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Abstract

In this paper, the robustness of subspace-based identification methods for modal analysis is as-
sessed for damaging systems including local Coulomb-friction mechanisms (or equivalently elasto-
plasticity). The underlying objective is to capture damage-induced modal feature changes of
structures, mainly frequency drop-off and damping increase, knowing that the presence of compo-
nents with participating friction forces also affects modal signature. The performance of several
modal detection procedures is assessed using the data acquired during the JVP (french for ‘Jonc-
tion Voile-Plancher’) test campaign during which a reinforced-concrete specimen, anchored to a
shaking table by the means of swivels, is submitted to several kind of ground motion inputs of var-
ied level. A comparison between Input/Output versus Output-Only identification is made using
both seismic and broad-band random inputs and the potentialities of the modal selection proce-
dures are highlighted for different cases where the two kind of non-linearities (damage occurrence
and friction at swivels) are activated in different proportions. Regarding the presence of friction
forces when conducting modal analysis, experimental results are backed up by a numerical study
that enables a theoretical quantification of the apparent frequency and damping ratio values that
should be expected after modal analysis for varied input-to-nonlinear forces ratios.

Keywords:
Operational/Experimental Modal Analysis, Stabilization diagram, Subspace-based system
identification, Coulomb-friction forces, Elasto-plastic behavior, Shaking table testing

1. Introduction

Subspace-based modal identification procedures have become a standard for various applica-
tions involving structural health monitoring, control-law design or modal analysis [1, 2, 3, 4]. The
underlying assumption on which state-space identification and modal description more generally
rely is the linearity of the system under study. Classical Structural Health Monitoring (SHM)
applications aim at comparing a reference configuration to current configuration [5, 6] with the
objective of detecting, localizing or quantifying damage or fault. Structural damage affects the
dynamic properties of the monitored structure, inducing changes in the modal parameters (natu-
ral frequencies, damping ratios, mode shapes), or in the equivalent eigenstructure representation
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of the linear system (eigenvalues and observed eigenvectors). Health diagnosis can thus be done
by comparing modal signatures, after modal feature extraction, for local or global damage detec-
tion [7, 8, 9, 10, 11, 12, 13], ageing characterization possibly coupled with meteorological effects
(temperature, humidity, wind, etc.) [14, 15, 16, 11, 17]. Such kind of modal surveillance involves
long-term monitoring and slow modal variations compared to the fundamental natural periods of
the healthy structures. Alternatively, faster statistical subspace-based fault detection algorithms
can be used for instability detection and alarm triggering [18, 19, 20]; such algorithms aim at
detecting changes in the modal signature, without computing it online, but on the basis of fast χ2-
testing on subspace-based residuals. Such approaches have particularly been used in aeronautics
for flutter detection or online damage localization applications when coupled with finite element
modeling [21, 22, 23, 24, 25].

Of course, some robustness with respect to non-linearity and possible coupling with different
physics of different characteristic times is expected and, hopefully, empirically observed. Let one
more particularly mention the study [26] where the capabilities of three Operational Modal Anal-
ysis (OMA) procedures based on linear dynamics are compared for identifying the modal behavior
of systems with local nonlinear sources of dissipation (damping with quadratic velocity term and
static friction). This last study concluded on the robustness of several modal identification algo-
rithms with respect to involved non-linearity. In [27] in turn, a cantilevered glass fiber-reinforced
composite beam in a wind tunnel with fluid-structure interaction was successfully identified. This
study highlighted that the effect of aeroelastic forces applying on the beam are translated into
an increase of damping on the low frequency modes and phase dispersion to be observed on the
Mean Phase Deviation (MPD) that gives indication on the modeshape complexity. A discussion
and several guidelines are provided for the choice of the modal indicators to retain for defining an
automated modal procedure adapted to such case, particularly discarding the MPD as criterion
for modal selection. Of course the non-linearity must remain ‘reasonable’ for giving a chance
to traditional modal analysis to succeed. In the case of facing stronger non-linearities (impact,
geometric non-linearities, etc.), Nonlinear Normal Modes (NNMs) can arise and other approaches
dedicated to nonlinear system identification [28, 29, 30, 31], out of the scope of this paper, should
be considered, particularly when damage detection is involved (see e.g. [32] among others). From
the above cited references, no feedback on subspace-based procedures is provided for systems in-
cluding solid-friction mechanisms and only OMA techniques are considered; one of the objectives
of this paper is to provide this feedback considering both Output-Only (OO) and Input-Output
(IO) identification.

The ambition of this paper is to present an attempt of identifying the modal properties of
a damaging dynamic system with local non-linearities of Coulomb-friction type, based solely on
SubSpace-based State-Space IDentification (4SID) techniques and to illustrate the robustness and
limitations of the approach using actual shaking-table tests results and simulated measurements.
More precisely, the automated fuzzy-driven modal selection procedure described in [13] will be
carried out on accelerometers recordings coming from a Reinforced-Concrete (RC) structure em-
bedded on a shaking table and whose experimental setup includes several rods articulated with
swivels where solid friction is expected. Thus, based on this rich experimental dataset obtained
under various ground motion inputs (seismic and broad-band random) of different levels, the per-
formance of OO and IO modal identification procedures will be assessed for a complex system
faced with two types of non-linearities: structural damage occurrence and friction phenomena
at swivels level. Additional details regarding the JVP (french for ‘Jonction Voile-Plancher’ i.e.
wall-slab junction) test sequence, experimental setup and RC specimen characteristics are given in
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[33]; only essential information will be given in the present contribution. The robustness of 4SID
procedures has already been experienced in [13] on similar gradually damaging test-sequence on
RC structure; in this work, a particular emphasis is put on their performance with respect to
Coulomb friction non-linearity. In this perspective, experimental interpretation will be backed up
by a numerical study involving a nonlinear single Degree Of Freedom (sDOF) oscillator with solid
friction that will enable a heuristic quantification of the modal features that can be theoretically
expected after modal analysis for varying input-to-nonlinear forces ratio.

Without anticipating too much, several clues indicate that linear identification has good
chances to characterize dynamic systems embedding Coulomb-friction nonlinear mechanisms. In-
deed, elastoplastic oscillators (with or without hardening) submitted to random inputs have been
the subject of numerous studies since [34]. More recently, in [35], the authors show that, when sub-
mitted to a white noise input, the acceleration Pseudo-Spectral Density (PSD) of an elastoplastic
oscillator can be very well approximated by a linear equivalent system with increased damping
ratio, whereas much more complex frequency content can be empirically observed for systems with
stronger kind of non-linearities owing to the presence of NNMs (see e.g. [30] for a discussion on
pole combination for systems with quadratic or cubic stiffness and their impact on PSDs). In the
present paper, it will be shown that the JVP wall-slab specimen together with its rods and swivel
connectors exhibited a clear dominant bending behavior during the test sequence, what can be
interpreted as the response of an elastoplastic resonator with hardening, where the permanent
residual angular displacement in the swivels plays the role of a plastic strain. Although the range
of non-linearity considered in [35] remains small (low ductility demand parameter) compared to
what was observed during the JVP campaign with swivels exhibiting locked/unlocked behavior, it
could however be expected that a linear equivalent modeling gives a satisfactory description of the
dynamics involved. The scrupulous quantification of the Coulomb effects on the modal signature
will enable a better interpretation of the damaging process, so that damage occurrence in the RC
medium can finally be related to frequency drops and modeshapes changes according to current
practice [6].

The paper is then organized as follows. Section 2 gives a summary description of the JVP
shaking table test campaign and experimental setup. The gradually damaging test sequence
consisting in an alternation of broad-band random excitations and seismic inputs is presented
and a special attention is paid to the swivels where the Coulomb friction non-linearities occur.
Section 3 gives some recalls on the subspace-based automated modal selection strategy, described
in details in [13], and used here as corner-stone for modal identification. Section 4 presents the
yielding modal analysis results for the entire JVP test-campaign. The reference modal signature
of the experimental system in its initial undamaged configuration is first characterized. Both OO
and IO analyses are conducted with the objective of quantifying the coupling between the RC
specimen and the shaking-table. Experimental results of the reference configuration are validated
by comparison to the Finite Element (FE) model developed and updated in [36]. The modal
results obtained after processing the entire JVP database are then presented and potentialities
and limitations of the subspace-based IO and OO identification procedures are highlighted for
inputs of different nature and varying level. Section 5 proposes a discussion on equivalent linear
modeling for systems with nonlinear friction components using a single DOF nonlinear oscillator
for describing the dominant low-frequency modal behavior of the experimental specimen. The
potentialities of both OO and IO procedures can then be discussed objectively and empirically,
based on this numerical study. Section 6 finally gives conclusions.

