

Thermo-luminescent optical fibre sensor for Li-ion cell internal temperature monitoring

Elise Villemin, Sylvie Genies, Olivier Poncelet, Pierre Balfet, Cédric Septet, Romain Franchi, Martin Guillon, Jérôme Houny, Sonia Sousa-Nobre, Olivier Raccurt

► To cite this version:

Elise Villemin, Sylvie Genies, Olivier Poncelet, Pierre Balfet, Cédric Septet, et al.. Thermoluminescent optical fibre sensor for Li-ion cell internal temperature monitoring. 2023. cea-04356293

HAL Id: cea-04356293 https://cea.hal.science/cea-04356293v1

Preprint submitted on 20 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

1	Preprint version
2	
3 4	Thermo-luminescent optical fibre sensor for Li-ion cell internal temperature monitoring
5	
6 7	Elise Villemin ¹ , Sylvie Genies ¹ , Olivier Poncelet ² , Pierre Balfet ¹ , Cédric Septet ¹ , Romain Franchi ¹ , Martin Guillon ¹ , Jérôme Houny ¹ , Sonia Sousa-Nobre ² , Olivier Raccurt ^{1*}
8 9 10	 ¹ Univ. Grenoble Alpes, CEA, LITEN, DEHT, F-38000 Grenoble, France ² Univ. Grenoble Alpes, CEA, LITEN, DTNM, F-38000 Grenoble, France
11 12	* Corresponding author: <u>olivier.raccurt@cea.fr</u>
13	Abstract
14 15 16 17 18 19 20 21 22 23 24	The internal temperature of a Li-ion battery is one of the critical parameters for monitoring cell performance, ageing and safety. The development of new sensor technologies to control the internal temperature of cells without compromising performance and safety remains a challenge. It is one of the objectives of the European INSTABAT project in the framework of the Battery2030+ initiative. The objective of this paper is to describe the development of a new optical fibre sensor based on a thermoluminescent material to monitor internal cell temperature. The development of the sensor, its thermal characterisation and its calibration are presented here. This sensor was inserted into a commercial Li-ion cell and its response during cycling at high charge and discharge rates (2C in charge and 4C in discharge) was investigated. The comparison between external and internal temperature measurements shows good agreement. These results demonstrate the ability of this type of sensor to monitor the internal temperature of a Li-ion battery without affecting its performance at high loading.
25 26	Keywords: Li-ion batteries; Optical Fibre; Temperature Sensors; Fast-charging; operando analysis, Smart- cell
27	
28	
29	
30	
31	Abbreviations
32 33 34 35 36 37 38 39	B_i : The Biot number, B: Constant in expression of <i>FIR</i> , CCD: Charge-Coupled Device, δT : Temperature uncertainty (K), ΔE : Energy difference between two barycentre of the coupled level (radiative transition) using for calculation of <i>FIR</i> , F: ${}^2F_{9/2}$ to ${}^4I_{15/2}$ radiative transition, <i>FIR</i> : Fluorescence Intensity Ratio, h : Global thermal transfer coefficient (0.5 W/m/K), H: ${}^2H_{11/2}$ to ${}^4I_{15/2}$ radiative transition, I_{cell} : Cell current (I), I _i (i=1 or 2) Luminescence intensity of the two peaks 1 and 2 use for FIR calculation, IR: Infrared, k_B :Boltzmann constant, λ_b : Thermal conductivity (0.5W/m/K), L_c : Characteristic length in our case the half of cell thickness (1 mm), LED: Light Emissive Diode, NIR: Near Infrared, PMMA: Poly Methyl Methacrylate, S: ${}^4S_{3/2}$ to ${}^4I_{15/2}$ radiative transitivity, S_r : Relative Sensitivity, SOC: State of Charge, T: Temperature (K), Text:External temperature of the cell (K), Tint: Internal temperature of the cell (K), Ucell: Cell potential (V), UV: Ultraviolet, VIS: Visible light, QY= Quantum Yield

40 Graphical abstract

41

42

43 **1. Introduction**

44 Improving battery safety and performance requires developing battery management systems with 45 accurate estimators (state of charge, state of health, state of safety, etc.) based on monitoring critical cell 46 parameters in real-time [1]. The measurement of internal cell parameters should provide better 47 understanding of degradation mechanisms, failure prevention and ageing anticipation. To achieve these goals, the development of new sensor technologies is required and their integration inside Li-ion batteries 48 49 without affecting cell performance and safety remains challenging [2,3]. These goals are clearly identified 50 in the roadmap of the Battery2030+ initiative [4] and are currently pursued by three European projects on 51 smart batteries: INSTABAT, SENSIBAT and SPARTACUS [5]. Among the important physical parameters, the 52 internal temperature of the cell is one of the most critical since the temperature determines performance, 53 ageing and safety [6]. Much effort must be devoted to cell and pack design to limit temperature increases 54 and to develop accurate and non-invasive techniques to measure the internal temperature of the cell [7]. 55 Measuring the internal temperature of the cell raises problems. Thermal sensors must be compatible with 56 the chemistry of the cell and small in size. In addition, the insertion of thermal sensors must not affect the 57 performance, ageing or safety of the cell. Among the different sensor technologies, optical fibre sensors 58 have been developed [8,9] due to their fast response, their compact size, which allows their integration in 59 multiple environments, and their immunity to electromagnetic fields. This kind of sensor has already 60 proved its worth in monitoring the internal parameters of Li-ion cells [10–22].

Fibre Bragg Gratings (FBG) sensors are widely used to monitor the internal and external temperature of the cell. This technique has several advantages such as the possibility of having several sensors in the same fibre, high sensitivity and good accuracy. However, the signal response of FBG sensors is dependent on temperature and strain, and it is difficult to properly decouple these two contributions [23–27]. One solution is the use of two optical fibres to decouple temperature and strain. However, sensor integration increases the complexity and size of the sensor, which can affect the correct operation of the cell. Recent work by J. Pinto *et al.* [28] reported a new strategy to decouple temperature and strain measurement
with the same optical fibre by using panda fibre with FBG sensors. Another publication from J.M.
Tarascon's team [27] obtained results from the comparison of two types of optical fibres with FBG sensors
to decouple strain and temperature. However, this kind of FBG sensor requires an expensive interrogator
which makes it difficult to integrate this sensor into a BMS while managing performance, cost and size.

