2/3,
TFAP2C, and ESR1 (encoding ER-alpha) binding sites;
these TFs are known to drive ER-positive breast cancers
[2, 63] (Fig. 2c). Unsupervised clustering of the DNA
methylation values associated with cluster 1 CpGs sepa-
rated the tumors according to breast cancer subtypes
(Fig. 2d and Additional file 1: Fig. S8a for the Oslo2 and
TCGA cohorts, respectively). Cluster 1 CpGs showed
overall lower DNA methylation in ER-positive and lu-
minal breast cancer subtypes (Fig. 2e and Additional file
1: Fig. S9a). These lines of evidence show that cluster 1
CpGs are found at accessible enhancers with ER-
associated TFBSs and are hypomethylated in ER-
positive/luminal tumors.

Cluster 2 CpGs
Applying similar analyses to cluster 2 CpGs, we found
the nearest genes (n = 3865) associated with cancer and
immune system-related pathways (Additional file 3j).
Cluster 2 CpGs were enriched at breast cancer enhancer
regions, but to a lower extent than cluster 1 CpGs, and
more at enhancers from ER-negative cell lines (Fig. 2f
and Additional file 3i). Further, CpGs in cluster 2 were
at genomic regions more accessible in ER-negative com-
pared to ER-positive tumors, according to ATAC-seq
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data (Wilcoxon p value = 0.02; Fig. 2g). TFBSs associated
with TFs involved in hematopoiesis and immune pro-
cesses such as SPI1, TAL1, and RUNX1 were enriched
close to cluster 2 CpGs (Fig. 2h). Unsupervised cluster-
ing using the DNA methylation of cluster 2 CpGs
grouped breast cancer samples according to their level
of lymphocyte infiltration derived from the Nanodissect
scores (Fig. 2i). Finally, DNA methylation of cluster 2
CpGs negatively correlated with lymphocyte scores (i.e.,
low methylation–high lymphocyte infiltration and vice
versa; Fig. 2j and Additional file 1: Fig. S9b). Thus, the
methylation of cluster 2 CpGs is driven by intra-tumor
heterogeneity characterized by infiltration of immune
cells.

Functional interpretation of CpG and miRNA mimQTL
clusters
Functional association between CpG cluster 1 and miRNA
cluster C
Altogether, we found cluster 1 CpGs to be associated
with regulatory regions important for ER signaling
and residing in more open and less-methylated gen-
omic regions in ER-positive compared to ER-negative
tumors (Fig. 2a, b). Hence, the negative correlations
between CpG cluster 1 and miRNA cluster C ob-
served in Fig. 1a represent functional CpG-miRNA
associations of low methylation at cluster 1 CpGs
(Fig. 2e) correlated with higher expression of cluster
C miRNAs in ER-positive/luminal tumors (Additional
file 3f).

Functional association between CpG cluster 2 and miRNA
cluster A
Cluster 2 CpGs were associated with immune infiltra-
tion and negatively correlated through mimQTL with
cluster A miRNAs (Fig. 1a), miRNAs themselves asso-
ciated with immune infiltration [10]. We hypothesize
that this observation is influenced by and reflect the
variation in the presence of infiltrating immune cells
in the tumors that have very different DNA methyla-
tion and miRNA expression than the cancer cells. To
further support this interpretation, we retrieved DNA
methylation data from ER-positive and ER-negative
breast cancer cell lines and from different immune
cell types (Additional file 1: Fig. S10). Focusing on
the hub CpG of miRNA cluster A (the CpG with
most associations to miRNAs in cluster A), a clear
difference in methylation was observed between the
cancer cell lines (hypermethylated) and immune cells
(hypomethylated; Wilcoxon rank-sum p value = 4.56 ×
10− 12). This is consistent with ER-negative/basal-like
breast cancers showing higher immune infiltration
compared to ER-positive/luminal tumors [60], as the
methylation of cluster 2 CpGs was significantly lower

(Additional file 1: Fig. S9c, d) and the miRNAs of
cluster A were more expressed (Additional file 3f) in
ER-negative/basal-like tumors.

Regulatory networks encompassing DNA methylation and
miRNA expression
Cluster 1 CpGs in miRNA super-enhancers
We next focused on the regulatory networks of miRNAs
in cluster C as our mimQTL analysis highlighted regula-
tory regions (e.g., enhancers) linked to these miRNAs in
a breast cancer subtype-specific manner. To find regula-
tory regions for miRNAs affected by DNA methylation,
we targeted our analyses on the miRNA-CpG associa-
tions overlapping with (i) a catalog of super-enhancers
(SE) recently identified by Suzuki et al. [50] to drive
miRNA expression, (ii) experimentally derived long-
range interactions with Pol2 binding (ChIA-PET Pol2
data) in the luminal MCF7 cell line [44], and (iii) binding
regions for TFs known to drive ER-positive breast can-
cers (ER-alpha, FOXA1, and GATA3) in the MCF7 cell
line (ChIP-seq data).
Altogether, 273 mimQTLs were identified where the