3



2. Description of the experimental setup – The JVP test campaign

In October 2018, a vast test campaign took place in the CEA/TAMARIS facility where the
s = 1/4 reduced-scale RC specimen of Fig. 1 was embedded on the Azalée shaking table for a
sequence of damageable seismic ground motions in the x and z directions. The 6 × 6 m2 Azalée
shaking-table is moved by eight hydraulic actuators of 1000 kN maximum capacity supplied by
MTS© equipment manufacturer. Four actuators, operating in the (x, y) plane (two actuators per
direction), impose the horizontal movement and rotations around z. Four actuators, oriented in
the z direction, are anchored below the table for imposing the vertical movement and rotations
around x and y. The eight hydraulic jacks are operating in closed loop and the MTS© controller
enables to reproduce complex seismic loading composed of six independent components (three
linear accelerations and three angular accelerations). The complete description of the specimen’s
geometry and design, acquisition devices and test sequence is available in the reference [33] or
internal report [37] (available on demand); only essential information is reported here. On Fig.
1, only the sensors used in the present study are pointed out. For respecting Cauchy-Froude’s
similitude law [38] (accelerations, strains, stresses and resistance parameters are preserved), the
ground motion seismic inputs have been contracted in time of a factor

√
s and additional masses,

in a ratio (1 − s)/s with respect to full scale configuration, must be distributed on the speci-
men. Let one note that the additional masses clamped on the slabs (2 × 940 kg) do not match
the requirements imposed by Cauchy-Froude’s similitude; the masses have been chosen such as
calibrating the value of the first eigenfrequency (bending in the x direction) to reproduce a loading
similar to those applied to such systems in operational conditions. In the end, the total mass of
the loaded RC specimen (excluding rods and swivels) is approximately 3750 kg.

Figure 1: View of the reduced-scale RC wall-slab specimen on the 6 × 6 m Azalée shaking-table with position of
the accelerometers used in this study. Accelerometers on RC the specimen are marked in red, whereas

accelerometers on the table are labeled in blue. One arrow is used per measurement direction. Strain gauges on
each of the four rods are depicted with yellow rectangles. The oblique steel braces linking the bottom of the wall

to the slabs were used for reinforcing the specimen during handling stage and were removed before testing.

The sequencing of the JVP dynamic test campaign is summarized in Tab. 1. The campaign
is composed of damaging seismic tests (green lines of the table) where acceleration time-histories
are defined as reference input for the controller of the Azalée table in the x and z directions.
In terms of Peak Ground Acceleration (PGA), the vertical amplitude is imposed as 60 % of that
of the horizontal component. The target acceleration references associated to the other degrees
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of freedom of the table (y direction and rotations) are specified to zero, which of course does
not mean that no unwanted movement in those directions is possible. After each seismic test,
several low-level random tests (white and grey lines of the table) are conducted to quantify the
eigenfrequency drop of the specimen after potential damage occurrence. A gaussian white noise is
defined as reference input to the MTS© controller, such as having the desired Root Mean Square
(RMS) acceleration level at the center of the Azalée shaking-table. The signal actually measured
on the table is the response of the controlled experimental system to a white noise and verifies
ergodicity assumption [39].

Table 1: Recap of the JVP test campaign – Dynamic seismic tests along (x+ z).

RUN # Description Acc. on the table
5 Random broadband input along x 0.006 g RMS
6 Random broadband input along y 0.004 g RMS
7 Random broadband input along z 0.004 g RMS

8 Seismic signal (x+ z)
PGAx = 0.18 g
PGAz = 0.15 g

9 Random broadband input along x 0.005 g RMS
10 Random broadband input along y 0.005 g RMS
11 Random broadband input along z 0.004 g RMS

12 Seismic signal (x+ z)
PGAx = 0.35 g
PGAz = 0.33 g

13 Random broadband input along x 0.004 g RMS
14 Random broadband input along y 0.006 g RMS
15 Random broadband input along z 0.004 g RMS

16 Seismic signal (x+ z)
PGAx = 0.53 g
PGAz = 0.26 g

17 Random broadband input along x 0.004 g RMS
18 Random broadband input along x 0.008 g RMS
19 Random broadband input along y 0.006 g RMS
20 Random broadband input along y 0.013 g RMS
21 Random broadband input along z 0.005 g RMS
22 Random broadband input along z 0.009 g RMS

23 Seismic signal (x+ z)
PGAx = 0.71 g
PGAz = 0.48 g

24 Random broadband input along x 0.005 g RMS
25 Random broadband input along x 0.008 g RMS
29? Random broadband input along y 0.006 g RMS
28 Random broadband input along y 0.014 g RMS
30 Random broadband input along z 0.004 g RMS
31 Random broadband input along z 0.010 g RMS

32 Seismic signal (x+ z)
PGAx = 0.89 g
PGAz = 0.58 g

33 Random broadband input along x 0.004 g RMS
34 Random broadband input along x 0.008 g RMS
35 Random broadband input along y 0.004 g RMS
36 Random broadband input along y 0.011 g RMS
37 Random broadband input along z 0.005 g RMS
38 Random broadband input along z 0.011 g RMS

39 Seismic signal (x+ z)
PGAx = 1.23 g
PGAz = 0.75 g

40 Random broadband input along x 0.005 g RMS
41 Random broadband input along x 0.008 g RMS
42 Random broadband input along y 0.004 g RMS
43 Random broadband input along y 0.013 g RMS
44 Random broadband input along z 0.005 g RMS
45 Random broadband input along z 0.009 g RMS

46 Seismic signal (x+ z)
PGAx = 1.34 g
PGAz = 0.83 g

47 Random broadband input along x 0.006 g RMS
48 Random broadband input along x 0.008 g RMS
49 Random broadband input along y 0.004 g RMS
50 Random broadband input along y 0.012 g RMS
51 Random broadband input along z 0.004 g RMS
52 Random broadband input along z 0.010 g RMS

53 Seismic signal (x+ z)
PGAx = 1.60 g
PGAz = 1.02 g
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RUN # Description Acc. on the table
54 Random broadband input along x 0.005 g RMS
55 Random broadband input along x 0.008 g RMS
56 Random broadband input along y 0.005 g RMS
57 Random broadband input along y 0.013 g RMS
58 Random broadband input along z 0.005 g RMS
59 Random broadband input along z 0.009 g RMS

60 Seismic signal (x+ z)
PGAx = 2.06 g
PGAz = 1.21 g

61 Random broadband input along x 0.004 g RMS
62 Random broadband input along x 0.010 g RMS
63 Random broadband input along y 0.005 g RMS
64 Random broadband input along y 0.012 g RMS
65 Random broadband input along z 0.005 g RMS
66 Random broadband input along z 0.010 g RMS

Table 1 – Recap of the JVP test campaign – Dynamic seismic tests along (x+ z).
Regarding RMS values, only acceleration level in the principal loading direction is
reported on the table. (?) The inversion concerning RUNs 28 and 29 is deliberate:

it corresponds to an actual inversion in the tests recording.

As can be observed on Fig. 1 the boundary conditions for interfacing the RC specimen on
the Azalée shaking-table are complex and involve two kind of devices:

� Eight Series 249 MTS swivels (see Figs 1 and 2a). Two swivels are used at the ends of
each vertical rods for ensuring connection between table and specimen. On each swivel, the
bi-lateral contact between eye and jaw is maintained using a clamping bolt that applies a
pre-stress force transmitted to the spherical bearings surfaces. Although those surfaces are
made of Teflon (with very good tribological properties), inevitable friction forces oppose to
the relative eye/jaw movement which is translated into a resisting torque at the swivels level.
The nonlinear behavior of the swivels have been characterized at LMPS (former LMT Paris-
Saclay laboratory) where several quasi-static tests have been performed for characterizing
the nonlinear behavior of the swivels. For each joint, the initial tangent stiffness has been
identified to 1× 105 ± 6× 104 N·m·rad−1 whereas the torque threshold has been estimated
as 110 ± 50 N·m (see e.g. [37, sec. 4] or [40, sec. 2.2.4]). Those values, identified in
quasistatics, exhibit large dispersion and have to be taken with care in dynamics: no likely
angular velocity effect has particularly been characterized.

� Two custom-made hinges (see Figs 1 and 2b). This assembly has been designed and realized
in the CEA/TAMARIS laboratory. The bearing is made of a �35 mm cylinder with (welded
and M16 bolt assembled) end-plates as longitudinal stops, with max. radial clearance of
1 mm for allowing the rotation of the base of the wall with respect to the base. The base is
bolted to the Azalée shaking table.

Preliminary investigations, gathered in [36], highlighted the importance of the swivels apparent
stiffness on a similar test configuration when processing dynamic hammershock tests-results. In
this last reference indeed, a linear FE model of a cantilevered JVP specimen (different mock-up
but identical in design) was derived and the initial tangent stiffness of the swivels was updated
by minimization of a modified Constitutive Relation Error (mCRE) functional. The updated
stiffness values of the swivels have been computed as ky = 1× 107 N·m in the y direction and
kθy = 1.76× 107 N·m·rad−1 around y axis. Of course, those values are associated to the RC finite
element model derived in the latter study. However, the updated FE model is able to correctly
reproduce, not only the three first eigenmodes as highlighted in the reference, but also most higher
frequency modes as the results gathered in forthcoming Tab. 3 can testify.
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(a) Series 249 MTS© swivels (extracted from MTS© documentation).

