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Abstract—Laser-induced breakdown spectroscopy is a 
versatile technique that can be used to quickly measure the 
concentration of elements in ambient air. We tackle the issues 
of performance and trustworthiness of the statistical model 
used for predictions. We propose a method for improving the 
performance and trustworthiness of statistical models for 
LIBS. Our method uses deep convolutional multitask 
learning architectures to predict the concentration of the 
analyte and additional information as auxiliary outputs. We 
also introduce a simulation-based data augmentation process 
to synthesize more training samples. The secondary 
predictions from the model are used to characterize, quantify 
and validate its trustworthiness, taking advantage of the 
mutual dependencies of the weights of the neural networks. 
As a consequence, these output can be used to successfully 
detect anomalies, such as changes in the experimental 
conditions, and out-of-distribution samples. Results on 
different types of materials show that the proposed method 
improves the robustness and trueness of the predictions. 

Keywords —LIBS; trustworthy AI; simulation; multitask; 
neural networks. 

I. INTRODUCTION

EEP Learning (DL) has been adopted with success in 
many areas of science, and analytical chemistry is no 

exception. Laser-Induced Breakdown Spectroscopy (LIBS) 
offers plenty of applications for MVA techniques, especially for 
hyperspectral imaging applications [1], [2], but the 
development of DL techniques is quite recent. Basic shallow 
Neural Networks (NNs) were implemented as soon as the ’90s 
for identification of polymers [3]. The introduction of modern 
concepts and architectures of DL is however quite recent [4]. 

In spectroscopic quantitative analysis, we build models 
relating experimental spectra to the concentration of the species 
of interest, using calibration samples. Quantitative models are 
then valid for a given sample matrix and for given experimental 
conditions. However, for direct analytical techniques like LIBS, 
unknown samples can have different matrices, and 
experimental conditions can change. The predicted 

concentration can thus be biased to a certain extent. Yet, models 
are usually designed to deliver a concentration but not to 
estimate to which extent an unknown sample is well represented 
by calibration ones. In other words, we do not know how 
reliable the prediction is. Hence, we need models that are able 
to estimate, if possible quantitatively, the trustworthiness of a 
prediction. Thanks to their ability to perform different tasks in 
parallel, MultiTask (MT) NNs are a type of model that could 
address this issue, by providing, at the same time, the main 
expected prediction and a characterization of its properties. In 
turn, these auxiliary data can be used to validate and quantify 
the model trustworthiness. However, deep NNs can easily 
overfit the training data, since they require a very large number 
of spectra to be properly trained: experimentally, time and cost 
constraints generally do not enable to acquire enough spectra. 
A possibility to overcome this limitation is to generate 
calibration data. This can be done by phenomenological 
modelling of training spectra. 

We introduce a new approach of quantitative analysis by 
LIBS and DL, enabling both to generate enough spectra to train 
a model based on MT Convolutional Neural Networks (CNNs), 
and to evaluate the confidence in the model predictions. 
Namely, we propose: 

1. a simulation-based synthetic data creation, that is the
synthesis of an arbitrary number of new spectra from
experimental data to train complex DL architectures;
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Fig. 1. A robust multitask model is trained on synthetic data to predict a 
principal variable (e.g. the concentration of the analyte) and several secondary 
spectral quantities. 
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2. robust deep MT CNNs, capable of processing entire 
LIBS spectra and increasing the robustness 
(homoscedasticity) of the model; 

3. a measure of the trustworthiness of the predictions of the 
model through the statistical analysis of the outputs of 
the MT architecture. 

The procedure, presented in Fig. 1, aims at providing a way 
to increase the robustness of the calibration models, and to 
benchmark the confidence of the Artificial Intelligence (AI) 
architecture through its own predictions. 

