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 Compressibility terms

 stabilisation at high g

 sin Δ𝜑 min at high C

 less efficient transport
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1. Motivation: zonal flows improve confinement 
Tokamak confinement: largely governed by turbulence

Turbulence self-organizes at mesoscale into zonal flows

Flows can structure into staircases: long-lived micro-barriers

Zonal flows symmetric in poloidal 

and toroidal directions

Objectives:  Nonlinear flux-driven model: turbulence and zonal flows interplay

 Physics of the flows: generation ? Impact on turbulent transport ?
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 Reduced 1-dimensional model: 

 Self-consistent flux-driven non-linear model for edge turbulence

 Flexible tool, coupling of interchange and drift waves instabilities

 Structuration of flows at high g & evidence of avalanche transport

 Increasing C reduces cross-phase & creates flows  improved confinement  

 Flows essential to mitigate turbulent transport 

Conclusion
Turbulence-ZF interaction

Perspectives

 Neoclassical effects: relaxation towards force balance equilibrium

 Study formation of edge transport barrier (adding scrape-off layer physics)

 Experimental measurement: Doppler backscattering reflectometry & 

Langmuir probes

Zonal flows (ZF) regulate turbulent transport

Sheared poloidal flow decorrelates turbulent 

eddies

Reservoir of energy for the turbulence
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Separation: equilibrium (avg on y and z) and fluctuations => 4 equations

Single 𝑘∥ and 𝑘𝜃 mode retained for the fluctuations => 1D radial

Turbulent flux of particles: 

Γ𝐸𝑆 = 𝑛 𝑣𝐸𝑥 = −2 𝑘𝑦 𝑁𝑘 𝜙𝑘 sin Δ𝜑

Equilibrium density equation

𝜕𝑡𝑁𝑒𝑞 = −𝜕𝑥Γ𝐸𝑆 + 𝐷 𝜕𝑥
2𝑁𝑒𝑞 + 𝑆𝑛

Self consistent evolution of density profile: 

 Particle source & turbulent transport

 Self-organization of flows  corrugation of profile

Cross-phase density – potential fluctuations

 Parallel conductivity : 𝜎 = 𝜔𝑐𝑒/𝜈𝑒𝑖
 B-field inhomogeneity: 𝑔 = 2𝜌𝑠/𝑅

2. Tokam1d: reduced nonlinear flux-driven model

𝜕𝑡𝑁 + 𝜙,𝑁 − 𝑔 𝜕𝑦 𝜙 − 𝑁 = 𝜎𝛻∥
2 𝑁 − 𝜙 + 𝐷 𝛻⊥

2𝑁 + 𝑆𝑛

𝜕𝑡Ω + 1 + 𝜏 𝑔𝜕𝑦𝑁 + 𝛻⊥,𝑖 𝜙, 𝛻⊥,𝑖 𝜙 + 𝜏𝑁 = 𝜎𝛻∥
2 𝑁 − 𝜙 + 𝜈𝛻⊥

2Ω

Assumptions: 

 Flux driven: source of particles 𝑆𝑛
 Constant ion and electron temperatures

Electron density continuity equation

Charge balance equation (generalized vorticity Ω = 𝛻⊥
2(𝜙 + 𝜏𝑁))

 Temperature ratio : 𝜏 = 𝑇𝑖/𝑇𝑒

 Mean curvature of the magnetic field

 SLAB geometry

[ Beyer 2004] [ Fedorczak 2013]

[Diamond 2005] [Dif-Pradalier 2010][Lin 1998]

3. Two linear instabilities
Two different instability drives:

g

𝑪

Phase shift sin Δ𝜑

UNSTABLE

STABLE

g

𝑪

Growth rate

7. Zonal flows mitigate turbulent transport

 magnetic curvature 𝒈 = 𝟐𝝆𝒔/𝑹

 parallel conductivity C = 𝝈𝒌∥
𝟐

4. Flows structure into staircases at high g

𝜕𝑡𝑉𝑒𝑞 = −𝜕𝑥Π𝑅𝑆 + 𝜈𝜕𝑥
2𝑉𝑒𝑞 − 𝜇𝑉𝑒𝑞

Turbulent drive: Reynolds stresses

Electric:         Π𝐸 = ෦𝑣𝐸𝑟 ෦𝑣𝐸𝜃 = −2kyℑ(𝜙𝑘
∗𝜕𝑥𝜙𝑘)

Diamagnetic: Π∗ = ෥𝑣∗ ෦𝑣𝐸𝜃 = −2𝑘𝑦ℑ(𝜏𝑁𝑘
∗𝜕𝑥𝜙𝑘)

𝑉𝑒𝑞 ≈ −〈𝐸𝑟〉 : equilibrium poloidal flow (averaged on y-axis) 

 Energy gets stored in flows at high C

 Large mean shear values |𝜕𝑥𝑉𝑒𝑞|

 Modulation of ZF source: Π𝑡𝑜𝑡 = Π𝐸 + Π∗

5. Electric and diamagnetic Reynolds stresses

anticorrelated in interchange dominated plasmas

Viscous & friction damping

𝑉𝑒𝑞 ≈ −〈𝐸𝑟〉 𝑉𝑒𝑞 ≈ −〈𝐸𝑟〉

Flows structured into staircases in 

interchange dominated regimes

 Avalanche-like transport 

propagating both up and 

downwards

Scan of the adiabatic parameter C for 2 values of magnetic curvature g
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Turbulent flux Γ𝐸𝑆 = 〈𝑛 𝑣𝐸𝑥〉
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6. Turbulent energy gets stored in flows at high C 

anticorrelated

correlated
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 Correlation between RS at high C

 Asymptotic limits consistent with quasilinear 

estimation

 Diamagnetic RS Π∗ dominates except at very 

high g and low C (interchange dominated cases)  

 𝐶 =
𝜔𝑐𝑒

𝜈𝑒𝑖
∝

1

𝑁𝑒𝑞
 Strong reduction of ZFs energy at large density

Energy channels calculated from energy conservation theorem

 Flows energy: 𝐸𝑉𝑒𝑞
 Turbulence energy: 𝐸𝑡𝑢𝑟𝑏

Adiabatic parameter C
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Confinement time of particles 𝜏𝑝 compared to mixing length estimate 𝜏𝑀𝐿

 𝜏𝑝 computed from profile & source

 𝜏𝑀𝐿 =
𝐿𝑥
2𝑘⊥

2

𝛾𝑙𝑖𝑛
computed from linear growth rate at saturation with no flows
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 Confinement time increases with C  After normalization: effect of flows on 

confinement is retrieved

[ Sarazin 1998]

Dimensionless system of equations: 𝑁 = ln𝑁 ;  𝜙 = 𝑒𝜙/𝑇𝑒

[ Sarazin 2021]

Consistent with [Hajjar 2018]

𝜏 𝑝 𝜏 𝑀
𝐿

Quasilinear estimation: 

Π∗ = ℜ
𝜏𝑁𝑘
𝜙𝑘

Π𝐸 + ℑ
𝜏𝑁𝑘
𝜙𝑘

ℜ(𝑘𝜙𝑘𝜕𝑥𝜙𝑘
∗)

[Ivanov 2020]

[ Hasegawa-Wakatani 1983]
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