(b) Custom hinges designed and realized at CEA/TAMARIS (dimensions in mm).

Figure 2: Details on the components realizing the boundary conditions with the Azalée shaking-table.

During the 2018-JVP test campaign processed in this paper, a nonlinear behavior, due to
frictional contact between the spherical surfaces of the swivels interfacing the vertical rods to the
RC specimen and table (see Fig. 1), has been evidenced when processing RUN #5 to #15 test
results. Indeed, swivels behave as ‘locked’ at low level and as ‘unlocked’ when excitation level
exceeds a certain threshold according to classical Coulomb friction. As an attempt to quantify
this phenomenon, two kind of random tests have been realized: (i) low level random tests (white
lines of the table, expected RMS values: 0.005 g) where swivels are assumed to be locked and
(ii) high level random tests (grey lines of the table, expected RMS values: 0.010 g) during which
a relative movement is expected together with associated friction forces acting on the swivels
spherical surface.

3. Methodology – Automated subspace-based state-space identification

The time-histories acquired during the test sequence constitute the set of observable outputs
(yk)

N
k=1 ∈ Rm×N of the experimental system Z. The latter is composed of the RC specimen itself,

the shaking table Azalée and its hydraulic actuators operating in closed-loop. This database is
processed using 4SID algorithms that consist in fitting state-space models of increasing orders n
to the available measurements after data-projection and inspection of the subspace formed by the
columns of the yielding observability matrix. The discrete state matrix A and output matrix C
are retrieved from the row spaces of the observability matrix. The poles and modes of the system
Z are computed from the eigenvalues and eigenvectors of A. Details about subspace algorithms
are omitted here for conciseness and the interested reader is referred to [1] for theoretical and
implementation details and to [13] for details regarding the several variants that have actually
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been implemented at CEA/EMSI laboratory within Matlab© framework.

For an appropriate state-space identification, the model order n must be at least twice the
number of observable modes. When processing measurements coming from a real structure, one
might not know in advance the number of physical modes nph to be expected on the frequency range
of interest. A current practice then consists in over-specifying the model-order (according to CPU
limitations) to make sure that no observable mode is missed by the procedure, but one ends up
with a collection of nsp unwanted spurious modes that tend to model measurement noise, eventual
non-linearities or colored noise inputs. Identification results are then presented in a frequency vs.
model-order plot called stabilization diagram and the physical modes must be selected as ‘stable
columns’ in the diagram [41]. However, this modal selection stage, when done manually by the
experimenter, can be a time-consuming and sometimes inextricable task, even for an experienced
user; at least, the selection will depend on the engineering judgment of the person in charge of
interpreting the diagrams. In order to bring more robustness to this delicate selection process, a
strategy, based on the work of [42], has been proposed in [13] and is summarized on Fig. 3.

Figure 3: Fuzzy-clustering based procedure proposed in [13] for selecting physical modes from highly populated
stabilization diagrams.

This strategy consists in three stages:

stage (i) : eight modal indicators are computed for each mode of the stabilization diagram
and a first fuzzy partition is performed in this modal-features space for separating the
‘certainly spurious modes’ from the ‘possibly physical’ candidates. The spurious modes
are removed and the membership function resulting from the fuzzy-clustering gives a
usefull indication on ‘how good’ a physical mode candidate can be;

stage (ii) : a hierarchical-clustering algorithm is then carried out for building groups of similar
modes corresponding to the columns of the stabilization diagram;

stage (iii) : a final clustering algorithm is used for retaining only the most populated sub-groups
identified at stage (ii). Those sub-groups correspond to the physical modes and, after
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outlier rejection and polesplitting removal, the most statistically stable member of each
sub-group is finally retained for defining the modal signature.

In this study, both Input/Output (IO) and Output-Only (OO) system identification is carried
out. OO identification assumes that the dynamic system under study is submitted to unmeasured
inputs verifying white-noise assumption. In our case, for intermediate random tests, a multiax-
ial white-noise reference signal is effectively send to the MTS© controller as desired reference
acceleration. In this case, the experimental system under study is:

ZOO =
{

RC specimen + Azalée shaking table + closed-loop controlled MTS actuators
}

(1)

Measurements collected in (yk)
N
k=1 are considered as outputs of the system ZOO and, from an

algorithmic point of view, an orthogonal projection of the ‘future outputs’ onto the ‘past outputs’ is
realized after forming a block-Hankel matrix containing i block rows. The consistency of subspace
methods is proved for i → ∞ [43]; this number must of course be finite because of memory
limitations, however, it should be chosen as large as possible. In this study, the number i of block
rows in the block-Hankel matrix has been chosen, as advised by [44], such as verifying:

i ≥ fs
2f0

(2)

where fs = 1/∆t is the sample frequency and f0 ≈ 2.5 Hz is the smallest expected eigenfrequency.

Regarding IO identification, available measurements are split into two groups:

� accelerometers placed on the RC specimen (red arrows of Fig. 1) are considered as outputs
and are gathered in (yk)

N
k=1;

� accelerometers located on the shaking table (blue arrows of Fig. 1) defining the ground
movement imposed to the specimen are considered as inputs and are gathered in (uk)

N
k=1.

A block Hankel matrix containing i block rows of input/output data is assembled, but this time,
an oblique projection along the subspace formed by the ‘future inputs’ is realized. In this case,
the experimental system under study is:

ZIO =
{

RC specimen (cantilevered at Azalée’s plate level)
}

(3)

This last system also contains the rods, swivels and additional masses and that can be considered
as cantilevered at the Azalée’s plate (bottom surface of the swivels).

In this work, the data-driven implementation described in [1] has been used specifying a CVA1

weighting for OO analysis and combined deterministic-stochastic algorithm with unitary weighting
in the IO case. Comparing the results obtained in the OO case and in the IO case, i.e. eigenfre-
quencies of the system ZOO vs. eigenfrequencies of ZIO, will give interesting quantification of the
coupling between the RC specimen and the shaking device.

1Canonical Variate Analysis
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4. Modal analysis results

4.1. Initial configuration – Experimental characterization after RUN08

The results of the 49 accelerometers placed on the table and specimen according to Fig. 1
have been processed for the RUNs 9, 10 and 11. The 49 time-histories are fed to the subspace
identification algorithm for the OO analysis whereas, for the combined IO study, 28 recordings are
considered as outputs (sensors in red on Fig. 1) and the 3 accelerations measured at the center
of the shaking table are considered as inputs. The number of block rows of the Hankel matrix has
been chosen equal to i = 100 for respecting the criterion (2). The respective stabilization diagrams
obtained after running the 4SID algorithms and automated selection procedure summarized section
3 are presented on Fig. 4. After preliminary examination of the diagrams, one can notice
that the mode density is very high but that the modes selected by the automated procedure
(in blue) correspond to the peaks of the Complex Mode Indication Function (CMIF) [45] (in
green), whose vertical axis is positioned on the right of the diagram. This indicates the overall
quality of the modal selection process; the dominant frequency content over the range [0 ; 100 Hz]
is correctly identified by the fuzzy-automated selection algorithm. An additional comparison with
FE modeling (presented later on) will confirm this claim.

One can observe for the OO case that 15 modes have been identified by the procedure. The
three first modes dominating the low frequency range [0 ; 20 Hz] correspond to the expected bending
along x axis (B1x), torsion along z (T1z) and shear-roll along y (R1y) modes. They are followed
by two hydraulic modes in the x and y direction respectively denoted (Hx) and (Hy). Indeed, two
clear modes coexist around 23 Hz (two modes selected by the subspace-based procedure confirmed
by the two peaking singular values on the CMIF); those correspond to a coupling between the oil
column stiffness (according to oil’s bulk modulus) inside the hydraulic jacks and the inertia of the
moving system, i.e. Azalée shaking-table and specimen. Those hydraulic modes are associated to
the closed loop controlled system and occur for each of the possible moves enabled by the device
(three translations and three rotations). Only the lower frequency hydraulic modes associated to
x and y translations are clearly observed on the range [0; 100 Hz]. The modal density around 40 Hz
is quite high and probably results from a coupling between closely spaced modes due to damping.
For such situations one must think about modal subspace rather than nicely decoupled modal
response as can be seen for the three first modes. However, the dominant behavior around 40 Hz
is driven by the second bending mode (B2x) in the x direction. Let one recall that a currently
used criterion for assessing the presence of coupled modes due to damping is [46]:

∀i 6= j, 2ξiωi/|ωi − ωj| � 1 (4)

If this last criterion is not met (which is the case here), modes i and j are coupled due to damping
and form a modal subspace. The same remark can be made around 75 Hz where the third bending
mode (B3x) along x is involved on the range [80 ; 90 Hz] where several modes interact exhibiting
symmetrical and anti-symmetrical slabs and edge beams movements. Modal subspaces are high-
lighted with colors on the diagrams of Fig. 4 and the modes designation of the structural modes
of interest is also added.