II. RELATED WORKS 
Univariate and multivariate (MVA) calibration techniques 

are explored in the LIBS literature [5]. The first are widely 
adopted for their ability to provide interpretable results quickly 
and with good precision [6]. In this scenario, calibration 
standards are used to build a map between the concentration of 
a given analyte and the information contained in a single 
measurable variable, such as the integral intensity of an 
emission line. The model is then inverted during inference to 
use the measured intensity as predictor of the concentration of 
the analyte. On the other hand, MVA methods were introduced 
for their ability to take advantage of more information 
contained in the input spectra, rather than focusing on a single 
variable. Techniques based on principal components and 
multilinear regression have been widely adopted in LIBS [7], 
[8]. As a MVA technique, DL has also been explored, 
comparing various types of architectures [4]. 

A. Data Augmentation 
Though DL shows potential for various analyses, time of data 

gathering and experimental conditions often prevent building 
large LIBS datasets. Feature engineering and feature selection, 
for instance through a principal components analysis or a priori 
expertise, have been employed to reduce the size of the input 
data in order to be used in smaller or more adapted machine 
learning (ML) models [9]. At the same time, the production of 
purely synthetic data, based on local thermodynamical 
equilibrium, has been explored in LIBS applications [10]. The 
idea of enriching existing data by means of different 
representations of the inputs, such as time resolved spectra, was 
experimented with success [11]. More recently, standard data 
augmentation techniques were used for the classification of 
LIBS mapping experiments [4]. Augmentation through 
synthetic data via the simple addition of random noise to the 
experimental data is also briefly discussed in the literature [12]. 

B. Multitask Learning 
Though explored at length in ML, MT learning [13] has seen 

major developments and a wide range of applications recently. 
Some examples of multi-output algorithms for LIBS analyses 
were recently explored, based on NNs [11] and on Partial Least 
Squares (PLS) with two outputs, i.e. PLS2 [14]. In these cases, 
the response variables are usually the concentrations of multiple 
elements. 

Interestingly, multi-output NN architectures found 
successful applications for the computation of plasma 

parameters from LIBS data [15]. MT learning was also 
introduced for the simultaneous predictions of concentrations 
of analytes and lithology classes: different NNs were used to 
process the data with different loss functions, using a latent 
representation of the input, computed by a common backbone 
architecture [16]. 

C. Trustworthy AI 
Standard techniques in statistics, such as confidence intervals 

for mean values and predictions, are usually preferred [17], 
though they rely on strong assumptions on the type of data 
analyzed, such as the independence of the residuals from the 
independent variables. On the other hand, it has been seen 
heuristically that traditional models do not systematically 
generalise to unknown data. Some Explainable-AI (xAI) 
methods have been introduced to analyze the progression of the 
feature maps in the hidden layers [18], or study the importance 
of the spectral variables leading to the prediction [19]. This 
represents indeed a step towards the comprehension of the 
mechanisms behind NNs. Nevertheless, it does not deal with 
the confidence of the predictions, or the automatic detection of 
changes in the distribution of the samples. 

III. METHODOLOGY 
In what follows, we detail the contributions to the end-to-end 

pipeline of the analysis, from the synthetic data augmentation, 
to the validation of the model predictions through the statistical 
analysis. 

A. Synthetic Data Augmentation 
Training large NNs by optimizing the bias-variance tradeoff 

may lead to phenomena such as poor stability and bad 
generalization in inference on unknown samples. Many training 
samples are usually required to train more complex 
architectures to overcome the issues. Inspired by usual DL 
practices, we thus introduce a data augmentation technique for 
LIBS. 

We train the MT model on entire LIBS spectra, without a 
priori data selection. Given the scarcity of training data, the 
simple addition of random noise to the experimental spectra 
may result in a training distribution no longer representative of 
the use case. Thus, we first proceed to model the distribution of 
the original spectra, and then to synthetically produce an 
arbitrary number of spectra. Noise can then be added to each 
individual channel, provided that its global average effect is 
negligible, in order to make the synthetic distribution more 
realistic. The procedure ensures to enlarge consistently the 
feature space spanned by the synthetic spectra. Specifically, we 
consider the set of 𝑛𝑛 spectra with 𝑝𝑝 wavelength channels 
�𝑥𝑥(𝑖𝑖) ∈ ℝ𝑝𝑝�

𝑖𝑖∈[1,𝑛𝑛]
 and the corresponding average spectrum 𝒙𝒙� =

(�̅�𝑥𝑟𝑟). For each wavelength channel 𝑟𝑟 = 1, 2, … , 𝑝𝑝, we fix the 
expected value of a random variable 𝑦𝑦𝑟𝑟 ∈ ℝ such that 𝔼𝔼[𝑦𝑦𝑟𝑟] =
�̅�𝑥𝑟𝑟 . An arbitrary number 𝑚𝑚 ≫ 𝑛𝑛 of full spectra can be 
constructed by similarly proceeding for all wavelength 
channels. A degree of noise can then be added to each channel, 
using a multiplicative Gaussian factor 𝑧𝑧 ∼ 𝒩𝒩(1,𝛽𝛽), where 𝛽𝛽 is 
a noise parameter of the synthetic spectra. We can use the 
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spectra in the training sets to choose appropriate values of 𝛽𝛽. 
We observed that, for specific wavelength channels of interest, 
in the absence of the parameter 𝛽𝛽, the statistical model 
representing the spectra is over-confident (i.e. it does not 
reproduce the full distribution) at low intensity and under-
confident at higher intensities (i.e. it creates out-of-distribution 
intensities), while the opposite occurs for higher values of the 
noise parameter. This suggests that there is an in-between 
optimum of the parameter, for which the synthetic distribution 
covers correctly the variance of the training distribution at a 
local level. The value of 𝛽𝛽 can be chosen deterministically, for 
instance, by maximizing the coefficient of determination (𝑅𝑅2) 
between the ground truths and the synthetic quantiles at a given 
wavelength of interest. 

B. Multitask Convolutional Neural Networks 
By definition, MT NNs are a broad class of algorithms, 

which provide multiple predictions at the same time, using a 
shared structure of weights, trained simultaneously. This 
property gives the networks great versatility, as it is capable of 
using information on one task to improve its generalization. 
This strategy acts as a regularization and reduces the overfitting 
of the training data, as the model supposedly learns new 
representations, which should generalize well on all tasks. 

In this analysis, we use a hard parameter sharing 
implementation of MT learning, with a common set of bottom 
layers (see the general schematics in Fig. 2). The innermost 
backbone processes the input spectra and produces a new latent 
vector representation. The task-specific heads separately use 
the latent representation as inputs to compute scalar regression 
outputs (principal and secondary). We use 1D convolutions in 
the spectral dimension of the data cube as main operation. In 
what follows, we choose to use the concentration of the analyte 
as the principal prediction of the network, and the integral 
intensities of the associated emission lines or bands as 
secondary outputs of the network. In turn, this helps to stabilize 
the model and increase its robustness (homoscedastic behavior) 
during inference. It also provides a set of secondary results, 
which can be used to validate and quantify the performance of 
the model and to detect anomalies or out-of-distribution 
samples. 

C. Trustworthiness via Validation of the Predictions 
In general, the validation of the predictions on new data and 

the detection of anomalies remain complicated issues in 
statistics. Given the mutual dependence of the multiple outputs 
of the MT architecture, we rely on the set of secondary outputs, 
experimentally measurable on unknown samples. In fact, the 
integral intensities of emission lines or bands can be extracted 
from experimental spectra at any given time, even though the 
concentration of the analyte remains unknown. 