72 Using thermoluminescent probes is another way of measuring temperature using optical fibre. This 73 technique was developed a long time ago for various applications [29–32]. Phosphor co-doped with 74 trivalent lanthanide ions has been selected from the thermoluminophore family due to its long-term 75 thermoluminescence properties (no or low photobleaching and fast and reproducible response) and its 76 chemical and thermic stability over time [29,32]. Some examples present temperature sensors based on 77 optical fibres incorporating phosphor doped with trivalent cations. However, these temperature sensors 78 are either limited for their temperature range and not really designed for specific applications [33–37] 79 (development of materials and the corresponding temperature sensors as proofs of concept), or they are 80 compatible only with a specific environment such as in photonic applications [36,38]. The luminescence of 81 inorganic materials used for thermoluminescent probe depends only on temperature and is completely 82 independent of the surrounding chemical environment and strain [29,32]. The measurement can be 83 performed by using low-cost light sources and a portable spectrophotometer [32,39]. This detection 84 system is cheaper than commercial FBG interrogators and can be easily used for *in-situ* measurements 85 (e.g., in vehicle battery packs). There are many techniques for measuring temperature with luminescence 86 [39]. The ratiometry technique is based on the relative intensity variation of two radiative transitions. This 87 technique presents a few advantages from the others such as relative independence from the excitation 88 sources and easier detection with cheaper components compared to the lifetime based method [40]. A 89 temperature sensor dedicated to in situ temperature monitoring requires a temperature range between 90 253 K to 423 K corresponding to the operating range of Li-ion battery temperature (with optimal use in 91 the restricted temperature zone of 293 to 313 K). This particular temperature range differs from the 92 classical ranges used in the development of temperature sensors for other applications (such as biological 93 applications with the temperature range around the physiological temperature [41] and industrial 94 applications with high temperature ranges [29]). Furthermore, the development of sensors for Li-ion 95 batteries must meet additional prerequisites: such as a mechanical resistance due to their integration 96 inside the battery (for *in-situ* temperature monitoring) as well as a chemical resistance to the battery 97 environment and particularly to the by-products resulting from the lithium salts formed during the 98 electrochemical cycling of the battery [42]. Despite the fact that this type of sensor has been used in many 99 fields for several years, to our knowledge only one article mentions its application for measuring the internal temperature of a battery [43]. In this paper, H. Li et al. used β -NaYF₄:Er³⁺/Yb³⁺@NaYF₄ 100 101 nanoparticles embedded in a PMMA matrix deposit at the end of an optical fibre to monitor the internal 102 temperature of a pouch cell (NMC111/Graphite, 3.7V, 1200 mAh. They demonstrated the capability of a 103 thermoluminescent optical fibre sensor to monitor the internal temperature of the cell. However, these 104 thermoluminescent nanoparticles have low efficiency (i.e. quantum yield in upconversion) and 105 consequently require the use of a high-power laser source for excitation. However, for industrial 106 applications, such as battery management systems, it is crucial to reduce the cost and size of the sensor.

107 In this study, we demonstrate the possibility of using a more efficient thermoluminescent optical fibre 108 sensor, based on one of the most efficient commercial upconverter materials, and associated with a low-109 cost excitation source such as a Light Emissive Diode (LED). The choice of excitation wavelength and its 110 potential negative effect on the cell components is another parameter to consider. Some 111 thermoluminophores require UV excitation. However, UV light could damage the organic materials inside 112 the cell such as the separator and the electrode binder. Moreover, UV light requires more expensive optics 113 than visible (VIS) and near-infrared (NIR) light. For these reasons, we focus our work on an inorganic 114 material excited by near-infrared (NIR) light (980 nm) with luminescence emission in the visible wavelength 115 range (between 400 to 700 nm). Herein, we present the performance and the potential of a new 116 temperature sensor based on optical fibre dedicated to Li-ion battery internal temperature operando 117 monitoring. First, the temperature dependency of the luminescence of powder was calibrated. Then we 118 calibrated the thermoluminescent optical fibre sensor alone and inserted it inside a commercial Li-ion cell 119 (1 Ah). We demonstrate that internal and external temperatures can be monitored during cell cycling at 120 high charge and discharge rates opening the way for the low cost, ease-of-use smart sensing of Li-ion 121 batteries.

122

123 **2.** Materials and Methods

124 2.1. Characterisation of thermoluminescent particles

 $Gd_2O_2S(Er^{3+},Yb^{3+})$ (PTIR545UF) and NaYF₄(Er^{3+},Yb^{3+}) (PTIR550F) microparticles were purchased from 125 126 Phosphor Technology (http://phosphor-technology.com/). The size and morphology of the particles were 127 analysed by Scanning Electron Microscopy (SEM, Hitachi, model S- 5500; 5KV at 15µA). SEM images 128 confirmed the micron size of the commercial particles (Figure S1 for PTIR545UF and Figure S2 for PTIR550F, 129 Supporting information). Composition and crystallinity were analysed with a Bruker D8 Advance X-ray 130 powder diffractometer (Cu/Ka radiation source and LynxEye detector). Chemical composition was in good 131 agreement with the supplier's data according to the X-ray diffraction analysis (Figure S3 for PTIR 545/UF 132 and Figure S4 for PTIR550F, Supporting information). The luminescence of the powders was measured as 133 received and compared in the same conditions of excitation power and integration time.

134

135 2.2. Optical Sensor preparation

To prepare the optical fibre sensor, we used FT200EMT optical fibre from Thorlabs (0.39 NA, Ø200 μm
 Core Multimode Optical Fibre, low hydroxyl content for 400 - 2200 nm, TECS Clad). The Tefzel[®] buffer was
 stripped with mechanical tools and the optical fibre was cloven perpendicularly prior to the coating with
 particles.

140 The protocol for particle insertion in silica sol-gel coating at the fibre tip was performed according to the 141 following procedure. To prepare the sol-gel coating, (3-Aminopropyl)triethoxysilane, tetraethoxysilane 142 and poly(methacrylic acid methyl ester), PMMA, average Mw = 350,000, were supplied by Merck Inc. and 143 used without any purification. Optical fibres were cleaned with acetone and placed for 10 minutes in an 144 ultrasound bath in acetone at 303 K before use. Then the optical fibres were dipped in a mixture of 80/20 145 wt% of tetraethoxysilane/(3-aminopropyl)triethoxysilane under argon atmosphere and stored for 5 146 minutes at room temperature at 50% relative humidity). The optical fibre with sol coating was put in 147 contact with the phosphor powders, which had previously been finely ground in an agate mortar. The 148 grinding operation served to de-agglomerate the particles to ensure homogeneous insertion in the 149 coating. The modified optical fibres were stored for 1 hour under ammonia vapour to complete the sol150 gel polymerisation at room temperature. Then sample was dried at ambient temperature for 1h. Finally,

the modified optical fibres were dipped in a 5 wt% methylene chloride solution of PMMA and dried at

152 room temperature for 1h.

153 The PMMA is deposited as a protective layer to improve the mechanical properties of the modified optical 154 fibres, we carried out both a coating of high molecular weight PMMA (MW 350,000) in DCM and/or an in 155 situ growth of a highly reticulated PMMA type coating (the outer part of the fibres was previously treated 156 with an isocyanate methacrylate monomer to create a strong urethane bond between the binder and the 157 fibre surface). We did not observe any difference between these two routes in terms of thermal sensing. 158 We therefore concentrated our efforts on the simplest route. We chose PMMA-type materials because 159 we had carried out a screening of polymer stability in new and aged electrolytes by monitoring the swelling 160 of polymer particles (3 mm diameter; molecular weight in the range 35,000 to 450,000) in carbonate 161 electrolytes. By far, the high molecular weight PMMAs showed the best behaviour and were able to survive 162 in the electrolyte for more than 12 months. Some previous studies show the degradation of PMMA by 163 carbonates ^[44,45]. However, these results concern PMMA with a low molecular weight of around 35,000. 164 In this work we increase the molecular weight up to 350,000 to increase the stability of the PMMA against 165 the carbonate. The stability of the materials used to prepare the sensor has also been demonstrated by 166 the ageing tests presented in this article (see Results section).

167

Figure S5 (Supporting Information) illustrates the optical microscope (Keyence VHX-500F/VH-Z20R) image of the sensor (optical fibre with thermoluminescent particle coating). We can see in this figure that the coating is located at the end of the fibre with the majority of the particles located on the tip surface. The thickness of the coating is relatively small compared to the diameter of the fibre (less than 10% of the fibre diameter).