For IO analysis in turn, 10 structural modes corresponding to those of the RC specimen ZIO
defined in (3) are identified by the procedure. As expected, one can observe that the oblique
projection canceled the influence of the hydraulic modes (Hx) and (Hz) and that higher frequency
content is emphasized. The identified modes now correspond to the singular values of the transfer
matrix H (ω) that has been computed from the 28 sensors (in red on Fig. 1) considered as
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Figure 4: Stabilization diagrams obtained when processing data acquired after RUN8. The CMIF values plotted
in green in the diagrams correspond to the two first eigenvalues of the PSD matrix for each frequency (OO case),
of the transfer matrix H (IO case). Peaks of the CMIF frequency function indicate resonance of the system [45].

outputs and specifying the triaxial acceleration movement of the table as input. The analysis has
also been conducted retaining 46 acceleration time-histories as outputs (i.e. the 49 accelerometers
on the system minus the 3 table inputs) but no notable difference has been observed on the results;
this last study is not reported here. Analogously to the CMIF, the two first singular values of
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the transfer matrix H (ω) are added in green to the plot of Fig. 4 and are labeled as H -CMIF.
Once again, the peaks of the H -CMIF are in good accordance with the identified eigenfrequencies
which illustrates the relevance of the selected modal signature. One can note the presence of stable
columns in the diagrams around 30 Hz and 62 Hz that have not been selected by the procedure.
The first one is a residual rotational movement of the specimen and table around the y axis and
the second one might be a contribution of the rod modes R?x (see appendix C and Tab. 2, yellow
rows) that are barely observable on the selected accelerometers spectral content.

Tab. 2 compares the eigenfrequencies and damping ratios identified for the OO and IO anal-
yses. The same colors, highlighting modal subspaces in the diagrams of Fig. 4, are used in the
table for coherence. The eigenfrequencies identified in both cases are very similar, which demon-
strates the very low coupling between the RC specimen and the hydraulic shaking device. This
observation is not astonishing because the total weight (3.75 tons) of the system ZIO embedded on
the table is way below the maximum capacity of the eight 100 tons hydraulic actuators applying
the dynamic loading. However, one shall note that a slight coupling is observed between the RC
specimen and the plate of the Azalée shaking table in the y direction; indeed, the length over
which inertia forces (and corresponding momentum) are applied on the table (1.5 m between two
swivels) is smaller along the y direction. This yields to an increase of the eigenfrequency value of
R1y of nearly 8 % (15.33 to 16.56 Hz).

Mode Description
OO IO FEA

freq.
[Hz]

damp.
[%]

freq.
[Hz]

damp.
[%]

freq.
[Hz]

MAC

B1x 1st bending mode /x 8.04 2.46 8.09 2.05 8.34 0.991
T1z 1st torsion mode /z 9.94 1.68 9.90 1.32 9.52 0.960
R1y 1st shear-roll mode /y 15.33 2.70 16.56 1.56 15.12 0.932
Hx Hydraulics /x 23.34 6.65
Hy Hydraulics /y 22.70 4.87
E1x Edge beam bending anti-sym. mode /y + asym. /xy (Snake) 37.86
E2x Edge beam bending anti-sym. mode /y - sym. /xy (Snake tors.)

40.00 0.76
37.86

E3x Edge beam bending sym. mode /y - asym. /xy (Bat)
41.36 0.92

37.86
E4x Edge beam bending sym. mode /y - sym. /xy (Bat asym.)

42.34 0.60
37.86

B2x 2nd bending mode + slabs anti-sym. /z
42.76 1.02

42.48 1.38

48.88

0.884?

S1z Slabs symmetric /z 48.71 1.68 49.73 0.912
R1x Rod bending mode /x 59.52
R2x Rod bending mode /x 59.54
R3x Rod bending mode /x 59.59
R4x Rod bending mode /x 72.70 1.41 72.36 1.33 59.69 0.534?

B3x 3rd bending mode /x (+slabs) 75.15 1.40 75.44 1.26 77.21 0.933
S2z Slabs symmetric + swivels /z 78.70
F1z Slabs antisymmetric + swivels /z (Farfalle asym.) 81.90 1.11 81.89 1.13 82.96
F2z Slabs symmetric + swivels /z (Farfalle sym.) 85.00 1.39 85.95 1.30 83.17

0.811?

E5x Mode E1x + 2nd order bending mode /y 87.15 1.89 114.29
E6x Mode E2x + wall torsion /z 89.52 0.88 114.29
E7x Mode E3x 114.29
E8x Mode E4x 114.29
B4x 4th bending mode /x (+slabs) 96.80 1.1 116.13 0.376

Ref. to the modeshapes Appendix A Appendix B Appendix C

Table 2: Numerical vs. experimental eigenfrequencies for OO and IO analysis – Initial configuration after RUN08
– The numerical frequencies of the Finite Element Analysis (FEA) have been computed from the model derived

by [36]. Classical MAC computation is used for mode-to-mode comparison but is replaced by the (?) cosine of the
subspaces-angle when comparing two modal subspaces containing more that one mode (see also the discussion on
coupled modes due to damping in the text). Please note that a single color may wrap several modes when modal

subspaces are involved. Modeshapes for OO, IO and FE analysis are plotted resp. in appendices A, B and C.

The eigenfrequencies, computed using the FE model borrowed from [36] and derived in within
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Cast3M framework, are also added in Tab. 2 for comparison. The model is fully linear and com-
posed of beam- and plate-elements defined in a ‘best estimate’ manner. The swivels are modeled
as 6 DOFs stiffness matrices and their stiffness values has been updated using hammershock-tests
results by minimizing a modified Constitutive Relation Error (mCRE) functional, as described in
the reference. One shall notice the very good adequacy between the model eigenfrequencies and
those identified in the OO (and IO) case for the following modes:

LS =
{

B1x , T1z , R1y , B2x , S1z , B3x , F1z+F2z
}

(5)

with a relative difference of a few percent and Modal Assurance Criterion (MAC) values above
0.8 . Note that when considering modal subspaces, the MAC in its classical definition [47] is not
suited anymore. However, for such situations, the cosine of the angle between modal subspaces
appears as a natural and straightforward generalization of the MAC: this last definition is used in
this study when needed.

The other modes of the FE model (rod modes in yellow on Tab. 2) are not found experimen-
tally. The 32 strain-gauges positioned on the four rods (2×4 per rod visible in yellow on Fig. 1)
have been processed with the hope of characterizing those modes; unfortunately the observable
frequency range [0 ; 20 Hz] enabled by the strain-gauges only led to the identification of the three
dominant modes. The strain-gauges analysis is not reported here for conciseness. Let also note
that the modes appearing in combination with other modes within modal subspaces cannot be
properly plotted.

Tab. 3 compares the experimental and numerical modeshapes computed from the FE model
derived by [36]. One can visually and numerically (MAC is recalled) appreciate the very good
agreement in terms of eigenfrequencies and modeshapes, which confirms the quality of the modal
analysis when processing this first set of test-results. Experimental modeshapes are extracted after
OO analysis for the modes in the list LS except for S1z that has been missed by the algorithm;
corresponding modeshape provided by the IO analysis is plotted for this mode.

Table 3: Experimental vs. numerical modeshapes – Initial configuration after RUN08.

Mode Experimental Modeshape
Experimental Colin.

Inspection
Numerical Modeshape MAC

B1x 0.991

T1z 0.960
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Mode Experimental Modeshape
Experimental Colin.

Inspection
Numerical Modeshape MAC

R1y 0.932

B2x 0.884?

S1z� 0.912

B3x 0.933

F1z
0.811?

Table 3: Experimental vs. numerical modeshapes – Initial configuration after RUN08.

Undamped frequency values are recalled next to each modeshape. The colinearity inspection is done by
plotting the modeshape in the complex plane and corresponding MPD value is given. A decoupled

physical mode will typically be distributed as a straight line in the complex plane, exhibiting a low MPD
value. (?) indicates when the classical MAC value is replaced by the cosine of the angle between
subspaces. (�) mode identified in the IO context. On numerical modeshapes, blue circles indicate

additional mass, red circles the nodes that have been suppressed for modeling boundary conditions, green
triangles extra nodes that have been added to describe the kinematic behavior of the swivels.
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The modeshapes associated to the OO, IO and FE analysis are respectively plotted in ap-
pendices A, B and C. To end this first subsection of results, one can conclude that the low level
tests are clearly dominated by the three first eigenfrequencies and that the FE model updated
in [36] was able to correctly predict the modal behavior of the experimental specimen (excluding
hydraulics) up to 100 Hz.

4.2. Processing the complete test campaign – Evolution of the modal signature for different analyses

Starting from this reference initial configuration, the capabilities of the modal selection algo-
rithm [13] and more generally subspace-based identification procedures are now assessed in the
presence of increasing non-linearities. A particular focus is made on the three first dominant
modes.