CpG resides in an annotated breast miRNA SE (Add-
itional file 3k). Interestingly, CpGs of cluster 1 were res-
iding within miRNA SEs more often than the
background of all CpGs (hypergeometric test p value =
1.29 × 10− 26), further confirming the enrichment of clus-
ter 1 CpGs at distal regulatory regions regulating
miRNA expression. Of the 273 mimQTLs, 50 repre-
sented direct in cis associations where the CpG was
found in a miRNA SE mapping with the corresponding
mimQTL miRNA [50]. These 50 in cis mimQTLs repre-
sented eight unique miRNAs all found to be cluster C
miRNAs and all with significant negative correlations
with the corresponding CpGs (Spearman correlation
ranging from − 0.30 to − 0.68; Additional file 3k). This
analysis underlines DNA methylation at super-enhancers
as an important regulatory feature for miRNA expres-
sion in breast cancer.
In cis mimQTLs (i.e., CpG and miRNA on the same

chromosome) were enriched at long-range chromatin in-
teractions with Pol2 as defined by ChIA-PET in the lu-
minal MCF7 cell line [35] (hypergeometric test p
value = 4.51 × 10− 4). Two examples of overlap between
ChiA-PET Pol2 loops, miRNA SE, and mimQTLs are
shown for hsa-miR-342-3p/5p (Fig. 3a) and hsa-let7b-5p
(Fig. 3b). We observed for these two examples that the
SE/long-range interactions also overlap with TF binding
regions for ER-alpha, FOXA1, or GATA3. The combin-
ation of these evidences suggests that through the
mimQTL analysis we identify, for miRNA cluster C,
hypomethylated regulatory regions in ER-positive breast
cancer exemplified by hsa-miR-342-3p/5p (Fig. 3c) and
hsa-let7b-5p (Fig. 3d), which may facilitate the binding
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of ER-alpha, FOXA1, and GATA3. This may further lead
to the increased expression of hsa-miR-342-3p/5p (Fig.
3e) and hsa-let7b-5p (Fig. 3f) in ER-positive breast tu-
mors. Altogether, these results suggest a direct regula-
tory link between the expression of cluster C miRNAs
and DNA methylation at CpGs of ER-associated TF
binding regions.

Long-range interaction loops in ER-negative breast cancer
We performed the same analysis in the context of ER-
negative breast cancer using Integrated Methods for Pre-
dicting Enhancer Targets (IM-PET) data [65] from the
ER-negative cell line HCC1954 and HiChIP-H3K27ac-
DNA data (capturing chromatin interactions with active
enhancer mark) from the ER-negative breast cancer cell
line MDAMB231 [46, 47]. We reproduced the enrich-
ment of in cis mimQTLs across long-range interaction
loops in ER-negative breast cancer (hypergeometric test
p values of 1.30 × 10− 16 and 1.23 × 10− 12 for HCC1954
and MDAMB231, respectively). The complete list of in
cis mimQTL loops and the annotation with respect to
selected transcription factor binding regions and long-
range interactions is given in Additional file 3l. Potential
enhancer–promoter loops common to the three long-
range interaction data sets involved hsa-miR-196a-5p
(miRNA cluster C) and hsa-miR-10a-5p (cluster B).
Interestingly, hsa-let-7b-5p (cluster C) was overlapping
with loops found both in the MCF7 and MDAMB231
cell lines. All three miRNAs showed higher expression
in ER-positive compared to ER-negative tumors (Add-
itional file 3f). In most cases, the mimQTLs found over-
lapping with long-range interactions represented
negative correlation with lower methylation at CpGs as-
sociated with higher expression of miRNAs in ER-
positive tumors compared to ER-negative tumors. Ac-
cordingly, while in cis long-range interactions were
found present in both ER-positive and ER-negative cell
lines, we hypothesize that the difference in transcription
factor abundance and CpG methylation at the distal en-
hancer may be involved in tuning miRNA expression in
tumors.

miRNAs associated with global breast cancer DNA
methylation alterations
Further, we sought to identify miRNAs associated with
methylation deregulation in breast cancer. We developed
a global methylation alteration (GMA) score that reflects
how overall DNA methylation in breast tumors deviates
from healthy breast tissue. In brief, for each tumor, the
deviation in methylation per CpG relative to that of nor-
mal breast tissue was summed up (see “Methods” for de-
tails). We found that ER-positive including the luminal
B tumors showed a higher GMA score than ER-negative
tumors and other PAM50 subtypes (Fig. 4a–d). Add-
itional file 1: Fig. S11 outlines the distribution of the
GMA score in normal breast tissue samples compared
to tumor samples showing how tumors have a higher
and much broader GMA score compared to normal
breast tissue. To identify which miRNAs may be the
most potent at driving DNA methylation alterations, we
correlated the expression of each of the 119 mimQTL
miRNAs to the GMA score (Additional file 3 m). We ob-
served that miRNAs in cluster C were enriched for posi-
tive correlations to the GMA score when compared to
the background of all miRNAs tested (hypergeometric
test p values < 0.001; Fig. 4e, f). Table 1 lists the miRNAs
positively correlated with the GMA score across both
cohorts. Inversely, cluster A and B miRNAs were
enriched for negative correlations with the GMA score
(hypergeometric test p values < 0.001). Such cluster-
specific associations to the GMA score were further il-
lustrated by plotting the correlation of each miRNA’s ex-
pression with the GMA score according to clusters
(Fig. 4g, h).