When dealing with new data, we compute the predictions of 
the model on a single spectrum basis, independently. We then 
average the results per sample, to smooth the influence of 
defects on the surface. The Mean Absolute Percentage Error 
(MAPE) gives a measure of the deviation of the data and the 
performance of the model. For the 𝑖𝑖-th secondary output of the 
network and a sample 𝑠𝑠, let 𝒀𝒀𝑖𝑖

(𝑠𝑠) = ��𝑰𝑰𝑖𝑖
(𝑠𝑠) − 𝑰𝑰�𝑖𝑖

(𝑠𝑠)� 𝑰𝑰�𝑖𝑖
(𝑠𝑠)� �. We 

compute the MAPE 𝑀𝑀𝑖𝑖
(𝑠𝑠) of the predicted intensities 𝑰𝑰𝑖𝑖

(𝑠𝑠) and the 
corresponding ground truths 𝑰𝑰�𝑖𝑖

(𝑠𝑠), with 𝑛𝑛 samples, that is 
𝑀𝑀𝑖𝑖

(𝑠𝑠) ≔ 𝔼𝔼�𝒀𝒀𝑖𝑖
(𝑠𝑠)�. This offers a first estimate of the error made 

by the model, as it describes the trueness of the model. In order 
to estimate a soft threshold for the quantity, we use a validation 
set of samples. We compute a confidence interval around the 

MAPE �𝑀𝑀𝑖𝑖
(𝑠𝑠) − �̂�𝑡1−𝛼𝛼𝑛𝑛 𝜎𝜎𝑖𝑖

(𝑠𝑠)

√𝑛𝑛
,𝑀𝑀𝑖𝑖

(𝑠𝑠) + �̂�𝑡1−𝛼𝛼𝑛𝑛 𝜎𝜎𝑖𝑖
(𝑠𝑠)

√𝑛𝑛
�, where �𝜎𝜎𝑖𝑖

(𝑠𝑠)�
2

=

Var�𝒀𝒀𝑖𝑖
(𝑠𝑠)�, and �̂�𝑡1−𝛼𝛼𝜈𝜈  is the value of the Student’s t variable for 

ν spectra, at a confidence level 1 − 𝛼𝛼. 
We then use a Student test on the predicted intensity, given 

its nature of repeated measurement on the sample. Supposing 
that the ground truth value of a sample 𝑠𝑠 for the 𝑖𝑖-th average 
intensity has a sample variance 𝜎𝜎𝑖𝑖2, we can compute the random 
variable 𝑡𝑡𝑖𝑖

(𝑠𝑠) = �𝔼𝔼�𝑰𝑰𝑖𝑖
(𝑠𝑠)� − 𝔼𝔼�𝑰𝑰�𝑖𝑖

(𝑠𝑠)�� �𝜎𝜎𝑖𝑖2 + Σ𝑖𝑖2� , where Σ𝑖𝑖2 is the 
sample variance of the predictions. By including the 

Fig. 2. The MT model is a hard parameter sharing structure, that is a common 
backbone network and several heads, connected to the shared feature map. 

Fig. 3. Outcomes of the MAPE and t variable summarized at the top of the 
figure. Interpretations are presented schematically at the bottom. 
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dependence on the variance, this test gives a statistical measure 
of the ability of the model to generalize to unknown data. In 
order to discriminate possible anomalies, we can use a standard 
approach by choosing a threshold value �̂�𝑡1−𝛼𝛼2

𝜈𝜈  of a two-tailed 𝑡𝑡-

test at confidence level 1 − 𝛼𝛼, with 𝜈𝜈 degrees of freedom, such 

that the probability 𝑃𝑃 �𝑡𝑡𝑖𝑖
(𝑠𝑠) > �̂�𝑡1−𝛼𝛼2

𝜈𝜈 � = 𝛼𝛼. This way, we recover 

a probabilistic interpretation of the result in terms of 
confidence: models can be compared based on their 
performance at different values of 𝛼𝛼 on the secondary outputs. 

The values of MAPE and of the Student’s t variable can be 
used together to evaluate the trustworthiness of the model and 
characterize its predictions. We graphically summarize these 
interpretations in the plane in Fig.3. Though the confidence 
level of the principal output is not easily computed from the 
confidence of the secondary outputs, this measure gives an 
implicit feedback on the main output. Given the dependencies 
of the MT model parameters, the information determines 
whether the prediction of the concentration of the analyte is 
trustworthy. 