4.2.1. Broad-band random tests – Evolution of the three first eigenfrequencies

The modal identification algorithms detailed in section 3 are now run for processing the full test
campaign. Let one recall that the experimental system identified in the IO case does not include
the shaking-table and its hydraulic actuators and corresponds to a cantilevered configuration of
the specimen at the shaking table’s plate level (see systems (1) and (3) for comparison). Both
low- and high-level intermediate random tests have been processed and the mean values of the
three first eigenfrequencies identified along the test-campaign are reported in Tab. 4.

Level Analysis
After After After After After After After After After

RUN08 RUN12 RUN16 RUN23 RUN32 RUN39 RUN46 RUN53 RUN60

LOW

OO
8.04 7.32 6.71 6.50 6.25 6.04 5.83 5.68 5.73
9.94 9.88 9.88 9.37 9.63 9.42 9.02 8.86 8.65
15.33 15.31 15.26 14.59 15.16 14.80 14.44 14.08 13.52

IO
8.09 7.41 6.76 6.46 6.30 5.95 5.76 5.61 5.57
9.90 9.84 9.73 9.59 9.53 9.37 9.02 8.79 8.52
16.56 16.42 16.21 16.02 15.81 15.45 14.92 14.76 14.08

HIGH

OO
5.99 6.02 – 6.48 5.95 5.64 – 5.85 4.93 – 5.57 5.59 5.55
9.55 9.42 9.40 9.20 8.86 8.65 8.39
15.11 14.72 14.96 14.43 14.17 13.90 13.37

IO
6.09 5.77 5.51 5.23 5.09 4.96 4.65
9.42 9.33 9.23 8.85 8.68 8.40 8.04
16.27 15.99 15.63 15.33 15.03 14.61 13.95

Table 4: Three first eigenfrequencies in Hz, identified for low- and high-level random tests.
The RMS accelerations measured on the Azalée table during random tests are reported in Tab. 1. The

identification of the first mode B1x was not systematically straightforward when processing high-level tests;
corresponding eigenfrequencies are given within intervals in this case. The tracking of mode B1x is the subject of

upcoming subsection 4.2.2.

Regarding the identification of linear systems with analogous frequencies, the precision obtained
on eigenfrequencies is approximately 0.1 Hz using the methodology described in section 3 and
considering the available measurements (≈ 30 s long recordings). A better precision could have
been obtained if recordings were of longer duration. Then, a first observation can straightforwardly
be made. Eigenfrequency values identified in the OO and IO case are very similar to the precision
of the methodology (≈ 0.1 Hz in the present case); only a noticeable decay in frequency of ≈ 1 Hz
is visible on the third mode R1y because of the (low) coupling with the shaking table in that
direction (see section 4.1).

Now comparing low- and high-level test results, one can observe a clear systematic decay of
≈ 0.7 Hz regarding mode B1x and a smaller decay of ≈ 0.35 Hz regarding mode T1z. This can be
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attributed to the nonlinear behavior of the swivels (see Fig. 1) as will be detailed in upcoming
subsection 4.2.2 and studied using simple numerical model in section 5. Owing to this non-linearity,
the identification of mode B1x was very complicated in the high-level case because more complex
frequency content was present around the first eigenfrequency. The automated selection procedure
sometimes missed the first mode or flagged it as ‘artefact’ because of higher damping values and
generally less stable modal properties. For this reason, eigenfrequency values for the first mode
B1x are sometimes given within intervals in the high-level case.

4.2.2. The delicate case of high-level random tests – Nonlinearities on bending mode B1x

Fig. 5 presents the stabilization diagrams obtained after automated modal selection when
processing the data acquired during low- and high-level random tests realized after RUN16. At
that stage the RC medium of the specimen has already been damaged as the drop of frequency
for first bending mode B1x can testify (see Tab. 4). Inspecting the two diagrams at the top
of Fig. 5 however, processing low-level random tests, one can observe the typical response of a
linear structure with clear dominant low frequency content and nicely identified physical modes.

Now examining the OO stabilization diagram in the high-level case, one can clearly see a more
complex modal content in the vincinity of the first eigenfrequency and more generally over the
low frequency range [1 ; 10 Hz] where no real peak is to be observed on the CMIF. A large density
of modes is present and the column formed by the two first eigenfrequencies are not nice nor
stable, to the point that the automated selection procedure discarded the modes corresponding to
T1z, classifying them as unphysical. Things are more clear regarding IO analysis where the three
dominant modes are now clearly identified as physical. Examining the H-CMIF curves for both
low and high-level diagrams in the IO context, one can notice that the bandwidth of the peak
corresponding to B1x is wider for high-level tests. This is translated in terms of damping ratio,
that is identified as 4.3 % for low-level tests, against 16.8 % in the high-level case.

Both complex modal density and really high damping level (to the limit of being considered
as physical) are clear indications of the many nonlinear mechanisms that are activated by the
modal movement B1x. Those non-linearities can be attributed to the swivels linking the columns
to the RC specimen and table. Indeed, even though the surface of these ball joints is Teflon,
solid friction forces oppose to the movement. Considering a classical Coulomb description for the
moment associated to friction forces, one can distinguish two regimes:

� the swivels are locked for low level tests when the excitation is such that the torque applied on
the swivels is lower than the friction threshold. Only a small relative movement is permitted
(high apparent tangent stiffness is expected) and the damping ratio for mode B1x takes
values (≈ 4 %) typical of RC constructions;

� the swivels get unlocked for high level tests when the torque applied on the swivels is greater
than the friction threshold. Nonlinear Coulomb forces then participate and oppose to the
movement when relative angular velocity is non-null, which leads to a dramatic increase of
damping ratio for mode B1x.

Note that the same observation is made for mode T1z.

Tab. 5 collects the different results obtained for mode B1x when running OO and IO analyses
for low- and high-level random tests. As was highlighted commenting Fig. 5, the complexity
of interpretation of the diagrams in the OO case for the two first dominant low frequency modes
has generally been observed for each high-level random test. The automated modal selection
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Figure 5: Comparison of the different analyses performed for high and low-level random tests after RUN16.

procedure derived in [13], that proved robustness with respect to non-linearity to a certain extent,
sometimes failed at systematically detecting modes B1x and T1z conjointly because of generally
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high damping ratio level and unstabilized modal properties. Unstabilized physical mode-columns
have sometimes led to different groups after clustering for mode B1x. In Tab. 5, values are
highlighted in red when manual selection replaced the automated procedure. One can notice that
the automated IO analysis shows a greater degree of confidence when processing these test results.

Thus, for the first mode B1x, uncertainty on identified eigenfrequency and damping values is
large in the OO case with several coexisting columns corresponding to B1x in the stabilization
diagram as reported Tab. 5. In both OO and IO cases, the identified damping ratios take very
high values (≈ 20 % and above). Those high damping values can clearly not be related to the RC
structure itself and are another clue for incriminating the swivels. This question will be addressed
in details in forthcoming section 5.

Level Analysis Modal feat.
After After After After After After After

RUN16 RUN23 RUN32 RUN39 RUN46 RUN53 RUN60

LOW

OO

freq.
[Hz]

6.71 6.50 6.25 5.97 5.83 5.68 5.73
STD 0.04 0.02 0.04 0.06 0.03 0.04 0.06

damp.
[%]

5.7 4.4 5.5 8.3 7.0 5.6 5.1
STD 1.1 1.1 1.5 2.2 1.8 1.5 1.3

IO

freq.
[Hz]

6.76 6.46 6.30 5.95 5.76 5.61 5.57
STD 0.01 0.01 0.02 0.01 0.01 0.03 0.05

damp.
[%]

4.3 3.7 4.5 6.3 5.3 6.2 5.5
STD 0.1 0.1 0.2 0.2 0.3 0.7 0.2

HIGH

OO

freq.
[Hz]

5.99 6.02 6.37 6.48 5.95 5.64 5.85 4.93 5.57 5.59 5.55

STD 0.17 0.05 0.05 0.03 0.07 0.06 0.06 0.06 0.03 0.03 0.03

damp.
[%]

16.6 17.8 8.7 6.0 10.9 11.3 9.2 12.8 8.0 16.5 18.4

STD 1.3 1.3 0.7 0.5 1.6 1.4 0.7 0.8 0.7 1.5 1.1

IO

freq.
[Hz]

6.09 5.77 5.51 5.23 5.09 4.96 4.65
STD 0.08 0.11 0.19 0.17 0.09 0.07 0.12

damp.
[%]

16.8 20.1 27.8 21.5 21.5 23.2 35.7
STD 1.7 1.9 3.2 1.4 1.0 1.1 6.2

Table 5: Undamped frequencies and damping ratios identified for the first mode B1x after each damaging RUN.
Both OO and IO analysis are realized for each low- and high-level random tests (see Tab. 1). Columns are split

when several groups containing variants of the same mode B1x have been identified. Mean and standard
deviation (STD) values associated to each groups are reported in the table. The mode-groups that have been

missed by the automated selection procedure and manually retained are highlighted in red in the table.

