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This work deals with the hydrodynamic interaction of two parallel circular cylinders, with identical radii, immersed in a viscous fluid initially at rest. One cylinder is stationary while the other one is imposed a harmonic motion with a moderate amplitude of vibration. The direction of motion is parallel to the line joining the centers of the two cylinders. The two dimensional fluid-structure problem is numerically handled by the Arbitrary Lagrangian-Eulerian method implemented in the open-source CFD code TrioCFD. First, we show that the fluid forces on the two cylinders are aligned with the direction of the imposed motion. Second, we show that the moderate oscillations of the moving cylinder create nonlinear effects in the fluid that strongly affect the characteristics (Fourier harmonics) of the hydrodynamic force acting on the stationary cylinder. The fluid force on the moving cylinder is shown to be poorly affected by the nonlinear effects, which makes it possible to extend the linear concept of self-added mass and damping coefficients. First, we show that the self-added coefficients decrease as Sk -1/2 , with Sk the Stokes number (dimensionless number constructed from the imposed vibration frequency). Second, we show that the self-added mass (resp. damping) decreases (resp. increases) as -KC 3 (resp. +KC 3 ), with KC the Keulegan-Carpenter number (ratio between the imposed amplitude vibration and the separation distance between the cylinders). These variations are included in new power laws derived from nonlinear regressions of the numerical results. These new power laws for the self-added coefficients combine the effect of both Sk and KC, covering the viscous (Sk ≥ 500) and weakly nonlinear (KC ≤ 0.3) regimes.

Introduction

The analysis of forced vibrations of structures immersed in flowing or quiescent fluids is of fundamental importance in many scientific and engineering fields, spanning a wide range of applications, from the nuclear industry and the flow-induced vibrations of heat exchanger tubes [START_REF] Chen | Vibration of nuclear fuel bundles[END_REF][START_REF] Chen | Dynamics of heat exchanger tube banks[END_REF][START_REF] Axisa | Random excitation of heat exchangertubes by cross-flows[END_REF], the dynamics of trees and plants [START_REF] De Langre | Effects of wind on plants[END_REF], to the energy harvesting of flexible structures [START_REF] Michelin | Energy harvesting efficiency of piezoelectric flags in axial flows[END_REF][START_REF] Virot | Coupling between a flag and a spring-mass oscillator[END_REF][START_REF] Eloy | Aeroelastic instability of cantilevered flexible plates in uniform flow[END_REF]. Since the seminal works of [START_REF] Poisson | Sur les mouvements simultanés d'un pendule et de l'air environnant[END_REF][START_REF] Green | Researches on the vibration of pendulums in fluid media[END_REF][START_REF] Stokes | On some cases of fluid motion[END_REF], a considerable amount of theoretical, numerical and experimental studies have been conducted, considering single or multiple immersed structures, rigid or flexible, with various geometries and kinematics (imposed or fluid coupled), and different fluid conditions or assumptions, see [START_REF] Chen | Flow-induced vibration of circular cylindrical structures[END_REF][START_REF] Blevins | Flow-induced vibration[END_REF][START_REF] Paidoussis | Fluid-Structure Interactions: Cross-Flow-Induced Instabilities[END_REF][START_REF] Nakamura | Flow-induced vibrations: classifications and lessons from practical experiences[END_REF][START_REF] Bazilevs | Computational fluid-structure interaction: methods and applications[END_REF][START_REF] Sigrist | Fluid-structure interaction: an introduction to finite element coupling[END_REF] for an extensive review.