IV. EXPERIMENTAL SETUP 
We compare the predictive ability of different algorithms on 

two types of datasets. We consider 19 cement samples, whose 
elemental compositions are reported in Fig. 4, and 4 alloy 
matrices with 4 to 6 samples each, summarized in Fig. 5. The 
first were built in the framework of an interlaboratory 
comparison in 2021 [20]. All measurements were carried out in 
air, at room temperature. 

Cement samples were probed using a Nd:YAG laser 
(Quantel Brio) at a wavelength of 1064 nm, 15 mJ pulse energy 
and 4 ns pulse length. For each sample, 25 spectra were 
collected, accumulating 40 laser shots (5 pre-ablation shots). 

We used a Mechelle spectrometer with an Andor iStar ICCD 
and a fixed aperture of 50 μm × 50 μm, 10 μs gate delay, and 
100 μs gate width in the range 200nm to 975nm (resolving 
power λ/Δλ ≃ 4 × 103 measured at 589.60 nm on a Na peak). 
The irradiance on the sample surface was 190 GW cm-2. 

Data on alloys were collected using a Nd:YAG laser 
(Quantel Ultra) operating at a wavelength of 266 nm, 6 mJ 
pulse energy, and 4 ns pulse length. The plasma emission was 
analyzed with a LTB Aryelle 400 spectrometer with a fixed 
aperture of 50 μm × 50 μm, equipped with an Andor DH740 
ICCD, in the range 310 nm to 613 nm (resolving power: λ/Δλ 
≃ 1.8×104). We used a gate delay of 1 μs and a gate width of 
0.5 μs. For each sample, 25 spectra were collected, 
accumulating 20 laser shots for per crater. The irradiance on the 
surface of the samples was 76 GW cm-2. 

V. TRAINING METHODOLOGY 
Before entering the discussion of the results, we detail some 

training techniques used to fit the MT model to the LIBS data. 

A. Data Curation 
For the analysis of the alloy matrices, we use the intensities 

of the most intense persistent lines of Fe in the spectral range 
considered, integrated over 10 wavelength channels, as 
secondary outputs of the MT model. Specifically, we choose 
the 8 strongest persistent lines, reported in [21]. Given the small 
number of samples available, 30% of the spectra for each 
sample is retained as independent test set, while the rest is used 
as training set for the baseline models, and as input of the data 
augmentation for the MT architecture. This ensures, on average, 
an in-sample inference for the algorithms (the selection of test 
samples comes from the same samples in the training set). 
Moreover, it provides the means to verify whether the 
augmentation technique correctly enhances the training 
distribution. Notice that this does not automatically translate 
into a simpler task for the model: spectra in the test set may still 
differ from the training distribution, due to random and local 
fluctuations, thus they may represent out-of-distribution data on 
a spectrum basis. 

For the cement samples, we consider two molecular bands 
centred at 593.46 nm and 617.74 nm, and integrated over 14 
channels, as secondary outputs. As a general guideline, 

Fig. 4. Average spectra of the cement samples. Samples were fabricated using 
CEM I, with the addition of NaCl, unless otherwise stated. 

Fig. 5. Different alloy matrices used in the analysis. 
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choosing many secondary outputs helps the convergence of the 
network, and preserves a good generalization performance of 
the model. Samples are separated into training and test sets on 
a sample basis: 12 matrices are considered as calibration set, 
while 7 samples are used for inference. In the test set, we insert 
specifically samples which present a different matrix (type of 
cement) or manufacturing procedure (different salts added in 
the mixture) in order to check the out-of-distribution 
generalization ability of the algorithms, and their ability to 
recognize possible anomalies. 

As preprocessing, outliers are removed from the training set, 
either experimental or synthetic: at a given wavelength, we 
define outliers as spectra presenting an intensity outside the 
interval between the 5th and 95th percentile of the values. The 
goal is to build performing calibration models without using 
extreme configurations. In order to test the generalization 
ability of the models, we retain the outliers in the test set. For 
the alloy samples, we focus on the Fe line at 373.49 nm (the 
most intense persistent line), while, for the cement matrices, we 
consider the molecular band of CaCl at 593.46 nm. 