4.2.3. Seismic tests – Dominant apparent frequency corresponding to mode B1x

A last attempt of using the automated 4SID methodology in an increasingly nonlinear context
is now carried out. The previous subspace-based identification techniques will be applied to the
seismic tests. Output-Only analysis or stochastic subspace identification relies on the strong hy-
potheses that the system is linear and submitted to a white noise excitation of constant covariance.
For this last reason, OO analysis will not be suited for processing seismic tests. Input/Output
or combined deterministic stochastic subspace identification offers more flexibility if inputs are
measured, to the price of increased complexity of the identification algorithms and longer com-
putation times (see e.g. [1]). The IO analysis is thus realized once again, specifying the three
table-accelerometers recordings as inputs, but this time for the seismic tests. If the dynamic re-
sponse was linear, the identified modal signature would correspond to system ZIO (3). But since
non-linearity is precisely expected when running seismic damaging tests (green rows of Tab. 1),
the modal features extracted after analysis must be taken with care and would, in the best case,
correspond to those of a linear equivalent model of system ZIO. Hence, one should rather talk
about dominant or apparent frequencies rather than eigenfrequencies.
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Fig. 6 presents the post-processing user interface that has been developed within Matlab©

framework. Once again, the stabilization diagram is plotted together with the two dominant
singular values of the transfer matrix H(ω) (H-CMIF green scale at the right). Compared to the
IO diagrams of Figs 4 or 5, where longer broadband random inputs of lower magnitude were
applied, only a few modes with strong linear behavior are extracted by the selection procedure.
Let also note that a null reference input is specified to the MTS© controller in the y direction,
what has led to some modes having weak participation factors. One can also note that very few
dispersion is observed on frequency and damping values. Displaying the modeshape contribution
of mode B1x in the complex plane, one can notice a nice linear distribution of its coordinates, in
accordance with the very low MPD value of 0.008 rad. This indicates that the modal response for
mode B1x is organized in a rather linear manner.

Figure 6: Input/Output analysis realized for seismic RUN8 – First dominant mode B1x.

Post-processing user-interface window developed within Matlab©.

The IO analysis was repeated for each seismic run of the test campaign (green rows of Tab.
1). The dominant mode B1x has systematically been selected by the automated procedure and
corresponding modeshapes have been carefully inspected. The modal features associated to B1x
have been reported in Tab. 6. One shall also note that the MPD indicator keeps low values
for each run (although a slight increase is observed on the two last runs), which indicates that
mode B1x has been identified with a good level of confidence and seems to be a good linear
approximation of the dominant behavior in the x direction.

One can appreciate the global damage of the RC specimen through the frequency drop-off.
Looking at the standard deviations (STD) for both undamped frequencies and damping ratios,
one can notice that the level of uncertainty is much higher for seismic tests, especially on damping.
Comparing damping ratios on Tabs. 5 and 6, one can also note that for the seismic tests in general,
when the acceleration input is higher, the damping ratios are lower that what was identified for
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Analysis Modal feat. RUN08 RUN12 RUN16 RUN23 RUN32 RUN39 RUN46 RUN53 RUN60

IO

freq.
[Hz]

4.95 4.29 3.17 2.65 2.47 2.28 1.98 1.79 1.76
STD 0.07 0.25 0.06 0.05 0.10 0.03 0.06 0.09 0.10

damp.
[%]

8.7 13.2 10.9 11.2 8.9 9.8 8.2 15.5 31.7
STD 1.5 4.7 1.9 1.3 2.6 1.7 2.8 4.5 5.4
MPD [rad] 0.008 0.018 0.006 0.006 0.010 0.011 0.010 0.030 0.031

Table 6: Undamped frequencies and damping ratios identified for the first mode B1x for each damaging RUN.

high level random tests. This will be discussed in details in the following section 5. The damping
ratio keeps relatively constant values around ≈ 8 % and reaches values up to more than 30 % at the
end of the test campaign for RUN60. The same kind of observation can be done on Tab. 5 when
looking at IO-processed high level random tests results. This is an indication that new dissipative
phenomena are involved due to apparition of cracks in the RC medium: friction between crack-
lips or at steel rebars/concrete matrix interface might be the cause for this important damping
increase.

Anyhow, even if damaging nonlinear mechanisms activate during the seismic test, a certain
robustness of the IO-4SID procedure is experienced for seismic tests. Let one note that the
damage increase from a seismic test to the next one is moderate; besides frequency drop-off, the
nonlinear mechanisms are mostly translated into a damping ratio increase, two phenomena that
subspace-based identification is able to capture.

5. Analytical modelling and discussion – Nonlinear behavior of the swivels

For high-level random tests, the identified damping ratios are very high for mode B1x (above
20 % for some tests) and could, in other context, have been interpreted as unphysical. The
damping ratios given in Tab. 5 and 6 must then be taken with care and one shall be aware
that given ratios are related to equivalent apparent damping. One could also wonder why the
apparent damping ratios are generally higher for random tests than for higher PGA seismic runs.
In fact, comparatively to the ground motion intensity (see Tab. 1 for PGA levels comparison),
the friction forces in the swivels play a more important role for (high-level) random tests than
for seismic runs, which leads to higher damping ratios. In order to back up this interpretation, a
simple model containing one DOF is studied in this section.

Let one consider the simple uniaxial model of Fig. 7. The dynamical response of the poly-
articulated RC structure is described using a nonlinear oscillator containing a single observable
DOF x, with corresponding mass m, that represents the modal contribution of the dominant first
mode B1x. The couple (k, ξ) stands for the (modal) stiffness and viscous damping term of the RC
structure (in blue). A second non-dissipative element, of stiffness kR, is added in parallel to account
for both initial tangent stiffness of the swivels around y-axis and the rods stiffnesses themselves
(in green). The non-linearity is handled by introducing a second internal degree of freedom θ
standing for the relative angular displacement in the swivels and a Coulomb-type friction law is
used for modeling the locked/unlocked behavior of the swivels.

The constitutive relations for this nonlinear oscillator are given by:

ẍ+ 2ξ1ω1ẋ+ ω2
1x+ ω2

R(x− θ) = −Γ
ω2
R(x− θ) + gNL = 0

}
with

{
Static friction : θ̇ = 0 if |gNL| < g0

Sliding : gNL = −g0 sgn (θ̇) if
∣∣∣θ̇∣∣∣ > 0

(6)
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where gNL stands for the nonlinear restoring force, applied in point O, and follows the classical
Coulomb-friction description with sliding and static friction conditions.

(a) No friction – g0 = 0 (θ = x)

f1 =
1

2π

√
k

m
natural frequency 3.2 Hz

ξ1 = ξ̄1f̄1/f1 damping ratio 10.0 %

(b) Static friction – g0 ≥ gs0 (θ = 0)

f̄1 =
1

2π

√
k + kR

m
apparent frequency 6.8 Hz

ξ̄1 = ξ apparent damping ratio 4.7 %

Figure 7: Simple nonlinear model with friction used for describing the dominant mono-modal response (first
mode).

The structural parameters of the nonlinear oscillator (see Fig. 7) are chosen such as resem-
bling the characteristics experimentally identified for RUN16. Let one note that the dynamical
equilibrium in eq. (6) is written under canonical form; this implies that the Coulomb force gNL
and its corresponding threshold g0 are not homogenous to forces, but to accelerations.

The acceleration of the support is defined as a white noise sequence and normalized such
that maxt∈[0;T ] |Γ(t)| = 1. Using this last normalization, the friction threshold g0 is the only
parameter that rules the ‘degree of non-linearity’ of the oscillator. Depending on the value of g0,
two asymptotic linear behaviors can be distinguished:

(a) No friction – g0 ≈ 0: the swivels are unlocked (θ = x) with negligible ratio of friction forces
opposing to the sliding movement. The observed dynamics corresponds to this of a simple
oscillator of characteristics (f1 =

√
k/m, ξ1);

(b) Static friction – g0 ≥ gs0: when the friction threshold exceeds a certain value gs0 (w.r.t. input
Γ), the swivels are locked (θ = 0) on the entire interval [0;T ]. The behavior of the oscillator
is linear but the apparent frequency and damping are changed because of the stiffness kR
operating in parallel to yield:

f̄1 =
1

2π

√
k + kR
m

and ξ̄1 = ξ1
f1

f̄1

(7)

The damping value identified from low-level random tests after RUN16 (see Tab. 5) with locked
swivels is taken as reference ξ̄1 = 4.7%. Also note that the oscillator of Fig. 7 corresponds to a
uniaxial elasto-plastic model with linear kinematic hardening, with θ playing the role of a plastic
strain and g0 of a plasticity threshold.