For small oscillations of an immersed body, the nonlinear convective acceleration of the Navier-Stokes equation is small compared with the unsteady acceleration, see [START_REF] Lagrange | A new analytical approach for modeling the added mass and hydrodynamic interaction of two cylinders subjected to large motions in a potential stagnant fluid[END_REF]. The fluid forces are linear combinations of the velocity and the acceleration of the immersed body. The coefficients entering in these linear combinations are referred to as the added-mass term and the added-damping term. These coefficients are sensitive to the geometry of the moving body, the number of immersed structures, the degree of confinement of the problem, the viscosity of the fluid, and the characteristics of the motion (for e.g., the frequency of the motion, or in the case of a flexible structure the shape of its vibration modes, see [START_REF] Lagrange | Hydrodynamic interaction between two flexible finite length coaxial cylinders: new theoretical formulation and numerical validation[END_REF]). In many practical cases, the Stokes number, defined as the ratio of the unsteady acceleration of the Navier-Stokes equations versus the viscous term, is large enough to consider the fluid forces to be purely inertial. In such cases, the added-damping coefficient is disregarded, whereas the added-mass coefficient can be obtained from a potential theory, solving the Laplace equation for a fluid potential, with given boundary conditions on the surface of the body and on the limits of the fluid domain. The reader is referred to the books of [START_REF] Patton | Tables of hydrodynamic mass factors for translational motion[END_REF]20] for a detailed presentation on the concept of the added-mass coefficient and the related calculation in different configurations.

In this paper, we consider the two dimensional problem of two circular cylinders immersed in a quiescent viscous fluid. One cylinder is stationary while the other is imposed a harmonic motion in the direction of the line connecting the center of the two cylinders. We expand on the findings of [START_REF] Lagrange | A new analytical approach for modeling the added mass and hydrodynamic interaction of two cylinders subjected to large motions in a potential stagnant fluid[END_REF][START_REF] Lagrange | New estimations of the added mass and damping of two cylinders vibrating in a viscous fluid, from theoretical and numerical approaches[END_REF] to explore the effect of finite amplitude vibrations on hydrodynamic loading. Specifically, we depart from small structural oscillations and linear fluid-structure interaction to consider finite-amplitude structural vibrations with Keulegan-Carpenter number up to 30%. The Keulegan-Carpenter number is defined as the ratio of the vibration amplitude versus the distance between the two cylinders and is used to measure the relative effect of convective acceleration with respect to local acceleration. Here, we consider Stokes numbers from 500 to 2000 and Keulegan-Carpenter numbers from 0.005 to 0.3. In this regime, viscous effects and convection-driven nonlinearities in the fluidstructure interaction are expected to be not negligible, as demonstrated in the literature on rigid cylinders in oscillatory flows, see [START_REF] Gabbai | An overview of modeling and experiments of vortex-induced vibration of circular cylinders[END_REF][START_REF] Sarpkaya | Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers[END_REF][START_REF] Sarpkaya | Hydrodynamic damping, flow-induced oscillations, and biharmonic response[END_REF], and recent works on vibrations of slender beams in unbounded viscous fluid, see [START_REF] Aureli | Low frequency and large amplitude oscillations of cantilevers in viscous fluids[END_REF][START_REF] Aureli | Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids[END_REF]. The fluid-structure problem is numerically handled by the Arbitrary Lagrangian-Eulerian (ALE) method [START_REF] Donea | Arbitrary Lagrangian-Eulerian Methods[END_REF] implemented in the open-source CFD code, TrioCFD, see [START_REF] Angeli | Overview of the TrioCFD code: Main features, V&V procedures and typical applications to nuclear engineering[END_REF][START_REF] Angeli | FVCA8 benchmark for the Stokes and Navier-Stokes equations with the TrioCFD code -benchmark session[END_REF][START_REF] Panunzio | FSI-Vibrations of immersed cylinders. Simulations with the engineering open-source code TrioCFD. Test cases and experimental comparisons[END_REF].

The paper is organized as follows. § 2 presents the problem and the governing equations for two circular cylinders immersed in a viscous fluid initially at rest. The numerical approach used to solve the fluid-structure problem is briefly described in this section. § 3 presents the results of the numerical simulations for the fluid forces when one cylinder is stationary, and the other is imposed harmonic oscillations with different frequencies and increasing amplitudes. In § 4, nonlinear regressions of the numerical results are performed to extend the linear concept of self-added coefficients to the weakly nonlinear regime of moderate vibration amplitudes. Finally, some conclusions are drawn in § 5.