hsa-miR-29c-5p is negatively correlated to DNA
methyltransferase 3A and is deregulated early during
breast cancer pathogenesis
Hypothesizing that cluster C miRNAs may be positively
correlated with the GMA score through regulation of
enzymes involved in DNA methylation, we queried the
in silico target prediction database TargetScan [52] fo-
cusing on enzymes regulating DNA methylation
(DNMTs and TETs). Altogether, 18 unique miRNAs

(See figure on previous page.)
Fig. 3 Super-enhancer (SE)–miRNA interactions and impact of CpG methylation on miRNA expression. a Example of mimQTLs (blue arcs) and
ChIA-PET Pol2 loops (red arcs) where mimQTL CpGs (n = 3) or one foot of the ChIA-PET Pol2 loop is located within the hsa-miR-342 SE (purple)
and the other loop foot resides within hsa-miR-342-5p/-3p. Also shown are the location of 450k methylation array CpGs and ER-alpha (ERα),
FOXA1, and GATA3 binding regions obtained from ChIP-Seq experiments of the MCF7 cell line. The figure was made using the WashU
Epigenome Browser v. 46.2 [64]. b mimQTLs and ChIA-PET Pol2 loops where mimQTL CpGs (n = 21) or one foot of the ChIA-PET Pol2 loop is
located within the let-7b SE (purple) and the other loop foot resides within hsa-let-7b-5p. c Boxplot showing average DNA methylation in Oslo2
estrogen receptor (ER)-positive (pos) and ER-negative (neg) tumors across all CpGs within the hsa-miR-342 SE and in mimQTL with hsa-miR-342-
3p/-5p (n = 3). d Boxplot showing average DNA methylation in Oslo2 ER-positive and ER-negative tumors across all CpGs within the let-7b SE and
in mimQTL with hsa-let-7b-5p (n = 21). e Boxplots showing hsa-miR-342-5p/-3p expression in ER-positive and ER-negative tumors of the Oslo2
cohort. f Boxplots showing hsa-let-7b-5p expression in ER-positive and ER-negative tumors of the Oslo2 cohort. P values resulting from Wilcoxon
rank-sum tests are indicated in the boxplots
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belonging to miRNA cluster C were predicted to target
DNMTs and/or TETs (Additional file 3n). We further
found that three of the 18 miRNAs showed consistent
and significant negative correlation to the mRNA of
DNA methylation regulating enzymes (DNMT3A - hsa-
miR-29c-5p (Fig. 5a), TET1 - hsa-miR-365a-3p, and
TET1 - hsa-miR-375; Additional file 3n). We further
confirmed the negative correlation between hsa-miR-
29c-5p and DNMT3A also at the protein level (Fig. 5b,
Spearman’s rho = − 0.77) using proteome data [28] of the
Oslo2 samples (n = 45). This inverse correlation between
hsa-miR-29c-5p and DNMT3A protein levels was the
third most negative correlation considering all correla-
tions between miRNAs (n = 713) and proteins (n = 9995)
in the Oslo2 cohort. Of note, a significant negative

correlation was also observed between hsa-miR-29c-5p
and DNMT3B/DNMT1 mRNA and protein levels (Add-
itional file 1: Fig. S12).
Furthermore, hsa-miR-29c-5p was found significantly

upregulated in ER-positive tumors compared to normal
breast tissue and ER-negative tumors (Wilcoxon rank-
sum p value = 1.39 × 10− 6 and p value < 2.81 × 10− 12;
Fig. 5c). To investigate whether the changes of hsa-miR-
29c-5p expression may happen early during breast car-
cinogenesis causing DNA methylation alterations, we
mined DCIS samples (n = 18) from an independent data
set [13]. Indeed, in ER-positive pre-invasive DCIS lesions,
hsa-miR-29c-5p was significantly more highly expressed
than in ER-negative DCIS lesions (Wilcoxon rank-sum p
value = 0.002; Fig. 5d), indicating that initial changes in

(See figure on previous page.)
Fig. 4 Global methylation alteration (GMA) score in clinical breast cancer groups and correlation to miRNA expression. a, b Boxplots showing the
GMA score in estrogen receptor (ER)-positive (pos) and ER-negative (neg) tumors of the Oslo2 (a) and TCGA (b) cohorts. Wilcoxon rank-sum test p
values are shown. c, d Boxplots showing the GMA score in PAM50 molecular subtypes of the Oslo2 (c) and TCGA (d) cohorts. LumA: Luminal A,
LumB: Luminal B, Basal: Basal-like, Her2: HER2-enriched. Kruskal-Wallis test p values are denoted. e, f Plots showing density curves of the
correlation between miRNA cluster members and the GMA score for the Oslo2 (e) and TCGA (f) cohorts. The density lines are color-coded
according to miRNA cluster. g, h Barplots showing miRNAs decreasingly ranked according to GMA score correlation level (y-axis) in the Oslo2 (g)
and TCGA (h) cohorts. The bars are color-coded according to miRNA cluster