The acceleration sequence is sampled at frequency fs = 1000 Hz, with null initial and final
values and the system (6) is simulated using a Newmark scheme, with classical (β = 1/4, γ = 1/2)
parameters. A quasi-Newton algorithm is used for handling the constitutive relation non-linearity
(minimization of the equilibrium residual, see classical reference [48] for details). Absolute accel-
erations are processed writing y = ẍ+ Γ and a white noise w is added to simulated accelerations
to account for measurement noise such that w = 0.05n and n ∼ N (0, 1).

Fig. 8 shows the PSD and Transfer Function (TF) of the absolute acceleration response of
mass m w.r.t. ground motion input Γ for varying values of g0. A classical Welch’s windowing
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with 2000 non-overlapping 5 s-long rectangular segments is used for computing the PSDs and
TFs. One can notice on Fig. 8, in bold grey, the linear responses corresponding to asymptotic
values (a) g0 = 0 and (b) g0 = gs0 and, in colors, a clear increase of the apparent damping (peaks
flattening) for values g0 ∈]0; 0.3[ due to the larger proportion of friction forces involved. Regarding
the frequency content, it seems to be clearly dominated by a single frequency for values of g0 close
to the asymptotic values 0 and 0.3. The same observation is made for intermediate values of g0

where a clear mono-modal behavior is observed together with a large increase of the apparent
damping ratio. Note that classical plasticity (with usual ductility demand parameter, see [35])
would correspond to values of g0 within [0.1; 0.3].
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Figure 8: Acceleration response of the simple model to an adimensional white noise Γ in terms of Power Spectral
Density (left) and Transfer Function (right) for varying friction threshold g0.

In order to take a critical look at the studies carried out so far on the JVP database, it is neces-
sary to assess how the OO and IO subspace algorithms behave when facing known and increasing
Coulomb-friction non-linearity. The CVA-algorithm in the OO case and combined deterministic-
stochastic algorithm in the IO case have been carried out on the simulated measurements of length
T = 120 s for varying values of g0. Tab. 7 presents the stabilization diagrams and dominant
mode selected for different values of g0. When processing data for which the proportion of fric-
tion forces is high with respect to input level (see Tab. 7, g0 = 0.035), the complex modal
density around the dominant frequency, observed when processing low-level random tests after
RUN16 (see Fig. 5), is well reproduced, especially in the OO case. In order to quantify the
performance of each procedure on this simulated example, a ratio r of identification is computed
for the dominant mode. The ratio r , card Ωph

1 /Jmax is defined as the number of actually
identified modes (cardinal of the group Ωph

1 built after automated procedure described in [13])
divided by the maximum expected number of modes in Ωph

1 (specifying n ∈ {2, 4, . . . , nmax}, we
have Jmax = nmax/2). A ratio of r = 100 %, as can be observed in the linear case, means that the
mode is clearly identified for each model order n. Lower values of r indicate the difficulty of the
subspace algorithm to identify the dominant mode. As can be observed in Tab. 7, focusing on
ratio r, OO and IO algorithms behave similarly in the linear case, whereas IO algorithm provides
more populated physical groups Ωph

1 with ratios r closer to 100 %.

Tab. 8 in turn presents the values identified for dominant frequency f̄ and damping ratio ξ̄

22



for varying values of threshold g0. Dispersion obtained on apparent frequency and damping ratio
is generally higher when OO identification is used and seems to involve more outliers.

Fig. 9 shows the evolution of the apparent damping ξ̄ w.r.t. the rate of nonlinear forces
g0 predicted by the sDOF nonlinear oscillator and analyzed in the IO framework (see Tab.
8); experimental values associated to mode B1x and identified for different RUNs are added for
comparison2. The damping values identified for RUN16 and following random tests are coherent
with the ratios predicted by the simple nonlinear oscillator.
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Figure 9: Apparent damping predicted by sDOF nonlinear oscillator (gray fill) vs. experimental values identified
for RUN16 and consecutive low- and high-level random tests.

When dealing with multi-DOFs systems with nonlinear mechanisms, stationary periodic con-
tent can appear in the output spectra as a result of the interaction between modes (see e.g. [30]
for details on NNMs and pole combination for dynamic systems with quadratic or cubic stiffness).
A numerical study involving a 2-DOFs nonlinear system has also been conducted for questioning
the presence of nonlinear modes when facing such kind of Coulomb-friction non-linearity. The
constitutive relations of the 2-DOFs oscillator were calibrated such as representing the modal be-
havior associated to the two first dominant modes B1x and T1z. No pole combination phenomena
were to be observed for this second case and the conclusions on the relative performance of the
OO and IO approaches are similar to those of the sDOF case. This study is available in appendix
D for the interested reader.

6. Conclusions

In this paper, feedback is provided on the possibility of using subspace-based modal identi-
fication techniques in the presence of both structural damage and Coulomb-friction (or elasto-

2According to the definition of g0 in eq. (6), neglecting the viscoelastic restoring force from kR, k and ξ when
sliding occurs, one can roughly consider that the moment of inertia forces is balanced by the torque C0 associated
to solid friction forces at swivels. A coarse estimation of the experimental threshold can then be given writing
g0 ∝ C0

mgH maxt Γ(t) , from the knowledge of experimentally measured C0, total mass m of the specimen (including

rods, swivels and additional masses) and gravitational constant g.
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plasticity). More precisely, a three-stage automated selection procedure was carried out on both
experimental and simulated measurements in the OO and IO context such that the subspace-based
algorithm are confronted with increasing non-linearity. Experimental results from shaking table
tests on embedded RC structure anchored using nonlinear swivels with solid friction have been
processed. Both numerical and experimental studies highlighted the robustness of the modal selec-
tion process and subspace-based identification algorithm in general when facing Coulomb-friction
non-linearity. The dynamic response of the studied specimen could have been qualified as ‘modal’
(at least in the low frequency range) with clear dominant frequency behavior and increased ap-
parent modal damping ratio when non-linearity was involved. Note however that certain lack of
precision have been experienced when processing the experimental database because of too short
duration of measurements (30 s-long recordings sampled at 512 Hz). For both experimental and
numerical datasets, slightly clearer results have been obtained with IO algorithms. Robustness
has also been experienced with respect to the damage process when performing IO analysis for
seismic tests of increasing level, provided that damage increment between two tests is moderate.

Regarding friction independently, depending on the ratio between input ground-motion mag-
nitude and expected nonlinear forces, high damping ratios have been identified, possibly higher
than 20 %, both in the numerical and experimental case. Current practice when resorting to auto-
mated procedure for clarifying stabilization diagrams consists in discarding the modes with more
that 20 % damping that are interpreted as unphysical (hard-validation criteria). In the applica-
tion considered in this paper, dominant modal content would have been missed, what stresses the
importance of having a modal selection procedure that can adapt to the data content, with ideally
no thresholding, for offering more flexibility.

Anyhow, the present work illustrates that studying the modal response of systems contain-
ing elastoplastic components (with hardening) or equivalently nonlinear dissipative subsystems
of Coulomb-friction type operating in parallel of structural stiffness is possible and meaningful
using linear identification techniques, like subspace-based algorithms. Yielding results can provide
relevant linear equivalent approximations for such kind of non-linearity.
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Analysis
(a) No friction Kinematic friction – Increased apparent damping (b) Static friction

g0 = 0 g0 = 0.02 g0 = 0.035 g0 = 0.1 g0 ≥ gs0 = 0.3
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f̄ [Hz] 3.20 3.78 5.66 6.67 6.80
ξ̄ [%] 10.13 44.13 33.52 9.87 4.76
r [%] 100.0 88.0 94.0 100.0 100.0

Linearity 3 7 7 7 3

Targeted
f̄ [Hz] 3.20 – – – 6.80
ξ̄ [%] 10.00 – – – 4.71

Table 7: Single DOF nonlinear oscillator – IO vs. OO results in terms of apparent frequency and damping ratio for different friction load ratios g0. The
rate r (see text for definition) quantifies the ability of the procedures to retain the dominant mode as physical. (a) No friction, linear asymptotic case with

θ = x. (b) Static friction, linear asymptotic case with no relative movement θ = 0.
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Analysis Apparent frequency Apparent damping
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Table 8: Single DOF oscillator – Dispersion on the identified modal features for OO and IO procedures.
In each case, for each value of g0 ∈ [0; 0.5], 120 dynamic responses of the same oscillator to different realizations of the white-noise input are processed
using OO and IO subspace-based identification algorithms. Gray fills represent the ±σ covariance envelope for different identified features for varying

threshold g0. The histograms are related to the dispersion obtained for g0 = 0.029, value marked with dotted line on subsequent plots. The normalized
plots are adimensionalized w.r.t. mean value of corresponding feature.
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[36] Hugo Oliveira, François Louf, Estelle Hervé-Secourgeon, and Fabrice Gatuingt. Wall-slab joint
parameter identification of a reinforced concrete structure using possibly corrupted modal
data. International Journal for Numerical and Analytical Methods in Geomechanics, 44(1):19–
39, nov 2019.