Definition of the problem and numerical approach

Presentation of the problem

We consider the two-dimensional problem of two parallel circular cylinders C j , radius R, boundaries ∂C j , immersed in a viscous stagnant fluid, characterized by its volume mass density ρ and its kinematic viscosity ν. The cylinders are separated by a distance E, as illustrated in Fig. 1. The cylinder C 1 remains stationary while C 2 is imposed a harmonic displacement U = Q sin (Ωτ ) e x , with Q the amplitude, τ the time, Ω the angular frequency and e x the direction of motion, parallel to the line joining the cylinder centers. The oscillations of C 2 generate an incompressible fluid flow (V,P) governed by the Navier-Stokes equations

∇ • V = 0, (1a) ∂V ∂τ + (V • ∇) V + 1 ρ ∇P -ν∆V = 0, (1b) 
V = 0 on ∂C 1 , (1c) 
V - dU dτ = 0 on ∂C 2 . ( 1d 
)
The linear fluid force acting on C j is the sum of a pressure and a viscous term and writes

F j = - ∂Cj P ndL + ρν ∂Cj ∇V + (∇V) T • ndL, (2) 
with n the outward normal unit vector to ∂C j , (∇V) T the transposate tensor of ∇V and dL an infinitesimal line element of ∂C j .

The dimensionless parameters of this study are

KC = Q E , Sk = R 2 Ω ν , ε = E R , (3) 
known as the Keulegan-Carpenter number, the Stokes number, and the dimensionless separation distance, respectively. In what follows, we note t = Ωτ the dimensionless time, f j = F j / ρQR 2 Ω 2 the dimensionless fluid force and f i its x-component.

Numerical approach

To solve Eq. (1), numerical simulations are performed with the open-source code TrioCFD, coupled with an Arbitrary Lagrangian-Eulerian (ALE) module. The reader is referred to [START_REF] Angeli | Overview of the TrioCFD code: Main features, V&V procedures and typical applications to nuclear engineering[END_REF][START_REF] Angeli | FVCA8 benchmark for the Stokes and Navier-Stokes equations with the TrioCFD code -benchmark session[END_REF][START_REF] Panunzio | FSI-Vibrations of immersed cylinders. Simulations with the engineering open-source code TrioCFD. Test cases and experimental comparisons[END_REF][START_REF] Donea | Arbitrary Lagrangian-Eulerian Methods[END_REF] for extensive details on the CFD code and the ALE module.

In the ALE approach, the fluid flow is computed in a domain that is deformed in order to follow the movement of the fluid-solid interface. The approach treats the mesh as a frame that moves with the arbitrary velocity V ALE . For moderate deformations, V ALE is usually defined as the solution of an auxiliary Laplace problem

C 1 • C 2 • E R R U L x L y Ω f luid
∆V ALE = 0, (4a) V ALE = 0 on ∂Ω f luid \ ∂C 2 , (4b) 
V ALE - dU dτ = 0 on ∂C 2 . ( 4c 
)
from which the kinematics of the mesh grid is updated. In this new frame of reference, the Navier-Stokes equation (1b) writes

∂JV ∂τ + J (V • ∇) V -(V ALE • ∇) V + 1 ρ ∇P -ν∆V = 0, (5a) 
with J the Jacobian of the transformation between the ALE and the Lagrange descriptions.

In our simulations, a first-order backward Euler scheme is used to time discretize the Navier-Stokes equations and the space discretization is based on the hybrid Finite Element-Volume method [START_REF] Angeli | FVCA8 benchmark for the Stokes and Navier-Stokes equations with the TrioCFD code -benchmark session[END_REF][START_REF] Fiorini | Sensitivity equation method for the navier-stokes equations applied to uncertainty propagation[END_REF] for unstructured grids, leading to the following discrete system

DV n+1 h = 0, (6a) 
M J n+1 V n+1 h -J n V n h ∆t -J n+1 AV n+1 h -L(V n h )V n+1 h + L(V n )V n+1 h,ALE -GP n+1 h = 0, (6b) 
where V h is the discrete fluid velocity, P h is the discrete fluid pressure, V h,ALE the discrete mesh velocity, ∆t the time step, M is the mass matrix, A is the discrete diffusion operator, L(V h ) is the non-linear discrete convection operator, G is the discrete gradient operator, and D is the discrete divergence operator. The superscripts n and n + 1 indicate the time step at which the variable is computed. The nonlinear convective term,

L(V n h )V n+1 h
, is approximate with the upwind MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws, see [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF]) scheme.