173

174 2.3. Cell preparation

175 A non-activated cell (without electrolyte) from Li-FUN Technology Corporation was used for the insertion 176 of the optical fibre sensor. The cell's characteristics are listed in the Table S1. Supporting Information. The 177 active material is LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂ (NMC622) as a positive electrode in combination with graphite as a 178 negative electrode. It was a wound pouch cell with a capacity of 1101 mAh measured at a rate of C/20. 179 The instrumentation operations were carried out in the dried room. *Figure S6* (Supporting Information) 180 illustrates the main steps of instrumenting the cell with the thermal sensor. The cell was taken out of the 181 laminated aluminium bag and unrolled over 2 turns. The optical fibre was then placed between the positive 182 electrode and the separator. The foils of the components were then rewound. Additional tabs were 183 welded on the existing tabs and the cell was repackaged in a bag. Two sides of the bag were then sealed 184 with a sealing machine at 453 K. After drying at 328 K under vacuum overnight, the cell was inserted in the 185 glove box and then activated. The electrolyte used was a commercial mixture of ethylene carbonate (EC) 186 and ethyl methyl carbonate (EMC) in a weight ratio of 1:2 with 1M LiPF₆ conductive lithium salt and 2 % of 187 vinyl carbonate (VC) additive. Finally, the bag was closed under vacuum. Following the recommendations 188 of the equipment supplier, a degassing step was performed after the formation cycles.

190 2.4. Optical setup

The luminescent material used for the thermal probe required a light source to excite the Yb³⁺ cations at 191 192 980 nm and a spectrophotometer to measure the luminescence peaks of H, S and F transitions in the visible 193 range (between 500 nm and 750 nm). We used an optical fibre coupled withM970F3 LED (970 nm, 5.9 194 mW, Thorlabs) as the excitation source. The excitation light was transferred through a RP20 (Thorlabs) 195 multimode optical fibre to the sample. It collected the light from the sample and sent it to 196 spectrophotometer. The spectrometer was a compact CCD spectrometer (CCS200, Thorlabs). Multimode 197 optical fibre with a core diameter of 200 μ m was used to transport the light between the collimator 198 coupling box and the sample (FT200EMT optical fibre from Thorlabs). An achromatic collimator for 199 multimode fibres (F950SMA-A Thorlabs) was used to measure the powder luminescence in the collimator 200 coupling box. Figure S7 (Supporting Information) shows a schematic view of the optical test bench for dual 201 luminescence and electrochemistry measurements.

202

203 2.5. Sensor calibration

204 Two different configurations were selected for calibration, depending on the step of the sensor's 205 development and its integration inside the cell (see *Figure S6*, Supporting Information). For the powder 206 calibration, thermoluminescent particles were inserted in a quartz tube and placed in a programmable 207 climatic chamber (Weiss). A thermocouple was fixed inside the tube to measure the temperature of the 208 powder and another one in the centre of the climatic chamber. The luminescence was measured through 209 the quartz by using a collimating lens at the end of the optical fibre. The rest of the optical bench was the 210 same as for the other experiment (optical source, optical fibre, optical element and spectrometer). The 211 climatic chamber was programmed at different temperatures, from 260 to 320 K every 5 K. Each 212 temperature was kept constant for 50 min for thermal stabilisation. During the calibration, the 213 luminescence from the sensor and the temperature from the thermocouple were acquired every 10 s. 214 Luminescence was recorded in a full spectrum range between 200 to 1000 nm.

We proceeded with the same methodology for the optical fibre sensor calibration (alone and inside the cell) except for the optical connection. The optical fibre sensor was directly connected to the test bench *via* the collimator coupling box (see *Figure S7*, Supporting Information). The optical fibre used for the powder calibration was the same type as RP20 fibre (FT-200EMT). The only difference was the collimating lenses between the end of the fibre and the powder sample. This optical component had no significant impact on the luminescent signal.

221

222 2.6. Data processing

Post-processing python 3 script was developed for the data post processing. Pandas (v2.4.2), Numpy (1.16.4), Scipy (1.2.1), and Pywavelets (1.0.3) libraries are used for data denoising, analysis and Matplotlib (3.1.0) for data visualisation. The optical signal from the spectrometer was noisy due to the CCD characteristics ^[46,47] and required the use of denoising techniques. For the data treatment two methods were tested, the first based on the Savitzky-Golay filter (savgol_filter algorithm from Scipy ^[48]). The second one used the continuous wavelet transform method ^[49] with the "*coiflets 5*" function ^[50,51]. *Figure S8* (Supporting Information) shows the results of the noise reduction by these two methods. The grey curve represents the luminescence intensity ratio between the H and S transitions. The orange curve gives the
 result after Savitzky-Golay filtering and the red one the result after wavelet filtering. The second method
 proved to be more powerful and was applied to all the luminescence data.

233

234 2.7. Electrochemical cycling.

235 The pouch cell was placed on a holder and connected to a cycling battery test bench (Bio-logic, VMP3 236 series). Its effective capacity after formation was 1.017 Ah (C/10, 298 K). To monitor the external 237 temperature, a thermocouple was fixed on the centre of the cell before applying mechanical compression. 238 Constant mechanical stress was applied by a rigid polymer plate and clamps. Two polymer foams were 239 placed between the cell and polymer plate to homogenise the mechanical stress. The cell was tested in 240 the laboratory at constant ambient temperature (298 K). The ambient and surface cell temperatures were 241 measured by thermocouples connected to a data acquisition system (Keysight 34972A + 34910A). The 242 current and cell voltage were measured with the Biologic VMP3 electrochemical bench.

Figure S9 (Supporting Information) shows the current and potential of the cell during cycling. The experiment started with a full charge (State of Charge SOC=100%).

- 245 The sequence consisted of:
- 246 1- An initial discharge at a constant current of C/5 up to 2.8 V, and a relaxation at I = 0 A for 30 min. 247 2- A cycle consisting to : - a charge at a constant current of C/5 up to 4.2 V that is followed by a second step at 248 249 constant voltage (4.2V) up to $I \le C/20$ or 1h (SOC reached = 100%) a discharge at C/5 down to 2.8 V (SOC reached = 0%). 250 251 3- A cycle consisting to : 252 - a charge at a constant current of C/2 up to 4.2 V that is followed by a second step at 253 constant voltage (4.2V) up to $I \le C/20$ or 1h (SOC reached = 100%) 254 a discharge at a constant current of 4C down to 2.8 V that is followed by another discharge 255 step at a lower current rate of C/2 down to 2.8 V (SOC reached = 0%). This second step 256 allows the cell to be completely discharged before starting the next charge. 257 4- A cycle consisting to : 258 a charge at a constant current of 1C up to 4.2 V that is followed by a second step at 259 constant voltage (4.2V) up to $I \le C/20$ or 1h (SOC reached = 100%) 260 - a discharge at a constant current of 4C down to 2.8 V that is followed by another discharge 261 step at a lower current rate of C/2 down to 2.8 V (SOC reached = 0%). This last sequence 262 was repeated 3 times. Discharge at 4C and charge at 2C are the maximum rates for this 263 type of cell. It is well known that cell heating increases with discharge current rate,

- 264 especially. Therefore, in order to maximize the temperature increase, we used the 265 maximum discharge rate.
- 266 For the ageing test, the cell was submitted to calendar ageing and cycling ageing with protocol of:
- 267 1- Calendar ageing:

After the cycling test, the cell was stored for 18 months at SOC 30% in a fridge at T=5°C. The luminescence of the sensor was tested before and after calendar ageing.