Spectra are normalized using the integral intensity at a given 
wavelength. Since the procedure is performed independently on 
each spectrum, we can also safely normalize the spectra in the 
test sets. For the alloy matrices, we consider the integrated 
intensity of the most intense emission line of the matrix itself 
over an interval of 10 wavelength channels. The cement 
samples have been normalized to the intensity of the CaO 
molecular band at 615.03 nm, integrated over 20 wavelength 
channels. 

B. Data Analysis and Methodology 
We compare our results with several algorithms known in the 

LIBS literature, namely the classical Linear Regression (LR), 
MVA Linear Regression (MLR), simple Fully Connected NNs 
(FCNNs), and PLS1. For LR and MLR, no additional validation 
sets have been considered, as no free parameters are present in 
the algorithms. For PLS1, we perform a 5-fold cross-validation 
procedure. In the case of NNs, we use a single holdout 
validation set made of 20% of the spectra contained in the 
training set, selected using a stratified strategy to preserve the 
fraction of spectra for each sample. Hyperparameters are 
optimized using a tree-structured Parzen estimator [22]. In 
order to avoid any data leakage, we avoid using the 
experimental spectra when optimizing the model. We use 
common regression metrics such as the Root Mean Squared 
Error (RMSE), the Mean Absolute Error (MAE), and the 
MAPE to score the results of the algorithms. Results always 
refer to the independent experimental test set. 

In the case of LR, we consider the integral intensity of 
selected wavelength channels as inputs of the model. 
Specifically, we consider the integral intensity of the Fe 
emission line at 373.49 nm, integrated over 10 wavelength 
channels, for the alloy matrices. For the cement samples, we use 
the CaCl molecular band at 593.46 nm, integrated over 14 
channels. For the MLR and the FCNN, we select several atomic 
Fe emission lines as inputs, in the case of the alloy matrices. We 
use the CaCl molecular bands at 593.46 nm and 617.74 nm for 

the cement samples. On the other hand, for PLS1 and the MT 
network, we use the entire spectra as input. Finally, we choose 
a quadratic regression model in the case of LR (without 
interaction terms), while we consider a simple regression model 
for MLR. 

VI. RESULTS AND DISCUSSION 
In the analysis, we consider different types of baselines, in 

order to provide a complete comparison of the proposed 
technique with the SOTA. Specifically, we show the results of 
PLS1, which does not require the extraction of information 
from the experimental spectra, and an ensemble model, with 
initial feature (emission lines) selection, represented by the best 
result of LR, MLR, and FCNNs. Our proposed MT model does 
not require expertise in selecting input data, since the important 
variables are learnt during training. It requires a degree of 
knowledge of the emission lines of the analyte to choose the 
secondary outputs. A simple choice is to consider the full set of 
persistent lines of the analyte in the available spectral rang, 
since spectral interference on single lines (or bands) is taken 
care of by the CNN architecture. 

A. Performance of the Model 
We consider different aspects relating to the nature of the 

analysis, such as the dependence on the size of the synthetic 
training set and the choice of the random noise: we train 
different models, generating a different number of synthetic 
spectra, with different 𝛽𝛽 parameters, for each sample. The 
results with a dependence on the synthetic training set are 

Fig. 6. Prediction uncertainties of the MT model on alloy matrices as a 
function of training set size. 

Fig. 7. Prediction uncertainties of the MT model on cement samples as a 
function of training set size. 
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graphically summarized in Fig. 6 for the alloy matrices, and in 
Fig. 7 for the cement samples. A similar behavior has been 
observed for the dependence of the noise parameter, with the 
best results appearing for 𝛽𝛽 = 0.10 in the case of alloy matrices 
and 𝛽𝛽 = 0.03 for the cement samples, as expected from the 
discussion in Section 3.1. 