[37] Thierry Chaudat. Comportement sismique des jonctions voile/plancher – rapport des essais
flexion dynamique. Technical report, 2020.

[38] H. G. Harris and G. Sabnis. Structural Modeling and Experimental Techniques. CRC Press,
2nd edition edition, mar 1999.

[39] P. Stoica and R. Moses. Spectral analysis of signals. Prentice Hall, 2004.

29
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Appendix A Modeshapes identified in the OO context for eigenfrequencies on the
range [0 ; 100 Hz] after RUN08

Table 9: Experimental modeshapes – OO analysis after RUN08 – Stab. diagram Fig. 4 (Top).

Mode Modeshape
Mode

#
Modeshape

Mode
#

Modeshape

B1x T1z R1y

Hy Hx
B2x+E?

B2x+E? B2x+E? B2x+E?

B3x+E?
B3x F1z

F2z
F2z+E5x

B4x
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Appendix B Modeshapes identified in the IO context for eigenfrequencies on the
range [0 ; 100 Hz] after RUN08

Table 10: Experimental modeshapes – IO analysis after RUN08 – Stab. diagram Fig. 4 (Bottom).

Mode Modeshape
Mode

#
Modeshape

Mode
#

Modeshape

B1x T1z R1y

B2x+E?
S1z

B3x+E?

B3x F1z F2z
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Appendix C Numerical modeshapes of the linear FE model derived in [36]

Table 11: Numerical modeshapes of the linear FE model derived in [36] on the range [0 ; 150 Hz].

Mode
#

Modeshape
Mode

#
Modeshape

Mode
#

Modeshape

B1x T1z R1y

E1x E2x E3x

E4x B2x S1z

R1x R2x R3x

R4x B3x S2z
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Mode Modeshape
Mode

#
Modeshape

Mode
#

Modeshape

F1z F2z E5x

E6x E7x E8x

B4x

Table 11: Numerical modeshapes of the linear FE model derived in [36] on the range [0 ; 150 Hz].
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Appendix D Two DOFs model with Coulomb-friction

When dealing with dynamic response of multi-DOFs nonlinear systems with high expected
damping values, questioning the presence of nonlinear modes or coupling between modes as well
as the ability of subspace-based algorithms to distinguish them is legitimate. In order to provide
substantial elements of response, the two DOFs model of Fig. 11 is considered. This time two
internal variables θ1 and θ2 are introduced. The dynamic equilibrium (with unitary mass and
inertia term) of the system reads:

ẍ+ 2ξ1ω1ẋ+ ω2
1x − ω2

R(θ1 − x− ψl)︸ ︷︷ ︸
g1

− ω2
R(θ2 − x+ ψl)︸ ︷︷ ︸

g2

= − Γx (8)

ψ̈ + 2ξ2ω2ψ̇ + ω2
2ψ −

︷ ︸︸ ︷
ω2
R(θ2 − x− ψl) l +

︷ ︸︸ ︷
ω2
R(θ2 − x+ ψl) l = − Γψ (9)

where g1 and g2 are the nonlinear restoring forces, operating in O1 and O2 (see Fig. 10), and
obeying to the following friction conditions:

∀i = 1, 2

{
Static friction : θ̇i = 0 if |gi| < g0

Sliding : gi = −g0 sgn (θ̇i) if

∣∣∣θ̇i∣∣∣ > 0
(10)

No friction – g0 = 0

f1 =
1

2π

√
kx

m
natural frequency 3.2 Hz

ξ1 = ξ̄1f̄1/f1 damping ratio 10.0 %

f2 =
1

2π

√
kψ

I
natural frequency 6.8 Hz

ξ2 = ξ̄2f̄2/f2 damping ratio 2.4 %

Static friction – g0 ≥ gs0 (θ = 0)

f̄1 =
1

2π

√
kx + 2kR

m
apparent frequency 6.8 Hz

ξ̄1 apparent damping ratio 4.7 %

f̄2 =
1

2π

√
kψ + 2kRl2

I
apparent frequency 9.7 Hz

ξ̄2 apparent damping ratio 1.7 %

Figure 10: Simple 2 DOFs nonlinear model with friction used for describing the response of the two first modes
(B1x and T1z). Note the presence of unrepresented angular stiffness kψ.

Once again, the parameters of this 2 DOFs oscillator are chosen such as to resemble the
characteristics experimentally identified for RUN16. In addition to the parameters already defined
for the sDOF numerical study of section 5, a unit moment of inertia I around the z axis, a unit
length l and angular stiffness kψ are introduced. Input accelerations white noise sequences of
unit variance are imposed and scaled such that maxt |Γx(t)| = 1 and maxt |Γψ(t)| = 0.15 and the
system (8-9) is simulated using the same previously mentioned (1/2, 1/4) Newmark scheme with
∆t =0.001 s time step. Accelerations are supposed to be measured and a 5 % white noise is added
to the two simulated time histories.

Fig. 11 shows the CMIF computed as dominant singular value of output PSD matrix (left)
and transfer matrix (right) for varying values of g0 ranging from asymptotic linear case g0 =
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0 (negligible friction forces) to g0 = 0.3 (no friction). In both cases the computation of the
PSD matrix involved 2000 non-overlapping 5 s-length rectangular windows. When dealing with
non-linear systems, besides linear modes, stationary periodic content may appear in the output
spectrum as a result of the interaction between modes (see e.g. [30] for details on NNMs and pole
combination for systems with quadratic and cubic stiffness). No such pole combination is to be
observed on the frequency plots, including for values g0 ≈ 0.01−0.04 where expected non-linearity
is important. Friction forces only yield to a large increase of damping without changing the nicely
decoupled modal nature of the dynamic response.
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Figure 11: Acceleration response (CMIF) of the simple model to an adimensional biaxial white noise (Γx,Γψ) in
terms of Power Spectral Density (left) and Transfer Matrix (right) for varying friction threshold g0.

For assessing the performance of the subspace-based identification algorithm to capture the
dominant modal response, simulations of length T = 120 s corresponding to varying threshold
values g0 are considered. The final identification results of the OO and IO algorithm (with the
same parametrization as described in section 5) are gathered in Tab. 12. In section 5, the
MPD, that was discarded from the soft validation criteria of stage (i) (see section 3) for obvious
reasons when studying the single DOF toy-model, is re-introduced here, even if only two DOFs
are involved. Indeed, spurious modes exhibit a default of alignment with the origin in the complex
plane even if very few DOFs (even two) are observed. In every case, the automated selection
algorithm [13] identified two distinct clusters of heavily populated physical candidates. As was
already noticed for the single DOF toy-model of section 5, the most problematic cases correspond
to values of g0 ∈ [0.01 − 0.04] where the proportion of nonlinear forces is important. One can
note once again that a slightly better rate of identification r is obtained by the IO algorithm in
the heavily nonlinear case g0 = 0.02. Indeed, pole-splitting and unstabilized frequency behavior
complicated the selection of the first mode in the OO case. Note that a third seemingly stable
column is present in the IO case but has been discarded because of high MPD values, unstabilized
damping properties and unrepresentative MTN values.

In a general manner, satisfying rates of identification r (above 70 %) have been observed when
studying the 2-DOFs oscillator with Coulomb friction non-linearities using OO and IO algorithm.
In each case, low MPD values have been recorded (as was also observed processing the JVP
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database, see Fig. 6 and Tab. 6), making the MPD indicator a suitable soft-validation criterion
when friction or elastoplastic non-linearity is involved.
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Analysis
No friction Kinematic friction – Increased apparent damping Static friction?

g0 = 0 g0 = 0.02 g0 = 0.035 g0 = 0.1 g0 ≥ gs0 = 0.3
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f̄ [Hz] 3.22 6.84 5.98 8.75 6.48 9.44 6.79 9.72 6.82 9.73
ξ̄ [%] 9.93 2.28 25.67 12.93 15.07 6.35 5.76 1.99 4.30 1.92

MPD [rad] 0.002 0.005 0.017 0.098 0.008 0.041 0.003 0.011 0.002 0.008
r [%] 98.7 98.7 74.0 96.0 98.7 98.7 98.7 98.7 96.0 98.7
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f̄ [Hz] 3.22 6.84 6.13 8.80 6.48 9.47 6.79 9.73 6.83 9.73
ξ̄ [%] 10.00 2.40 22.28 12.89 14.85 7.11 5.93 1.87 4.33 1.70

MPD [rad] 0.000 0.011 0.002 0.043 0.001 0.038 0.002 0.022 0.000 0.015
r [%] 97.3 97.3 83.3 95.3 94.0 98.0 98.7 97.3 91.3 98.7

Linearity 3 7 7 7 3

Targeted
f̄ [Hz] 3.20 6.84 – – – 6.80 9.73
ξ̄ [%] 10.00 2.40 – – – 4.71 1.69

Table 12: 2-DOFs toy-model – Subspace identification results in terms of apparent frequency and damping ratio for different
friction load ratio g0. (?) no relative movement, θ = 0.
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