Table 1 miRNAs significantly positively correlated with the global methylation alteration (GMA) score across both cohorts. The table
is sorted according to correlations in the Oslo2 cohort

MIMAT miRNA miRNA cluster Oslo2 Spearman
correlation miRNA
expression—GMA
score

Oslo2 correlation
p value

TCGA Spearman
correlation miRNA
expression—GMA
score

TCGA correlation
p value

MIMAT0003301 hsa-miR-33b-5p C 0.357 2.30E−10 0.440 3.50E−22

MIMAT0002819 hsa-miR-193b-3p C 0.252 1.18E−05 0.324 4.44E−12

MIMAT0000459 hsa-miR-193a-3p C 0.249 1.47E−05 0.258 4.65E−08

MIMAT0000432 hsa-miR-141-3p C 0.246 1.94E−05 0.358 1.35E−14

MIMAT0000728 hsa-miR-375 C 0.243 2.25E−05 0.286 1.20E−09

MIMAT0000095 hsa-miR-96-5p C 0.221 1.19E−04 0.387 < 1.00E−25

MIMAT0000259 hsa-miR-182-5p C 0.220 1.30E−04 0.326 3.40E−12

MIMAT0000682 hsa-miR-200a-3p C 0.219 1.39E−04 0.246 2.01E−07

MIMAT0000688 hsa-miR-301a-3p C 0.206 3.46E−04 0.318 1.11E−11

MIMAT0004673 hsa-miR-29c-5p C 0.204 3.96E−04 0.333 1.00E−12

MIMAT0000261 hsa-miR-183-5p C 0.204 4.04E−04 0.353 3.16E−14

MIMAT0000450 hsa-miR-149-5p C 0.198 6.14E−04 0.317 1.36E−11

MIMAT0000617 hsa-miR-200c-3p C 0.192 8.76E−04 0.365 3.58E−15

MIMAT0000252 hsa-miR-7-5p A 0.192 8.95E−04 0.212 7.64E−06

MIMAT0003283 hsa-miR-615-3p C 0.187 1.24E−03 0.252 9.96E−08

MIMAT0000267 hsa-miR-210 C 0.170 3.27E−03 0.377 1.65E−16

MIMAT0000710 hsa-miR-365a-3p C 0.169 3.56E−03 0.260 3.76E−08

MIMAT0004929 hsa-miR-190b C 0.164 4.49E−03 0.286 1.09E−09

MIMAT0004614 hsa-miR-193a-5p C 0.128 2.75E−02 0.191 6.09E−05

MIMAT0005949 hsa-miR-664-3p C 0.119 4.11E−02 0.148 1.86E−03
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hsa-miR-29c-5p expression may drive early DNA methyla-
tion changes in DCIS as previously observed [1].

Discussion
This study is to our knowledge the first to assess the glo-
bal relationship between the expression of miRNAs and
DNA methylation on a genome-wide scale in breast can-
cer. Using two large and independent breast cancer co-
horts, we have identified robust associations that point
to how miRNA expression may be regulated through

methylation at distal regulatory regions and how miR-
NAs may contribute to shape the epigenetic landscape
of breast cancer. Further, the analysis points to how
miRNA expression may reflect levels of infiltration from
the surrounding microenvironment.
The methylation at a promoter CpG site and the expres-

sion of the corresponding gene is often observed to have a
negative relationship, e.g., high methylation–low expres-
sion. With the increasing availability of methods to inter-
rogate genome-wide methylation comprehensively at

Fig. 5 Expression of hsa-miR-29c-5p and correlation to DNMT3A. a DNMT3A mRNA expression (x-axis) vs. hsa-miR-29c-5p expression (y-axis)
measured in 377 samples of the Oslo2 cohort. Estrogen receptor (ER)-positive (pos) tumors are plotted in blue and ER-negative (neg) in red.
Spearman correlation coefficient (rho: ρ) and p value (pval) indicated. b DNMT3A protein expression (x-axis) vs. hsa-miR-29c-5p expression (y-axis)
measured in 45 samples of the Oslo2 cohort. c hsa-miR-29c-5p expression in normal adjacent breast tissue (Normal tissue; n = 76), ER-positive
(n = 333) and ER-negative tumors (n = 106) of the TCGA cohort. Wilcoxon rank-sum test p values are denoted. d hsa-miR-29c-5p expression in ER-
positive (n = 11) and ER-negative (n = 7) ductal carcinoma in situ (DCIS) samples and ER-positive (n = 9) and ER-negative (n = 5) invasive ductal
carcinoma (IDC) samples from the same data set [13]. Wilcoxon rank-sum test p values are denoted