270 2- Cycling ageing:

For the ageing test, the cell was tested in the laboratory at constant ambient temperature (298 K) with the same experimental setup and configuration as in the previous test. The cell was tested with a 2C charge and 4C discharge cycle with the following protocol:

- 274 2-1 A low current cycle to evaluate the SOH of the cell, consisting of :
- 275-a charge at a constant current of C/10 up to 4.2 V that is followed by a second step at constant276voltage (4.2V) up to $I \le C/20$ or 1h (SOC reached = 100%)
- 277 − a discharge at C/10 down to 2.8 V (SOC reached = 0%).
- 278 2-2 150 successive cycles composed of :
- 279 a charge at a constant current of 2C up to 4.2 V that is followed by a second step at constant 280 voltage (4.2V) up to $I \le C/20$ or 1h (SOC reached = 100%)
- 281 a discharge at 4C down to 2.8 V
- 282 Between each charge/discharge, there is a rest period of 30 min.
- 283 2-3 A final cycle in the same conditions as sequence 1
- 284

285 3. Results and discussion

286 Gd₂O₂S (Er³⁺, Yb³⁺) (PTIR545UF) was selected as luminescent material for the temperature measurement. This micron sized particle material is an upconverter with a high quantum yield (4.2%) close to the micron-287 sized NaYF₄ (Er^{3+} , Yb^{3+}) (7.8%) ^[52,53]. The thermoluminescence of this material was studied previously by D. 288 Avram et al [51] under excitation at 980 nm and 1550 nm with high pulsed power and continuous laser 289 290 sources. This material exhibits a higher luminescence under 980 nm excitation with high thermal sensitivity. Figure 1 compares the luminescence spectra for PTIR545UF (Gd₂O₂S (Er³⁺, Yb³⁺)) and PTIR550F 291 292 (NaYF₄ (Er³⁺, Yb³⁺)) at 298K excited at 980 nm (5.9 mW LED). It can be seen that the luminescence of 293 PTIR545UF is seven times higher than PTIR550F. This difference is not due to the quantum yield (QY) but 294 the higher absorption coefficient of $Gd_2O_2S(Er^{3+}, Yb^{3+})$ compared to NaYF₄ (Er^{3+}, Yb^{3+}). QY is not the only 295 parameter for luminescence intensity, the absorption efficiency also play a role. The best comparison 296 between two materials is to compare the luminescence in the same environmental condition with same 297 optical system. In our case we observe that the PTIR545/UF (Gd2O2S:Er³⁺,Yb³⁺) is more luminescent than 298 (PTIR550/F, NaYF4:Er³⁺,Yb³⁺), see *Fiqure 1*. In our experiment, the luminescence of PTIR545/UF is 7 times 299 more intense than the PTIR550/F. The article by T. Soukka et al ^[54] shows similar results with the intensity 300 of the peak at 550 nm is 4.71 times more intense for the PTIR545/UF compared to the PTIR550/F.

301 Due to its higher luminescence intensity, we decided to select PTIR545UF microparticles for the 302 preparation of a thermoluminescent optical fibre sensor.

303

Figure 1. Comparison of luminescence spectra of Gd₂O₂S (Er³⁺, Yb³⁺) PTIR545UF and NaYF₄ (Er³⁺, Yb³⁺) PTIR550F, under 980 nm
 LED excitation at 298K with the same excitation power and integration time.

306

Figure 2 shows the upconversion of Gd_2O_2S (Er^{3+} , Yb^{3+}) (PTIR545UF) under excitation at 980 nm and the associated emission spectra in the visible wavelength range (between 500 to 750 nm). Electrons from ${}^{4}I_{15/2}$ level of Er^{3+} and Yb^{3+} are excited to a higher energy level by multiple absorptions of infrared photons at 980 nm (bold black arrow). Then electrons return to the lower energy levels by non-radiative transition (dashed arrows) or radiative transition (colored arrows).

The transitions between excited states $({}^{2}H_{11/2}, {}^{4}S_{3/2} \text{ and } {}^{2}F_{9/2})$ to the ground state $({}^{4}I_{15/2})$ produce two green and one red emission (labelled H, S and F respectively). The luminescence intensity of these three transitions (H, S and F) depends on the temperature which is why we can use this material as a thermometer. The common approach is to use ratiometry between two peaks of intensity I_{1} and I_{2} , named FIR (Fluorescence Intensity Ratio), where the intensity (I) of transition is equal to the area under the peak in luminescence spectra. If we assume the validity of the Boltzmann distribution [32], the intensity ratio

323 between two peaks can be expressed as:

$$FIR = \frac{I_1}{I_2} = Be^{\left(-\frac{\Delta E}{k_B T}\right)} \tag{1}$$

326

325

where k_B is the Boltzmann constant, T the temperature, ΔE the energy difference between the barycentre of the two coupled electronic levels (²H_{11/2}, ⁴S_{3/2}), and B is a constant. For the Gd₂O₂S (Er³⁺, Yb³⁺), transitions H and S are separated by a small energy gap $\Delta E \sim 800 \text{ cm}^{-1}$ [^{52,53]} and are used for the temperature measurement by radiometry. In this case I₁ corresponds to the intensity of the H transition and I₂ the intensity of the S transition. From equation (1), ln(FIR) presents a linear variation as a function of $\frac{1}{T}$.

332

333
$$\ln(FIR) = \ln\left(\frac{H}{S}\right) = -\frac{\Delta E}{k_B}\left(\frac{1}{T}\right) + \ln(B)$$
(2)

334

335 Temperature can be estimated by the following equation:

336

337
$$T = \frac{\Delta E}{k_B} \frac{1}{\ln(B/FIR)} = \frac{\Delta E}{k_B} \left[\frac{1}{\ln(B) - \ln(FIR)} \right]$$
(3)

338

339 The uncertainty on temperature can be estimated by [32]:

340

 $\delta T = \frac{1}{S_r} \frac{\delta FIR}{FIR}$ (4)

342

Absolute (S_a) and relative (S_r) sensitivities are defined by the following expression. These two parameters were introduced by Collins *et al.* ^[55] and have been used extensively for comparisons between thermometer performances.

$$S_a = \frac{\partial FIR}{\partial T}$$
(5)

$$S_r = \frac{1}{FIR} \left| \frac{\partial FIR}{\partial T} \right| \tag{6}$$

350 Using
$$\frac{\partial e^{u(x)}}{\partial x} = \frac{\partial u(x)}{\partial x} e^{u(x)}$$
, we simplify the expression of absolute sensitivity S_a by:

351

352

 $S_a = \frac{\Delta E}{k_B T^2} FIR \tag{7}$

353

and the expression of the relative sensibility S_r becomes:

355

$$S_r = \left| \frac{\Delta E}{k_B T^2} \right| \tag{8}$$

357

 S_a depends on the measurement apparatus. S_r is more appropriate for comparing the performances of different thermoluminophores.

360 The luminescence of PTIR545UF powder has been measured between 283 to 313K; this temperature range is compatible with the expected internal temperature of the 1A.h cell during a cycling test at 298 K. Figure 361 362 3a shows the variation of luminescence spectra of Gd₂O₂S (Er³⁺, Yb³⁺) PTIR545UF as a function of 363 temperature. Each spectrum was normalized on the maximum intensity of the peak corresponding to the H transition. A decrease of the peak corresponding to the S transition is observed when the temperature 364 increases. The variation of ln(FIR) as a function of 1/T (blue point) and the linear regression (redline) are 365 shown on Figure 3b. The linear regression coefficient is close to 1.10³ (K⁻¹) and corresponds to a $\Delta E =$ 366 $695 \ cm^{-1}$. This value is very close to the value of ~ 700 cm⁻¹ found by D. Avram et al. ^[52] and also close 367 to the theoretical energy gap between the H and S transition $\Delta E = 800 \ cm^{-1}$. The relative sensitivity (S_r) 368 is between 1.25 and 1.00 %. K⁻¹ in the range of temperature between 280 to 315 K, which is in agreement 369 370 with the values reported in the literature [29,31].