In terms of robustness, the MT architecture is capable of 
delivering a homoscedastic performance for all concentrations 
of the analyte (apart from anomalies, which are discussed in the 
following). Moreover, the prediction uncertainties are usually 
comparable with or better than the ensemble model, which 
already presents good results. The MT architecture is capable 
of selecting the information contained in the data to base its own 
predictions. The use of synthetic samples enables to capture the 
fluctuations at low concentrations, where the PLS1 model 
struggles to give accurate results. As a general remark, the 
optimal number of synthetic spectra varies for each matrix, 
depending on the degree of spectral interference, noise, and 
sparsity (e.g. 5000 spectra per sample in the case of the Zr 
matrix, or 1000 spectra per sample for the Cu matrix). 

Heuristically, we noticed that the creation of many synthetic 
spectra impacts on training time for less than 1% of the total 
training time, while the latter grows linearly. Such behavior 
makes it usually possible to experiment with a few options, in 
order to determine, using the validation set or the experimental 
training samples, the best trade-off between the performance of 
the model and the computational power available. 

B. Validation of the Predictions 
For the analysis of the trustworthiness of the model, we focus 

specifically on the predictions of the MT model on the 
independent test set of the cement samples. In this analysis, 
ground truth values of the concentration of the analyte are 
available for a direct comparison with the predictions of the 
model. However, in a field application, reference values would 
not be available. The analysis of the secondary outputs of the 
MT architecture is a tool to assess the confidence of the 
predictions and detection of the anomalous samples or 
modifications in the experimental conditions. 

We choose two CaCl molecular bands for the analysis of the 
trustworthiness of the predictions. This represents an easy 
choice, as the two bands are the two most intense in the spectral 
range considered. Following previous sections, we compute the 
confidence intervals on the experimental training data (unseen 
by the model, which is trained on synthetic spectra). We 
consider these values as reference in the analysis of the 
trustworthiness of the model, since they represent known 
standards, whose labels are available. A posteriori, we notice 
that the predictions of the MT architecture are all compatible 
with the respective ground truths, even though some samples 
present larger uncertainties, which may indicate faulty values. 
However, in the absence of reference values, predictions alone 
are not sufficient to measure the trustworthiness of the model. 

The predictions of the secondary values show that the band 
at 593.46 nm displays a pattern which identifies some 
anomalies in the prediction of the integral intensities (see Table 
1). As previously shown (see Fig. 3 for a reference), this pattern 

of MAPE and t-value is typical of anomalous samples, for 
which the model does not provide precise predictions. In 
hindsight, the analysis of the secondary outputs identifies the 
three out-of-distribution samples present in the dataset 
(different matrix and salt). 

   
TABLE I 

PREDICTIONS ON CEMENT SAMPLES 
GROUND 

TRUTH 
PREDICTION MAPE T-VALUE 

[Cl] wt % [Cl] wt % 593.46 
nm 

617.74 
nm 

593.46 
nm 

617.74 
nm 

0.23 0.25 ± 0.08 1.4 0.7 0.69 0.34 
0.41 (CEM II) 0.41 ± 0.11 4.1 0.8 0.98 0.32 

0.50 0.54 ± 0.09 1.7 0.7 0.48 0.26 
0.59 (KCl) 0.33 ± 0.27 4.2 0.8 1.29 0.31 

0.87 (CEM III) 1.40 ± 0.56 4.7 1.4 0.77 0.41 
1.02 0.97 ± 0.09 1.3 0.4 0.38 0.16 
1.51 1.54 ± 0.13 1.5 0.8 0.43 0.30 

 
Trustworthiness of the predictions on cement samples. 
 