Aure et al. Genome Medicine           (2021) 13:72 Page 15 of 21



single-nucleotide resolution, the latter concept has been
found to be more complex including positive correlations
where methylation activates gene expression [66]. Over-
lapping the in cis mimQTL miRNAs with a catalog of
miRNAs dysregulated in breast cancer due to aberrant
methylation from a previous study [22], we found 40 of
the in cis miRNAs (51%) associated with positive (35%)
and negative (65%) CpG correlations. The overlap in-
cluded miRNAs which expression has in additional studies
been coupled to regulation by methylation such as hsa-
miR-125b [23] and hsa-miR-195 [67]. This indicates that
many of the in cis mimQTLs (CpG and miRNA on the
same chromosome) may be direct functional associations.
Interestingly, Glaich et al. [26] recently showed that when
regions flanking the miRNA coding sequence are highly
methylated, the miRNAs are higher expressed due to en-
hanced miRNA biogenesis. Coupling annotation from
their study with the in cis mimQTLs (see Additional file
2), we observed for hsa-miR-338-3p and hsa-miR-452-5p
positive correlation to CpGs flanking the miRNA genes,
thus potentially identifying some examples of this
phenomenon.
In this study, we go beyond CpG and miRNA genes

linked by a threshold on distance and consider the cor-
relation between any CpG and miRNA. With this comes
the inherent challenge of separating direct from indirect
associations. Utilizing additional layers of annotation
and genomic data to further help the biological inter-
pretation of the findings thus becomes necessary. The
mimQTL approach identifies a positive or negative sign
of the relation between a miRNA and a CpG, but does
not infer the causality of the association, if any. The
current approach does not take genetic variation into ac-
count such as single-nucleotide polymorphisms or copy
number alterations, but this is something to be consid-
ered in future approaches.
Grouping of the mimQTLs using hierarchical clus-

tering revealed aspects of underlying intra- and
inter-tumor heterogeneity in the form of immune
cell or fibroblast infiltration and tumor ER status.
Expression of miRNAs in cluster A was positively as-
sociated with the lymphocyte score reflecting im-
mune infiltration. Indeed, the miRNAs in this cluster
with most CpG associations, hsa-miR-155-5p, hsa-
miR-146a-5p, hsa-miR-150-5p, and hsa-miR-142-5p,
have previously been associated with immune-related
pathways [10] and lymphocytic infiltration [16] in
breast cancer. Furthermore, in a study characterizing
miRNA expression in various cell types and tissues
from McCall et al. [9], these miRNAs were found to
be most highly expressed in B and T cells, further
suggesting that our miRNA cluster A reflect signals
coming from infiltrating immune cells. This under-
lies a need for understanding more about which type

of cells from bulk tumor samples are actually ex-
pressing nominated miRNA cancer biomarkers [68].
Importantly, the context- and cell type-specific ex-
pression of miRNAs give them an attractive potential
for deconvolution tools. Using the deconvolution
tool xCell [35] based on mRNA expression, we
linked miRNAs in cluster B to fibroblast cells as
their expression was positively correlated with the
fibroblast score. Fibroblasts are providers of ECM
components [69] and the genes co-expressed with
the miRNAs were enriched for ECM-associated path-
ways. Assessing the catalog of cell- and tissue type-
specific expression of miRNAs [9] supported this
finding with the top miRNAs of this cluster, hsa-
miR-99a-5p, hsa-miR-125b-5p, hsa-miR-379-5p, hsa-
miR-381, and hsa-miR-100-5p, being highly
expressed in tissue from skin where fibroblasts are a
major component. Interestingly, hsa-miR-125b-5p
was found to induce cardiac fibrosis [70]. Other
studies pointed to a tumor-suppressor role of these
miRNAs in breast cancer, for instance hsa-miR-99a-
5p reduces breast cancer cell viability by targeting
mTOR [71], hsa-miR-125b-5p was shown to induce
cell cycle arrest and reduce cell growth in breast
cancer cells [72], and hsa-miR-379-5p was shown to
regulate Cyclin B1 expression [73]. More studies
using for instance in situ hybridization of tumor tis-
sue sections are needed to further validate the cells
of origin of the immune- and fibroblast-associated
miRNAs of cluster A and B, respectively, and will
help to further refine the role of these miRNAs in
breast cancer.
The miRNAs with most CpG associations in cluster C