371

372

Figure 3. Thermoluminescence of Gd2O2S (Er3+, Yb3+) PTIR545UF powder: a) Evolution of luminescence spectra between 282 to
 312 K, (b) Ln(*FIR*) (blue point) and Temperature (orange line) variation as a function of time during calibration, (c) Linear variation of ln(*FIR*)=f(1/T): measure (grey), mean and error bar correspond to the root mean square RMS (dark) and linear regression (red).
 (d) Relative sensitivity (*S_r*) as a function of temperature calculated from linear regression coefficients (ln(*FIR*)=f(1/T)).

379 The temperature dependence of luminescence was tested with the same protocol for both the optical 380 fibre sensor and for optical fibre sensors embedded inside of the cell. The results obtained for the optical fibre sensor are shown in Figure 4. The variation of In(FIR) as a function of 1/T has a slope of 1044 (K⁻¹), 381 which is close to the slope calculated for the Gd₂O₂S (Er³⁺, Yb³⁺) PTIR545UF powder. This comparison 382 383 indicates that the insertion of the luminescent particles into the silica matrix covered by a PMMA layer (as 384 a protective layer) at the end of optical fibre does not affect the performances of the thermoluminescent 385 particles. A small intensity difference is observed in the two luminescence peaks of the S transition 386 between the powder and the optical fibre sensor. The intensity of the second peak of the S transition is 387 smaller than the first one for optical fibre sensor (Figure 4a). This variation is due to the absorption of the 388 optical fibre itself and does not affect the performances of the thermal probe (Figure 4). Furthermore, the 389 same linear variation of $\ln(FIR)$ as function of 1/T in Figures 3a and 4a confirms that the introduction of thermoluminescent particles in the sol matrix surrounded with a protective layer does not affect their 390 391 thermoluminescence properties. The relative sensitivity (S_r) of the optical fibre is slightly higher than that of the thermoluminescent particles, with a range of 1.10 to 1.45 %.K⁻¹ for temperature in the same 392 393 temperature range (from 312 to 272 K).

Figure 4. Thermoluminescence of optical fibre with Gd2O2S (Er3+, Yb3+) PTIR545UF powder (in the silica matrix) and PMMA coating: a) Luminescence spectra evolution between 272 to 312 K, (b) Ln(FIR) (blue point) and Temperature (orange line) variation as a function of time during calibration, (c) Linear variation of ln(FIR)=f(1/T): measure (grey), mean and error bar error bar correspond to the root mean square RMS (dark) and linear regression (red). (d) Relative sensitivity (S_r) as a function of temperature calculated from the linear regression coefficients (ln(FIR)=f(1/T)).

400 The same results were obtained for the calibration of the optical fibre inserted inside the Li-ion cell (Figure 5). There is no observable modification of the emission spectrum due to the insertion of the sensor inside 401 402 the cell. The slope of the ln(FIR) as a function of (1/T) is equal to the slope before the insertion (1044 (K⁻ 403 ¹)). The S_r value is very similar to the value obtained with the optical fibre before insertion inside the cell. 404 A small variation of the shape of the second peak of the S transition is observed due to the difference of 405 the length of the optical fibre between the thermal probe and the spectrophotometer. However, the slope 406 of the linear regression in $\ln(FIR)$ as a function of (1/T) is close to the previous value, around 1000 (K⁻¹). 407 The relative sensitivity S_r varied between 1.1 and 1.4 between 308 and 270 K. All these measurements 408 show several small variations in the calibration of sensors depending on the environment and the 409 measurement system. Although the variations are small, it is necessary to calibrate the sensor inside the 410 cell to obtain optimum accuracy. When calibrating of the sensor inside the cell we decide to add a 411 temperature step at 300K at the beginning of the calibration protocol (see *Figure 5*). The aim is to evaluate 412 if the sensor is sensitive to the order of the temperature during calibration. In the results (*Figure 5*) all the points are well aligned and we conclude that there is no memory effect when there is a sudden 413 414 temperature change related to the cooling or heating.

Figure 5. Thermoluminescence of optical fibre with Gd2O2S (Er3+, Yb3+) PTIR545UF powder in silica matrix and PMMA coating inside the Li-ion cell: a) Luminescence spectra evolution between 272 to 312 K, (b) Ln(*FIR*) (blue point) and Temperature (orange line) variation as a function of time during calibration, (c) Linear variation of ln(FIR)=f(1/T): measure (grey), mean and error bar correspond to the root mean square RMS (dark) and linear regression (red). (d) Relative sensitivity (*S_r*) as a function of temperature calculated from the linear regression coefficient (ln(FIR)=f(1/T)).

The accuracy of the optical probe (powder) and the sensor was calculated from the calibration data. The variance (δFIR) of the FIR from the theoretical value (FIR_{th}) for each temperature was calculate from the equation (9) below:

424

$$\delta FIR = \frac{FIR}{FIR_{th}} \tag{9}$$

Where FIR_{th} is calculated from equation (2) with the linear coefficients $-\frac{\Delta E}{k_B}$ and B determined by 425 calibration data (Figure 4 for optical probe and Figure 5 for sensor). The temperature measurement error 426 427 δT is calculated from the equation (4). The Figure S10 and S11 show the δFIR and δT as a function of T 428 for the sensor alone and inserted in the cell. The uncertainty of the temperature δT is about +/- 1°C over 429 the range tested. A higher value for the error between two constant temperature plateaus is shown in 430 Figure S11 for the sensor inside the cell. This error is not related to the sensor but to the thermal gradient 431 between the sensor temperature inside the cell and the reference temperature measured in the climate 432 chamber during the temperature transition. These points are outliers. They are not taken into account 433 when evaluating the accuracy of the sensor.

Figure 6 shows the variation of the maximum luminescence for the peak at 548 nm (S transition) over time with the cell potential U(V), cell current I(A) and cell surface temperature T_{ext} (K). The correlation between the external temperature and the S transition peak variation is shown clearly. The S peak intensity decreases when the temperature increases during the cell charge at a rate of 1C and discharge at a rate of 438 4C. The variation of luminescence during discharge at a rate of 4C is greater than the charge at a rate of

439 1C due to a higher rise in temperature.

440

441

Figure 6. Variation of the cell potential U(V), cell current I(A), external cell temperature T_{ext} and luminescence variation of the S transition (maximum peak at 548 nm). The arrow highlights the signal variation in the spectrum when the temperature increases.

444

Figure 7 represents the measurement of cell potential (U), cell current (I), external temperature (T_{ext}) from

a thermocouple sensor and internal temperature (T_{int}) from our luminescent sensor. During the first charge

and discharge steps at low C-rates, the temperature of the cell does not change. The surface temperature

increases during the discharge at 4C up to 14 K and charge at 1C up to 5 K in comparison with the ambient

449 temperature (see *Figure 8*).

Figure 7. Internal and external cell temperature variations during cell cycling

453 The temperature variation is clearly correlated with the charge and discharge profiles. The shape and the

intensity of the temperature variations are similar to those in the literature for this type of Li-ion cell ^[56].

455 The signal from the thermoluminescent sensor shows the same variation over time with good correlation

456 with the surface temperature measurement. The cell used for this experiment was a pouch cell with a 457 small capacity (1A.h). The Biot number (B_i) can be calculated to evaluate if there is a difference between

458 the internal and external temperatures. The Biot number is defined as:

459

460

$$B_i = \frac{hL_c}{\lambda_b} \tag{10}$$

461

462 where *h* is the global thermal transfer coefficient (0.5 W/m/K), L_c the characteristic length, in our case 463 half of the cell thickness (1 mm), λ_b the thermal conductivity (0.5W/m/K).