To measure the trustworthiness of the predictions, we then 

use a standard Student’s two-tailed test (confidence 1 − α = 0.95 
and 25 degrees of freedom) to assess the predictions of the 
molecular emission bands. We notice that, although the samples 
register as anomalies, the variance of the predictions is such to 
include the true values of the secondary outputs in the error 
intervals with good confidence (case 4 in Fig. 3). Given the 
interdependencies of the MT model previously discussed, the 
confidence on the predictions of the secondary output 
influences directly the confidence on the main prediction, the 
concentration of the analyte. The precise quantification of the 
confidence level is, nonetheless, not trivial because of the large 
number of parameters involved in the computation. In the case 
at hand, we can interpret the result by noting that the MT model 
is still capable of providing trustworthy predictions on the 
concentration of the analyte. However, its precision is highly 
affected in the presence of anomalous samples: the predictions 
of the main output contain the true value, within the uncertainty, 
with high probability. In other words, in this scenario, the 
predicted values of the concentration of the analyte can be 
considered compatible with the reference values, provided by 
the supplier. Further investigation on three anomalous samples 
remains necessary. 

The procedure provides a way to assess the robustness of the 
MT architecture on the entire range of variability of the Fe 
concentration. Notice that the analysis of the secondary outputs 
is quantitative: for instance, a p-value of the prediction can be 
computed. Moreover, different choices of the confidence 1 − α 
allow comparing the model as functions of the confidence level. 
Finally, this analysis is always possible, with any sample, as the 
information contained in the secondary outputs of the model is 
directly comparable with the experimental data. This is 
different from the concentration of the analyte itself, which is 
known only for standard samples. 

C. Calibration Transfer and Anomaly Detection 
We test the trustworthiness of the predictions in the presence 

of a change in the distribution of the samples. Specifically, we 
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consider the MT model trained on the Co matrix, and we 
perform the inference on the Ti and Zn matrices. In Fig. 8, we 
show the true and predicted concentrations of the analyte. The 
a posteriori analysis shows that the model does not generalize 
among different matrices, hence it is not usable for calibration 
transfer. However, a real-time application would not reveal the 
same behavior, as ground truth values would not be available. 
The Ti matrix presents predictions characterized by large values 
of the error fractions and by incompatible values of the t 
variable, whose threshold �̂�𝑡1−𝛼𝛼2

𝜈𝜈 = 2.06 for 𝜈𝜈 = 25 degrees of 

freedom and a confidence 1 − α = 0.95. This shows that the 
predictions of the concentration levels 0.11 wt% and 0.22 wt%, 
though compatible with their respective ground truths, should 
not be deemed trustworthy. The MT model is thus capable of 
detecting anomalies or modifications in the experimental 
conditions, which is key to assessing correctly the ability of the 
model to provide trustworthy predictions. 

VII. CONCLUSIONS 
In this work, we use DL techniques to address the 

quantitative analysis of LIBS data, the prediction of the 
concentration of an analyte, using a MVA calibration 
procedure. We focus on complementary aspects: the creation of 
a synthetic set of spectra as a data augmentation technique to 
increase the number of samples available for training, the 
construction of a robust MT learning model based on deep 
CNNs, and the analysis of the confidence of the predictions. We 
use the entire experimental emission spectra as inputs, without 
the need for a preselection of variables or dimensionality 
reduction. We leverage the robustness and performance of 
CNNs with the possibility to provide a tool to assess the 
trustworthiness of the predictions of the model, even for 
unknown data. 

To this end, we introduce a MT learning architecture. The 
model is capable of predicting the concentration of the analyte 
and the integral intensities of relevant emission lines (or 
molecular bands), at the same time. Given the size and 
complexity of the DL model, we introduce a data simulation 
technique, to create an arbitrary number of input spectra, 
statistically representative of the experimental data. The MT 
architectures display robustness across the range of variation of 
the analytes. The presence of the secondary outputs, allows us 
to introduce a statistical analysis, based on the mutual 
dependencies of the parameters of the AI architecture, which 
enables the assessment of the trustworthiness of the model. 

Comparisons of the predicted values with the intensities found 
in the experimental spectra can be used to study the predictions 
of the concentration of the analyte, at a given level of 
confidence of the model. In turn, this grants the ability to assess 
the extrapolation abilities of the DL model. 
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