A projection-correction technique [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF][START_REF] Temam | Une méthode d'approximation de la solution des équations de Navier-Stokes[END_REF] is employed to solve the velocity-pressure coupling. A predicted velocity V * h is computed

J n+1 1 ∆t M -A + L(V n h ) V * h = 1 ∆t M J n V n h + J n+1 L(V n h )V n+1 h,ALE -J n+1 GP n h , (7) 
and the mass conservation is then enforced by solving a Poisson equation for pressure

DM -1 G P n+1 h -P n h = 1 ∆t DV * h . ( 8 
)
The velocity is corrected using the predicted velocity

V * h V n+1 h = V * h -∆tM -1 G P n+1 h -P n h . (9) 
Iterative solvers from the PETSc library (Portable, Extensible Toolkit for Scientific Computation, see [START_REF] Balay | Petsc users manual[END_REF]) solve the discrete equations ( 7) and ( 8).

Presentation of a case study

We now present the results of our two dimensional numerical simulations, considering the case in which the cylinder C 1 is fixed while C 2 is imposed a dimensionless displacement in the e x direction, of the form u = sin (t). To investigate the weakly nonlinear effects generated by the oscillations of C 2 on the fluid forces, the Keulegan-Carpenter number is varied in the range KC ∈ [0.005, 0.3]. Four representative values were chosen for the Stokes number, Sk ∈ {500, 1000, 1500, 2000}, thereby covering a viscous regime for Sk = 500 and an almost inviscid regime for Sk = 2000. Finally, in all our numerical simulations, the dimensionless separation distance is ε = 2. Concerning the numerical setup, the fluid properties are ν = 1.007 • 10 -6 m 2 /s, ρ = 1000 kg/m 3 and the two cylinders have the same radius, R = 1 m. The computational domain is rectangular and its size (L x = 11.5 m and L y = 10.5 m) is considered sufficiently large to minimize the end effects. To discretize the fluid domain, a locally refined grid of triangles generated by the open-source Gmsh mesh generator, see [START_REF] Geuzaine | Gmsh: a three-dimensional finite element mesh generator with built-in preand post-processing facilities[END_REF], is used. An analysis of mesh sensitivity yields convergent results with a mesh of 379610 triangles, see Table B.5 in Appendix B. This mesh refinement is used in all our numerical simulations. In Fig. 2, we show the time evolution of the x and y-components of the dimensionless fluid force f i , i ∈ {1, 2}, for KC ∈ {0.005, 0.3} and Sk = 500. First, we observe that f i has no component along the y-direction so that the fluid force f i = f i e x is aligned with the direction of motion of C 2 . Second, we show that f i is maximum on C 2 , and is a periodic function whose amplitude, angle with respect to the imposed displacement, and more generally the overall shape, are affected by the value of the Keulegan-Carpenter number. For small values of KC, i.e. small vibration amplitudes of C 2 , the magnitude of the convective term of the Navier-Stokes equations remains negligible. It follows that f i is poorly affected by the nonlinear effects from the fluid and has a sinusoidal shape, as the imposed displacement. For larger values of KC, such as KC = 0.3, the vibrations of C 2 create nonlinear effects in the fluid that strongly affect the shape of f i (especially f 1 ).