In our case the Biot number is very small (0.04) and much lower than 0.1. Thus, it can be considered that the gradient between the centre and the surface is less than 1K ^[57,58]. We can conclude that the internal temperature measurement should be close to the external temperature measured at the surface of the

467 cell, which is in agreement with the measurements performed with the optical sensor.

468

469 Figure 8. Temperature variation from ambient: comparison between external and internal measurement during cell cycling.

470 The variation of the signal during the first step at a low C-rate is probably due to the stability of the light

471 source. *Figure 8* displays variations of the baseline for the luminescence sensor and a lower value for the

472 four peaks during 4C discharge. This difference is attributed to the loss of accuracy during signal denoising

473 (*Figure S8*. Supporting Information). To limit this effect and increase the accuracy of the sensor, optical

474 optimisation is required to limit the noise and increase the luminescence signal.

476 Figure 9: Aging result during cycling test. a) Full view of the cycling test with the variation of the cell potential (U), the cell current
477 (I) and the external temperature of the cell T_{ext} measured by thermocouple. Zoom of the 5 first cycles (b) and the 6 last cycles (c)
478 with the luminescence ratio correlate to the Text, I and U cell.

The results of the ageing test are shown in the Figure 9. The external cell temperature (T_{ext}), current (I) and potential (V) are shown in the Figure 9. a). A zoom of the 5 first and 6 last cycles are shown in the Figure 481 9. b) and Figure 9. c) represent the chronogram of the variation of the optical signal from the sensor (FIR) 482 compared to the T_{ext} measurement, cell current and cell potential. The variation of the SOH_{2C} and SOH_{4D} 483 variation during ageing is shown in the Figure S13 (Supplementary data). SOH_{2C} is defined as the ratio of 484 the capacity charged at 2C during the cycle n divided by the capacity charged at 2C during the first cycle. 485 SOH_{4D} is calculated in the same way with the discharge capacity during the discharge at 4D. The maximum 486 temperature reached during the charge phase at 2C and the discharge phase at 4D are plotted in figure 487 S14. In both figures we can see the degradation rate of the cell. After 150 cycles, about 15% of the capacity 488 is lost in the charge (2C) and discharge (4D) phases. The maximum temperature of the cell (text) during 489 the 2C charge decreases by less than 0.25°C. The mean value of the maximum temperature during the 490 discharge phase at 4D remains constant during ageing. However, we observe a greater dispersion of the 491 maximum temperature during discharge at 4C. This dispersion is related to the dispersion of the discharge 492 capacity during ageing. This dispersion becomes more important as the number of cycles increases. It's a 493 sign of the degradation of the cell's performance. This degradation is visible in the cell potential during 494 discharge at 4C (see green curve in Figure 9).

For the optical sensor, we can see in Figure 9 b) and c) that the FIR signal is correlated with the cell temperature during all the ageing test. These results demonstrate the good stability of the sensor in the high C-rate condition over 150 cycles. After 150 cycles, we can see that the intensity of the signal from the sensor has not been affected by the ageing of the cells.

499

500 4. Conclusions and perspectives

We demonstrated the interest of using thermoluminescent material as a thermal probe to monitor the 501 502 internal temperature of a lithium ion cell during fast charging. For the first time, Gd₂O₂S:Er³⁺,Yb³⁺ was used 503 as a thermal probe in combination with an optical fibre sensor to monitor internal cell temperature during 504 cycling at high current in charges and discharges with a low cost and compact excitation and detection 505 system. This material has a higher luminescence than NaYF₄:Er³⁺,Yb³⁺ previously described by H. Li et al. [43], and has a high relative sensitivity (1.25 %.K⁻¹ at 280 K). We demonstrated that the 506 507 thermoluminescence performances of $Gd_2O_2S:Er^{3+},Yb^{3+}$ are not affected by the preparation of the optical 508 fibre sensor, even after the insertion of the sensor inside the Li-ion cell. We showed that insertion inside 509 the cell does not affect the performance of the cell and that measurement is possible at high 510 corresponding C-rates (fast charging and high power loading of the cell). These results validate the interest 511 of this kind of sensor for use in battery management systems. The use of LEDs as optical sources reduces 512 the cost of this type of sensor compared with other optical fibre sensors used previously for temperature 513 monitoring in Li-ion batteries. The instrumented cell with sensor was tested in ageing (calendar during 18 514 months) and over 150 cycling at high c-rate. The optical signal of the sensor shows no major degradation 515 after the ageing test. These results show the stability of the sensor in the environment and justify the 516 choice of materials. In the future, it will be interesting to carry out tests over a longer period of time and 517 under different conditions in order to characterise the durability of the sensor more fully. Furthermore, 518 the results published on the use of internal cell temperature sensors with fibre optics only concern a few 519 cycles^[59]. To the best of our knowledge, the results presented here of 150 cycles at high C-rate in charge 520 and discharge presented here are new.

- 521 In terms of accuracy, this sensor is less sensitive than FBG type sensors (1°C versus 0.1°C). However, this
- accuracy is sufficient to characterise high capacity cells for fast charge and discharge. This accuracy can be
- 523 improved by increasing the power of the optical source and the sensitivity of the detection system. In
- addition, other work on thermoluminescence shows that it is possible to use this technique to achieve a
- resolution comparable to the FBG of 0.1°C^[29,32]. However, this comes at an increased cost. The advantage
- of this solution over an FBG-type sensor is precisely its lower cost. For example, the cost of the spectrophotometer for this sensor is 15 times lower than for an FBG interrogator with a resolution of 0.1°C.
- 528 We conclude that this new thermal sensor based on functionalised optical fibre is a good candidate for 529 achieving the goals of the BATTERY2030+ roadmap and for the development of smart batteries [4].
- 530 The outlook for this work is to further increase sensor sensitivity by improving the optical component and
- signal post-treatment to reduce signal noise. The long-term stability of this type of sensor still needs to be
- 532 studied; likewise for its integration into an industrial cell manufacturing process. These results open the
- 533 way to a producing a new sensitive thermal sensor for monitoring the internal temperature of Lion cells.
- 534

535 Credit authorship contribution statement

536 Olivier Raccurt: Conceptualization, Writing - Original draft, Visualization, Project administration & 537 supervision, funding acquisition. Elise Villemin, Sylvie Genies, Cédric Septet and Pierre Balfet: Cell 538 fabrication and instrumentation, Experiment preparation, Electrochemistry tests and Results analysis, 539 Writing, review & editing. Olivier Poncelet & Sonia Desousa-Nobre: Optical fibre sensor preparation and 540 Optical characterisation, Writing, review & editing. Romain Franchi: Development of the platform for data 541 acquisition and visualisation. Jérôme Houny & Martin Guillon: Calibration of the sensor, data treatment, 542 Writing, review & editing.

543

544 **Declaration of competition interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. There are no conflicts to declare.

547 Data availability

548 The data that support the findings of this study are available from the corresponding author upon 549 reasonable request.