were markers of the ER-positive, luminal phenotype of
breast cancer [10]. Integrating mimQTLs with data from
various sources including long-range interaction loops,
ATAC-seq, ChIP-seq, and miRNA SEs, we showed how
miRNA expression may be promoted by ensuring open
and active enhancer regions where ER-associated TFs
bind and loop to the miRNA-encoding genomic regions
boosting both their transcription and processing [50].
The corresponding connections in ER-negative tumors
are more difficult to disentangle as the signal is to a lar-
ger degree a composite of tumor and immune cell infil-
tration [60]. With the identification of long-range
interaction loops present in both ER-positive as well as
ER-negative cell lines dominantly overlapping with miR-
NAs of cluster C, we postulate that differences in tran-
scription factor abundance and DNA methylation at
distal regulatory region CpGs may have a functional role
affecting miRNA expression in tumors, but additional
functional evidence is needed to conclude. We further
hypothesize that the observed demethylation of the
miRNA SE CpGs in ER-positive tumors lead to binding
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of ER-associated TFs making the SE active. Through ac-
tivation, the SE is looped with Drosha/DGCR8—a pro-
tein complex important for processing of the primary
miRNA transcript to the shorter precursor transcript
[74]. This SE-mediated miRNA processing was previ-
ously shown with ChIP-seq peaks for DGCR8 observed
at both the transcription start site (TSS) and precursor
miRNA regions for SE-associated miRNAs [50]. The
looping of the miRNA SE to the miRNA TSS or mature
sequence boost the transcription and the processing of
the miRNA [50], which was in our study further sup-
ported by the negative mimQTL correlation, i.e., low SE
CpG methylation associated with high miRNA expres-
sion in ER-positive tumors. This emphasizes an import-
ant regulatory role for SE CpG methylation on miRNA
expression in breast cancer. Indeed, miRNA expression
deregulation in breast cancer through methylation alter-
ations was previously described [16, 22, 25], but the
focus has mainly been on CpGs in proximal promoter
regions. As the importance of enhancer region conform-
ation and methylation is becoming increasingly appreci-
ated and given the great impact of miRNAs on the
establishment and maintenance of cell phenotype, ex-
ploring this field will give new insights into cancer devel-
opment and progression. Cluster C miRNAs were
consistently enriched for positive correlations to the
GMA score indicating that ER-positive, luminal tumors
may be more severely altered at the methylation level
compared to ER-negative tumors which may be more
driven by alterations at the copy number level [12] and
which showed methylation patterns more similar to the
normal breast tissue samples.
Our analyses of the genomic positions and methylation

of CpGs in each cluster highlighted CpG cluster 1 asso-
ciated with differences in DNA methylation of enhancers
and TFBS according to ER status. On the other hand,
cluster 2 was associated with intra-tumor heterogeneity
and infiltration of immune cells. Importantly, our CpG
analyses mapped back to the biological functions associ-
ated with the miRNA clusters and therefore point to the
fact that not only correlative but also functional associa-
tions link (i) CpG cluster 1 and miRNA cluster C as
both being associated with estrogen response and ER
status and (ii) CpG cluster 2 and miRNA cluster A being
related to tumor immune infiltration. However, it is im-
portant to note that inter-tumor heterogeneity defined
by ER status and intra-tumor heterogeneity defined by
immune infiltration are at least partly two sides of the
same coin as ER-negative tumors show a higher degree
of immune infiltration [60].
We identified hsa-miR-29c-5p as a potential epigenetic

hub in ER-positive breast cancer as it was the miRNA in
cluster C with most CpG associations, positively corre-
lated with the GMA score, upregulated in ER-positive

tumors compared to both ER-negative tumors and nor-
mal breast tissue, in silico predicted to target DNMT3A
and negatively correlated to DNMT3A mRNA and pro-
tein levels. Interestingly, the miR-29 family has previ-
ously been shown to directly target DNMTs [19, 75, 76],
confirming a role for these miRNAs as epigenetic regula-
tors. Fabbri et al. [19] showed in lung cancer a direct
functional relationship of hsa-miR-29 family members
directly targeting the 3′-UTR of DNMT3A/B. As we ob-
serve in breast tumors in our study, they also found sig-
nificant anti-correlation between the levels of hsa-miR-
29 family members and DNMT3A/B mRNA levels in
lung tumors. Further functional validation in breast can-
cer cells is required to show the direct targeting of
DNMT3A by hsa-miR-29c-5p and prove its causal role
in determining luminal breast cancer phenotype. Sup-
porting our hypothesis of hsa-miR-29c-5p being import-
ant for establishing the ER-positive/luminal breast
cancer phenotype by targeting DNMT3A which leads to
hypomethylation of CpGs at ER-associated TFBSs, Chou
et al. [77] found that GATA3 acts as a TF inducing the
expression of the miR-29 family. This and other studies
have, however, pointed to a tumor-suppressor role of
the miR-29 family in breast cancer as they are typically
found more highly expressed in less aggressive/better
prognosis subtypes and with over-expression in cell lines
inhibiting metastasis, proliferation, migration, and
growth [77–79]. Nevertheless, these findings are not
contradictory with our hypothesis of the epigenetic regu-
lator role of hsa-miR-29c-5p within luminal phenotypes.
Importantly, focusing on subtype-specific progression,
we previously found in an independent data set that hsa-
miR-29c-5p is upregulated in expression from DCIS to
luminal A and B tumors supporting the potential role of
this miRNA in breast cancer progression within ER-
positive tumors [14].