Fluid forces

To quantitatively determine the effects of KC on f i , a nonlinear least-squares formulation is used to fit a model to numerical data. As f i is a periodic function, a Fourier model of the form

f i (t) = a 0 2 + N j=1 [a j cos (jωt) + b j sin (jωt)] = a 0 2 + N j=1 h j sin (jωt + ϕ j ) , (10) 
is used with {a j , b j , ω} a set of 2(N + 1) fitting parameters. These fitting parameters, namely the real Fourier coefficients a j , b j and the angular frequency ω, are functions of the dimensionless separation distance, ε, the Stokes number, Sk, and the Keulegan-Carpenter number, KC. The magnitude h j and the phase ϕ j of the j-th Fourier harmonics of f i , see second equality of [START_REF] Stokes | On some cases of fluid motion[END_REF], are defined as h j = a 2 j + b 2 j and ϕ j = arg (b j + ia j ). With such a definition of ϕ j , the j-th Fourier harmonics of f i is in phase (resp. in phase opposition) with the imposed displacement if ϕ j = 0 (resp. ϕ j = π). From the fitting parameters {a j , b j }, we also define

T HD = 1 - a 2 1 + b 2 1 N j=1 a 2 j + b 2 j , M = a 0 2 , A = a 2 0 4 + 1 2 N j=1 a 2 j + b 2 j , (11) 
as the total harmonic distorsion, the mean value, and the Root Mean Square (RMS) amplitude of f i , respectively. The total harmonic distorsion is an indicator of the importance of the nonlinear effects present in the fluid force signal f i . The root mean square amplitude A indicates the deviation of f i from its mean value a 0 /2. Finally, we note A 0 and ω 0 the limit of A and ω, respectively, as KC → 0. In Fig. 3, we show that the magnitude of all the harmonics of the fluid force f i , i ∈ {1, 2}, decreases as the Stokes number Sk increases. Thus f i is all the more intense as the viscous effects are important, as already observed by [START_REF] Lagrange | New estimations of the added mass and damping of two cylinders vibrating in a viscous fluid, from theoretical and numerical approaches[END_REF] in the case of small oscillations of C 2 , i.e. KC → 0. For moderate oscillations of C 2 , the magnitude of all the harmonics of f 1 also increases as the Keulegan-Carpenter number KC increases. For KC = 0.3, we observe that the magnitude of the second harmonic of f 1 is about 37% of the magnitude of the fundamental harmonic, thus explaining the nonlinear effects shown in the time evolution of f 1 , depicted in Fig. 2. As expected, the strengthening of all the harmonics of f 1 as KC increases eventually yields an increase of its total harmonics distortion. On the other side, the magnitude of the fundamental harmonic (resp. sub-harmonics) of f 2 decreases (resp. increases) as KC increases. This behavior indicates that the kinetic energy of C 2 is transferred to the fluid, and distributed from the fundamental harmonic of the pressure field to the sub-harmonics. For KC ≤ 0.3, the magnitude of the sub-harmonics of f 2 remains very small compared to the magnitude of the fundamental harmonic. Still, this effect sufficiently sensitive to generate a slight increase of the total harmonic distortion of f 2 as KC increases. Finally, the variations of h j shown in Fig. 3 confirm that the moderate oscillations of C 2 create some nonlinear effects in the fluid that tend to intensify (resp. weaken) the hydrodynamic force acting on the stationary (resp. moving) cylinder, as expected from the observation of the time signals in Fig. 2. Having analyzed the variations of the magnitude of the harmonics of f i , we now proceed with the discussion on the variations of the phase ϕ 1 of the fundamental harmonic of f i . In Fig. 4 we show that the two forces have fundamental harmonics that are nearly in phase opposition, as expected from the time evolutions of the fluid forces shown in Fig. 2. At first order, the fundamental harmonic of f 1 (resp. f 2 ) is in phase opposition (resp. in phase) with the imposed sinusoidal displacement of C 2 . The phase of the fundamental harmonic of f i , i ∈ {1, 2}, is sensitive to the Stokes number and is shown to increase as Sk decreases, as already observed by [START_REF] Lagrange | New estimations of the added mass and damping of two cylinders vibrating in a viscous fluid, from theoretical and numerical approaches[END_REF] in the case of small oscillations of C 2 , i.e. KC → 0. For moderate oscillations of C 2 , the phase of the fundamental harmonic of f 1 is poorly sensitive to the Keulegan-Carpenter number whereas the phase of the fundamental harmonic of f 2 exhibits a slight decrease as KC increases. The variations of ϕ j with the Stokes and the Keulegan-Carpenter numbers imply that the direction of the fluid force f i depends on both Sk and KC. For one oscillation of the moving cylinder C 2 , the fluid force f i vanishes and reverses its direction when f i (t) = 0, i.e. when t = t