550 Supplementary materials

551 Supplementary material associated with this article can be found at the end of these file.

552 Acknowledgements

The INSTABAT project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 955930. INSTABAT carried out in the framework of the BATTERY2030+ large scale initiative under grant agreement No. 957213. The authors would like to thank Didier Buzon (CEA) for fruitful discussion on the assessment of the thermal gradient between the internal and external temperatures of the cell and the explanation of the Biot number. The authors would also like to thank Charlotte Gervillé and Jean-Marie Tarascon (CNRS Collège de France) for providing the LiFun cell

- 559 in the framework of the INSTABAT project. Lastly, the authors would like to thank Konstantin Tarasov (CEA)
- 560 for the X-ray analysis of thermoluminescent particles, Marco Ranieri (CEA) for her contribution to ageing
- test and Sandrine Lyonnard (CEA) for her comments on the results analysis and the publication content.
- 562
- 563 References
- 564 [1] H. A. Gabbar, A. M. Othman, M. R. Abdussami, *Technologies* 2021, 9, 28.
- 565 [2] X. Lu, J.-M. Tarascon, J. Huang, *eTransportation* **2022**, *14*, 100207.
- 566 [3] Z. Wei, J. Zhao, H. He, G. Ding, H. Cui, L. Liu, J. Power Sources 2021, 489, 229462.
- 567 [4] J. Amici, P. Asinari, E. Ayerbe, P. Barboux, P. Bayle-Guillemaud, R. J. Behm, M.
- 568 Berecibar, E. Berg, A. Bhowmik, S. Bodoardo, I. E. Castelli, I. Cekic-Laskovic, R.
- 569 Christensen, S. Clark, R. Diehm, R. Dominko, M. Fichtner, A. A. Franco, A. Grimaud, N.
 570 Guillet, M. Hahlin, S. Hartmann, V. Heiries, K. Hermansson, A. Heuer, S. Jana, L. Jabbour,
- J. Kallo, A. Latz, H. Lorrmann, O. M. Løvvik, S. Lyonnard, M. Meeus, E. Paillard, S.
- 572 Perraud, T. Placke, C. Punckt, O. Raccurt, J. Ruhland, E. Sheridan, H. Stein, J.-M.
- Tarascon, V. Trapp, T. Vegge, M. Weil, W. Wenzel, M. Winter, A. Wolf, K. Edström, *Adv. Energy Mater.* 2022, *12*, 2102785.
- 575 [5] 'Battery 2030+ Large Scale Initiative'. [Online]. Available: https://battery2030.eu/,
 576 Accessed: Apr. 24, 2023
- 577 [6] T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, M. Wohlfahrt-Mehrens, *J. Power*578 Sources 2014, 262, 129.
- 579 [7] L. H. J. Raijmakers, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, *Appl. Energy* 2019, 240, 918.
- 581 [8] K. A. Wickersheim, M. H. Sun, J. Microw. Power Electromagn. Energy 1987, 22, 85.
- [9] Q. Wu, M. Mikolajek, R. Martinek, J. Koziorek, S. Hejduk, J. Vitasek, A. Vanderka, R.
 Poboril, V. Vasinek, R. Hercik, *J. Sens.* 2020, 2020, 8831332.
- [10] J. Hedman, R. Mogensen, R. Younesi, F. Björefors, *Adv. Mater. Interfaces* 2023, *10*, 2201665.
- [11] J. Hedman, R. Mogensen, R. Younesi, F. Björefors, ACS Appl. Energy Mater. 2022, 5,
 6219.
- 588 [12] J. Hedman, F. Björefors, *ACS Appl Energy Mater* **2022**, *5*, 870.
- [13] J. Huang, L. Albero Blanquer, J. Bonefacino, E. R. Logan, D. Alves Dalla Corte, C.
 Delacourt, B. M. Gallant, S. T. Boles, J. R. Dahn, H.-Y. Tam, J.-M. Tarascon, *Nat. Energy*2020, 5, 674.
- 592 [14] C. Modrzynski, V. Roscher, F. Rittweger, A. Ghannoum, P. Nieva, K. Riemschneider, in
 593 2019 IEEE Sens., 2019, pp. 1–4.
- 594 [15] J. Hedman, D. Nilebo, E. Larsson Langhammer, F. Björefors, *ChemSusChem* 2020, *13*,
 595 5731.
- 596 [16] M. Nascimento, T. Paixão, M. S. Ferreira, J. L. Pinto, *Batteries* 2018, 4, 67.
- 597 [17] M. Nascimento, M. S. Ferreira, J. L. Pinto, Appl. Therm. Eng. 2019, 149, 1236.
- 598 [18] M. Nascimento, M. S. Ferreira, J. L. Pinto, *Measurement* 2017, 111, 260.
- 599 [19] A. Ghannoum, K. Iyer, P. Nieva, A. Khajepour, in 2016 IEEE Sens., 2016, pp. 1–3.
- [20] A. Ghannoum, R. C. Norris, K. Iyer, L. Zdravkova, A. Yu, P. Nieva, ACS Appl. Mater.
 Interfaces 2016, *8*, 18763.
- 602 [21] A. Ghannoum, P. Nieva, J. Energy Storage 2020, 28, 101233.

- [22] A. Ghannoum, P. Nieva, A. Yu, A. Khajepour, ACS Appl. Mater. Interfaces 2017, 9, 41284.
- [23] M. Nascimento, S. Novais, M. S. Ding, M. S. Ferreira, S. Koch, S. Passerini, J. L. Pinto, J.
 Power Sources 2019, 410–411, 1.
- 606 [24] A. Fortier, M. Tsao, N. D. Williard, Y. Xing, M. G. Pecht, *Energies* 2017, 10, 838.
- [25] J. Unterkofler, G. Glanz, M. Koller, R. Klambauer, A. Bergmann, *Batteries* 2023, 9, 34.
- [26] J. Xi, J. Li, H. Sun, T. Ma, L. Deng, N. Liu, X. Huang, J. Zhang, Sens. Actuators Phys.
 2022, 347, 113888.
- [27] J. Bonefacino, S. Ghashghaie, T. Zheng, C.-P. Lin, W. Zheng, L. A. Blanquer, J. Huang, C.
 Gervillié, H.-Y. Tam, J.-M. Tarascon, S. T. Boles, *J. Electrochem. Soc.* 2022, *169*, 100508.
- [28] L. Matuck, J. L. Pinto, C. Marques, M. Nascimento, *Batteries* 2022, *8*, 233.
- 613 [29] C. D. S. Brites, S. Balabhadra, L. D. Carlos, Adv. Opt. Mater. 2019, 7, 1801239.
- 614 [30] M. D. Dramićanin, *Methods Appl. Fluoresc.* **2016**, *4*, 042001.
- 615 [31] X. Wang, O. S. Wolfbeis, R. J. Meier, *Chem Soc Rev* 2013, 42, 7834.
- [32] C. D. S. Brites, A. Millán, L. D. Carlos, in *Handb. Phys. Chem. Rare Earths* (Eds.: J.-C. G.
 Bünzli, V. K. Pecharsky), Elsevier, **2016**, pp. 339–427.
- [33] B. Li, F. Zhang, W. Liu, X. Chen, Y. Gao, Q. Zhang, X. Yan, F. Wang, X. Zhang, T.
 Suzuki, Y. Ohishi, T. Cheng, *IEEE Trans. Instrum. Meas.* 2022, 71, 1.
- 620 [34] S. Sánchez-Escobar, J. Hernández-Cordero, *Opt Lett* **2019**, *44*, 1194.
- [35] K. T. V. Grattan, Z. Y. Zhang, in *Opt. Fiber Sens. Technol. Chem. Environ. Sens.* (Eds.: K.
 T. V. Grattan, B. T. Meggitt), Springer Netherlands, Dordrecht, **1999**, pp. 133–203.
- [36] M. K. Shahzad, Y. Zhang, M. U. Khan, X. Sun, L. Liu, H. Li, *Opt Mater Express* 2018, 8, 2321.
- [37] H. E. Benjamin R. Anderson Steven Livers, Ray Gunawidjaja, Opt. Eng. 2019, 58, 097105.
- [38] J. Thiem, S. Spelthann, L. Neumann, F. Jakobs, H.-H. Johannes, W. Kowalsky, D. Kracht,
 J. Neumann, A. Ruehl, D. Ristau, *Sensors* 2020, *20*, 6048.
- [39] J. J. Talghader, M. L. Mah, E. G. Yukihara, A. C. Coleman, *Microsyst. Nanoeng.* 2016, 2, 16037.
- 630 [40] M. D. Dramićanin, J. Appl. Phys. 2020, 128, 040902.
- 631 [41] A. Nexha, J. J. Carvajal, M. C. Pujol, F. Díaz, M. Aguiló, *Nanoscale* 2021, 13, 7913.
- [42] X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, M. Ouyang, *eTransportation* 2019, *1*, 100005.
- 634 [43] H. Li, F. Wei, Y. Li, M. Yu, Y. Zhang, L. Liu, Z. Liu, J Mater Chem C 2021, 9, 14757.
- [44] C. Rizzuto, D. C. Teeters, R. C. Barberi, M. Castriota, *Gels* 2022, *8*, DOI 10.3390/gels8060363.
- [45] E. R. Nimma, S. Kalyanasundaram, Y. Saito, A. M. Stephan, *Polimeros* 2005, *15*, 46, DOI 10.1590/S0104-14282005000100011.
- 639 [46] C. Huang, G. Xia, S. Jin, M. Hu, S. Wu, J. Xing, *Optik* 2018, 157, 693.
- [47] K. Naveed, S. Ehsan, K. D. McDonald-Maier, N. Ur Rehman, Sensors 2019, 19, 206.
- 641 [48] 'Scipy'. Accessed: Apr. 24, 2023. [Online]. Available:
- 642 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
- [49] Ataspinar, "A guide-for using the wavelet transform in machine learning," **2018**.
- 644 [50] 'Pywavelets'. Accessed: Apr. 24, 2023. [Online]. Available:
 645 https://pywavelets.readthedocs.io/en/latest/
- 646 [51] 'wavelet coif5'. Accessed: Apr. 24, 2023. [Online]. Available:
 647 https://wavelets.pybytes.com/wavelet/coif5/
- 648 [52] D. Avram, C. Tiseanu, *Methods Appl. Fluoresc.* 2018, 6, 025004.