Conclusions
In conclusion, we find that CpG methylation at ER-
associated TF binding regions is likely to be important
for regulation of miRNA expression in breast cancer.
Furthermore, our study highlights that deregulation of
hsa-miR-29c-5p expression is an early event that may re-
sult in downregulation of DNMT3A, which could fur-
ther lead to hypomethylation of CpG sites important for
ER-positive breast cancer cell identity. The CpG sites af-
fected are at enhancer regions with TFBS for ER-alpha,
FOXA1, and GATA3, all known to be important for the
luminal breast cancer phenotype.
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Additional file 1: Fig. S1. Flowchart describing data and the different
steps of the analysis leading to the identification of 89,118 miRNA-
methylation Quantitative Trait Loci (mimQTLs). Examples of negative and
positive correlation between methylation at a CpG and expression of a
miRNA are shown as scatterplots at the bottom. Fig. S2. Overview of the
89,118 miRNA-CpG associations found significant in both cohorts. The
scatterplots show a) the –log10(Bonferroni-adjusted Spearman correlation
p-values) of Oslo2 (x-axis) vs. TCGA (y-axis); b) Spearman correlation coeffi-
cients in Oslo2 (x-axis) vs. TCGA (y-axis). The histograms show the distri-
bution of the correlation coefficients (Spearman’s rho) of all significant
miRNA-CpG correlations in the Oslo2 (c) and TCGA (d) cohorts. Fig. S3.
Number of associations and genomic positions of mimQTL miRNAs and
CpGs. a) Barplot showing the number of negative (neg) and positive
(pos) CpG correlations (cor) for the three different miRNA clusters. b)
mimQTL Manhattan plot with genomic coordinates of CpGs (black or
gray) and miRNAs (green) displayed along the x-axis, with the negative
logarithm of the Bonferroni-corrected Spearman correlation p-value from
Oslo2 on the y-axis. Each dot on the plot signifies a CpG or miRNA (CpGs
are shown in two colors to distinguish the chromosomes more clearly).
c) In cis mimQTL Manhattan plot displaying the chromosomal location
(using the position of the CpG) along the x-axis of the 5125 mimQTLs
found on the same chromosome (in cis). Each dot represents one
mimQTL which is color-coded according to negative (black) or positive
(green) miRNA-CpG correlation. The y-axis displays the negative logarithm
of the Bonferroni-corrected Spearman correlation p-value from Oslo2.
Fig. S4. Barplots showing the number of associations per miRNA or CpG.
a) Barplot showing the number of CpG associations per miRNA (n = 119).
Note that the y-axis is on log scale. b) Barplot showing the number of
miRNA associations per CpG (n = 26,746). Fig. S5. Density plots showing
the degree of CpG co-methylation or miRNA co-expression between clus-
ter members (see Fig. 1 and Additional file 3 a, b) calculated by Spear-
man correlation. a) Correlation between CpG cluster members in the
Oslo2 data. b) Correlation between CpG cluster members in the TCGA
data. c) Correlation between miRNA cluster members in the Oslo2 data.
d) Correlation between miRNA cluster members in the TCGA data. The
dotted lines represent density plots of corresponding correlations ex-
pected by chance, i.e. correlations observed after randomly permuting
the same data before performing correlation analyses. Fig. S6. Density
plots showing the distribution of Spearman correlation coefficients be-
tween miRNA expression and selected variables for members of each of
the miRNA clusters. a, b) miRNA expression-immune infiltration score [34]
correlations for the Oslo2 (a) and TCGA (b) cohorts. c, d) miRNA
expression-fibroblast infiltration score [35] correlations for the Oslo2 (c)
and TCGA (d) cohorts. e, f) miRNA expression-ESR1 mRNA expression cor-
relations for the Oslo2 (e) and TCGA (f) cohorts. Fig. S7. Heatmaps show-
ing hierarchical clustering of miRNA expression levels (rows) from tumors
(columns) of the Oslo2 (top) and TCGA (bottom) cohort. Clustering was
performed using Euclidean distance and average linkage. Tumors are an-
notated with the following clinical/molecular classifications: PAM50 mo-
lecular subtypes (Luminal A (LumA), Luminal B (LumB), Basal-like (Basal),
HER2-enriched (Her2), Normal-like (Normal); Lymphocyte infiltration (LI)
group where tumors were divided into quartiles: 1 (low) – 4 (high); Fibro-
blast infiltration group (Fibro) where tumors were divided into quartiles: 1
(low) – 4 (high); Human epidermal growth factor receptor 2 (HER2) status;