Effect of the Keulegan-Carpenter number

(1) i and t = t

(2) i . At these two specific times, the dimensionless displacement of the moving cylinder is u

(1) i = sin t (1) i and u (2) i = sin t (2) i > u (1)
i . In Fig. 5, we show that f 1 is positive (resp. negative) when

-1 ≤ u ≤ u (1) 1 (resp. u (2) 1 ≤ u ≤ 1). As f 2 is at first order in phase opposition with f 1 , it is negative (resp. positive) when -1 ≤ u ≤ u (1) 2 (resp. u (2) 2
≤ u ≤ 1). It follows that the fluid forces cause the cylinders to attract (resp. repel) each other when -1 ≤ u ≤ min u

(1) 1 , u (1) 2 (resp. max u (2) 1 , u (2) 2 ≤ u ≤ 1).
In the narrow range u

(1) i ≤ u ≤ u (2) i
the sign of f i depends on the direction of motion of the cylinder C 2 . When C 2 approaches C 1 , f 1 (resp. f 2 ) is negative (resp. positive) so that the fluid forces cause the cylinders to repel each other when max u

(1) 1 , u (1) 2 ≤ u ≤ min u (2) 1 , u (2) 2 
. On the contrary, when C 2 moves away from C 1 , f 1 (resp. f 2 ) is positive (resp. negative). In that case, the fluid forces cause the cylinders to attract each other when max u

(1) 1 , u (1) 2 ≤ u ≤ min u (2) 1 , u (2) 2 .
To assess the validity of our numerical predictions, we refer to the work of [START_REF] Stokes | On some cases of fluid motion[END_REF] who considered the small oscillations, i.e. KC → 0, of an isolated cylinder, i.e. ε → ∞, immersed in a viscous fluid initially at rest. In such a case the fluid problem is fully linear and can be solved by introducing a stream-function from which the fluid force f 2 (t) = ℜ{e it f2 } is derived, ℜ being the real part operator. For a harmonic displacement, i.e. u (t) = ℜ{e it ū} , the complex representation of the force writes f2 = ūπ

  1 + 4 √ iSk K1 √ iSk K0 √ iSk   , (12) 
with K 0 and K 1 the modified Bessel functions of second kind. The change of sign of the fluid force function occurs when t = -arg f2 /ū + kπ, k ∈ Z, leading to

(j) 2 = (-1) j | sin arg f2 /ū |. ( 13 
)
In Fig. 5 , we show that the graph of Eq. ( 13) is in line with the one obtained numerically for KC = 0.005, thereby corroborating our predictions. Having analyzed the properties of the Fourier harmonics of the fluid forces, we now proceed with the determination of the variations of the angular frequency ω, mean value M and RMS amplitude A of f i , as KC and Sk are varied. The quantities ω 0 , M 0 = 0 and A 0 , corresponding to KC → 0, are used as references. In Fig. 6, we show the variations of ω/ω 0 , M and A/A 0 for KC ≤ 0.3. For all Stokes numbers Sk ∈ {500, 1000, 1500, 2000}, we observe that ω/ω 0 is a constant function of KC. It follows that the moderate oscillations of C 2 do not significantly affect the period of f i , so that ω = ω 0 = 2π. These moderate vibration amplitudes mostly affect the dimensionless mean value M and the RMS amplitude ratio A/A 0 of f i . The mean value of f 1 (resp. f 2 ) is shown to linearly decrease (resp. increase) as KC increases. On the other hand, the RMS amplitude ratio of f 1 (resp. f 2 ) increases as KC 2 (resp. decrease as -KC 3 ) as KC increases. 