- 649 [53] M. Pokhrel, G. A. Kumar, D. K. Sardar, *J Mater Chem A* 2013, *1*, 11595.
- [54] T. Soukka, K. Kuningas, T. Rantanen, V. Haaslahti, T. Lövgren, J. Fluoresc. 2005, 15, 513.
- [55] S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W.
 Palmer, J. Appl. Phys. 1998, 84, 4649.
- [56] S. Goutam, J.-M. Timmermans, N. Omar, P. V. den Bossche, J. Van Mierlo, *Energies* 2015, 8, 8175.
- [57] P. Taheri, M. Yazdanpour, M. Bahrami, J. Power Sources 2013, 243, 280.
- 656 [58] S. A. Hallaj, H. Maleki, J. S. Hong, J. R. Selman, J. Power Sources 1999, 83, 1.
- [59] Z. Xiao, C. Liu, T. Zhao, Y. Kuang, B. Yin, R. Yuan, L. Song, J. Electrochem. Soc. 2023,
 170, 057517.
- 659

661	Supplementary Information
662	
663	Thermo-luminescent optical fibre sensor for Li-ion cell
664	internal temperature monitoring
665 666	Elise Villemin ¹ , Sylvie Genies ¹ , Olivier Poncelet ² , Pierre Balfet ¹ , Cédric Septet ¹ , Romain Franchi ¹ , Martin Guillon ¹ , Jérôme Houny ¹ , Sonia Sousa-Nobre ² , Olivier Raccurt ^{1*}
667	¹ Univ. Grenoble Alpes, CEA, LITEN, DEHT, F-38000 Grenoble, France
668 669	² Univ. Grenoble Alpes, CEA, LITEN, DTNM, F-38000 Grenoble, France
670	* Corresponding author: olivier.raccurt@cea.fr
671	
672	

- 673
- **Figure S10**: Scanning Electronic Microscope image of PTIR545UF Gd₂O₂S:Er³⁺,Yb³⁺ Powder.
- 675 Left: scaling x1300, scaling bare: 40 μm. Right: scaling x3000, scaling bare: 10 μm.

Figure S11: Scanning Electronic Microscope image of PTIR550F NaYF₄: Er^{3+} , Yb³⁺ powder. Left: scaling x1300, scaling bare: 40 µm. Right: scaling x3000, scaling bare: 10 µm.

PTIR545-UF PDF 04-007-6113 (Gd₂SO₂) Intensity (cps) 2θ

Figure S12: X-ray diffraction analysis (XRD) of PTIR545-UF powder compared to the reference

 $\label{eq:pdf_eq} 683 \qquad \text{PDF 04-007-6113} \text{ (ICCD) for } Gd_2SO_2 \text{ material}.$

Figure S13: X-ray diffraction analysis (XRD) of PTIR550-F powder compared to the reference PDF 00-016-0334 (ICCD) for NaYF₄ material and the reference PDF 04-024-3347 (ICCD) for NaYF₄: Er^{3+} , Yb³⁺ material.

Figure S14: Optical microscope image of the sensor. (Left): Optical fibre with the thermoluminescent particles on the tip (x20), (right) close-up of the end of the tip (x200).

 Table S1: Cell characteristics.

Electrochemical characteristics					
Voltage range (V)	3.0 - 4.2				
Average voltage (V)	3.7 at room temperature and 0.2 C				
Optimal capacity (mAh)	1100 mAh at room temperature and 0.2 C				
Positive real capacity (mAh/cm ²)	1100 mAh at room temperature and 0.2 C				
Positive real capacity (mAh/cm ²)	2.8				
Energy density (Wh/kg)	214				
Energy density (Wh/L)	425				
C	Cathode				
Material	NMC622				
Active material loading (%)	96.4				
press density (g/cc)	3.30				
Coating Weight (mg/cm ²)	16.7				
Anode					
Material	Graphite				
Active material loading (%)	94.8				
press density (g/cc)	1.8				
Coating Weight (mg/cm ²)	10				
Separator					
Material	PE with Al ₂ O ₃ coating on NMC side				
Thickness	15 μm				

700 Figure S15: Cell instrumentation: Non-activated commercial cell (top, left), Cell opening (top,

right), optical fibre sensor insertion (bottom, left), instrumented cell (bottom).

Figure S16: Schematic view of the experimental setup for powder calibration (I), optical fibre
 sensor calibration (II), calibration and cycling test of the instrumented cell (III).

Figure S17: Luminescence signal denoising. Variation of ln(H/S) as a function of time raw signal
(gray), savgol filtered (orange), wavelet filtered (red).

Figure S18: Cycling protocol during the experiment: cell potential (blue), cell current (orange)
over time.

Figure S19: Error δ FIR (left) and δ T (right) as function of temperature for sensor calculate from

Figure S20: Error δ FIR (left) and δ T (right) as function of temperature for sensor inside the cell form calibration curves.

Figure S21: Evolution of the maximum of the external cell temperature T_{ext} during the charge at
 2C and discharge at 4C over ageing.

Figure S22: Evolution of the State of Health (SOH) the charge at 2C and discharge at 4C overageing.

Table S2: Irreversible capacity (1st Cycle) in % and initial capacity (measured at C/5) in Ah of instrumented and non-instrumented cell

	Irreversible capacity (1st cycle) [%]	Capacity (at C/5) [Ah]
Non instrumented cell	16.4%	1.089
Instrumented cell	16.2%	1.192

- **Figure S23**: Comparison of cell potential curve of instrumented cell and non-instrumented cell
- measured at in discharge at C/5 just after formation protocol (initial capacity).