Estrogen receptor (ER) status. a, b) Clustering of miRNA cluster A expres-
sion (n = 23); c, d) Clustering of miRNA cluster B expression (n = 59); e, f)
Clustering of miRNA cluster C expression (n = 37). Fig. S8. Heatmaps
showing hierarchical clustering of methylation levels of CpG cluster 1 (a;
n = 14,040) and CpG cluster 2 (b; n = 12,706) in the TCGA cohort (CpGs in
rows and tumors in columns). Clustering was performed using Euclidean
distance and average linkage. Tumors are annotated with the following
clinical/molecular classifications: PAM50 molecular subtypes (Luminal A
(LumA), Luminal B (LumB), Basal-like (Basal), HER2-enriched (Her2),
Normal-like (Normal); Lymphocyte infiltration (LI) group where tumors
were divided into quartiles: 1 (low) – 4 (high); Human epidermal growth
factor receptor 2 (HER2) status; Estrogen receptor (ER) status. The CpGs
are annotated according to overlap with regions annotated as “active
intergenic enhancer” from ChromHMM of subtype-specific cell lines [37]
with corresponding subtype colors. Fig. S9. Boxplot showing average
DNA methylation of CpGs from cluster 1 in PAM50 subtypes of the Oslo2
cohort (Luminal A (LumA), Luminal B (LumB), Basal-like (Basal), HER2-
enriched (Her2)). b) Boxplot showing average DNA methylation of CpGs
from cluster 2 in the TCGA cohort when tumors were separated into
quartile lymphocyte infiltration groups from low (1) to high (4) infiltration.
c) Boxplot showing average DNA methylation of CpGs from cluster 2 in
normal breast tissue (reduction mammoplasty, n = 17) or estrogen recep-
tor (ER) positive (pos) or negative (neg) tumors of the Oslo2 cohort. d)
Boxplot showing average DNA methylation of CpGs from cluster 2 in nor-
mal breast tissue (normal adjacent breast tissue, n = 97) or ER positive or
negative tumors of the TCGA cohort. P-values resulting from Kruskal-
Wallis tests indicated. Fig. S10. Boxplot showing DNA methylation of the
hub CpG of miRNA cluster A (cg14270581; y-axis)) in ER positive (pos)
and negative (neg) breast cancer cell lines and from different immune
cell types (x-axis); B-cells, leukocytes (leuko), monocytes (mono) and T-
cells. P-value resulting from Wilcoxon rank-sum test between cancer cell
lines vs. immune cells is indicated. Fig. S11. Density plot showing the
distribution of the Global Methylation Alteration (GMA) score in normal
adjacent breast tissue (green), tumors (black) and tumors separated into
estrogen receptor (ER) positive (pos) and negative (neg). Data from TCGA.
Fig. S12. Top panel: Scatterplots showing on the x-axis mRNA expression
of DNMT3A (left), DNMT3B (middle) and DNMT1 (right) vs. hsa-miR-29c-5p
expression (y-axis) measured in 377 samples of the Oslo2 cohort. Bottom
panel: Scatterplots showing on the x-axis protein expression of DNMT3A
(left), DNMT3B (middle) and DNMT1 (right) vs. hsa-miR-29c-5p expression
(y-axis) measured in 45 samples of the Oslo2 cohort. Each dot represents
a tumor color-coded according to PAM50 subtype (Luminal A (LumA):
dark blue; Luminal B (LumB): light blue; Basal-like (Basal): red; HER2-
enriched (Her2): pink; Normal-like: green). Spearman correlation coeffi-
cient and p-value are indicated for each plot.

Additional file 2. Table with annotation of the 89,118 mimQTLs found
across the Oslo2 and TCGA cohorts. Genome locations are based on the
hg19 build.

Additional file 3. a) Overview and annotation of the 119 mimQTL
miRNAs. b) Overview and annotation of the 26,746 mimQTL CpGs. c)
Genes found positively or negatively correlated to miRNAs of each cluster
(mRNA-miRNA Spearman correlation > 0.4 or <-0.3, respectively, in both
the Oslo2 and TCGA cohorts). d) Enrichr [33] Pathway enrichment (KEGG
2019 Human database) of genes positively (top) and negatively (bottom)
correlated to miRNAs of each cluster. e) miRNA expression correlation to
the Nanodissect [34] lymphocyte infiltration score, the xCell [35] fibroblast
infiltration score, and ESR1 mRNA expression. f) Differential expression of
miRNAs between clinically relevant breast cancer groups. g) Results from
generalized linear modeling (GLM) of miRNA expression as a multivariate
function of lymphocyte and fibroblast infiltration and ESR1 mRNA expres-
sion. h) Pathway enrichment using Enrichr [33] of genes mapped to the
CpGs of cluster 1 according to the Illumina HumanMethylation450k array.
i) ChromHMM [37] enrichment of genomic regions mapped to the CpGs
of cluster 1 and 2. j) Pathway enrichment using Enrichr [33] of genes
mapped to the CpGs of cluster 2 according to the Illumina HumanMethy-
lation450k array. k) Table of 273 unique mimQTL associations with 69
unique CpGs residing in miRNA super-enhancer regions. l) Long-range
loops overlapping with mimQTLs residing on the same chromosome. m)
Correlation between the Global Methylation Alteration (GMA) score and
119 mimQTL miRNAs in the Oslo2 and TCGA cohorts. n) TargetScan [52]
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in silico predicted miRNA-target interactions for Global Methylation Alter-
ation (GMA) score-correlated miRNAs and epigenetic regulator genes
(conserved and non-conserved sites considered).
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