Self-added coefficients and power laws

In the previous section, we have shown that the amplitude of the sub-harmonics of f 2 remain small compared with the amplitude of the fundamental harmonic, and that even in the case of moderate vibration amplitudes of C 2 . Thus, in first approximation, f 2 is a linear combination of cos (t) and sin (t). Introducing m self = b 1 /π and c self = -a 1 /π as the self-added mass and damping coefficients, see [START_REF] Lagrange | New estimations of the added mass and damping of two cylinders vibrating in a viscous fluid, from theoretical and numerical approaches[END_REF], f 2 writes

f 2 (t) ≈ π [m self sin (t) -c self cos (t)] . (14) 
The self-added coefficients relate the fluid force acting on the cylinder C 2 due to its own motion. As a 1 and b 1 , these coefficients depend on both the Keulegan-Carpenter number, the Stokes number and the dimensionless separation distance. As shown in § 3.2, the fluid force on C 1 is affected by the nonlinear effects and so does not express as a linear combination between the velocity of C 2 and its Therefore, the linear concept of cross-added mass and damping coefficients cannot be extended to the case of moderate oscillations of C 2 . In Fig. 7, we show that m self → m 0 as KC → 0 and decreases monotonically as KC increases in the range [0, 0.3]. The self-added damping coefficient first slightly decreases from its asymptotic limit c self → c 0 as KC → 0, and eventually increases as KC increases. From these variations and in first approximation, it is assumed that the fluid added-coefficients follow power laws of the form m self = m 0 (1 + m 1 Sk qm KC pm ) and c self = c 0 (1 + c 1 Sk qc KC pc ), with m 0 , c 0 some functions of (Sk, ε) and m 1 , c 1 some functions of ε only. The self-similarity of the lines in Fig. 7, obtained for different Stokes numbers Sk ∈ {500, 1000, 1500, 2000}, also suggests that p m and p c do not depend on Sk. In our analysis, we assume that q m , p m , q c and p c actually do not depend on ε, and therefore are constant power coefficients. To precisely determine these constants, we first study the variations of m 0 and c 0 with the Stokes number, by carrying out numerical simulations for small vibrations amplitudes of C 2 , i.e. KC = 0.005. The evolutions of m 0 and c 0 are depicted in Fig. 8, for Sk ∈ [100, 900]. In agreement with the theoretical predictions of [START_REF] Lagrange | New estimations of the added mass and damping of two cylinders vibrating in a viscous fluid, from theoretical and numerical approaches[END_REF], we show that m 0 and c 0 decreases as Sk -1/2 . Noting m 00 the limit of m self as Sk → ∞ (inviscid limit, i.e. c 00 = 0), we assume that m 0 and c 0 follow power laws of the form

m 0 ≈ m 00 (ε) 1 + m 01 (ε) Sk 1/2 , c 0 ≈ c 01 (ε) Sk 1/2 , (15) 
with m 00 , m 01 and c 01 , some functions of ε. Having obtained power laws for the small oscillation terms, m 0 and c 0 , a nonlinear least-squares formulation is used to fit the numerical data shown in Fig. 7 (and given in Appendix A) to the models for moderate oscillations, i.e. m self = m 0 (1 + m 1 Sk qm KC pm ) and c self = c 0 (1 + c 1 Sk qc KC pc ). This formulation yields power constants q m = -1/4, p m = 3, q c = 1/8 and p c = 3 so that the added-mass and damping coefficients eventually write

m self ≈ m 00 (ε) 1 + m 01 (ε) Sk 1/2 1 + m 1 (ε) Sk 1/4 KC 3 , c self ≈ c 01 (ε) Sk 1/2 1 + c 1 (ε) Sk 1/8 KC 3 , (16) 
with m 1 and c 1 some functions of ε. For ε = 2, the nonlinear least-squares formulation yields m 00 = 1.009, m 01 = 2.8, m 1 = -6.5, c 01 = 3.14 and c 1 = 4.81. In Fig. 9, we show that the predictions from the power laws [START_REF] Sigrist | Fluid-structure interaction: an introduction to finite element coupling[END_REF] are in very good agreement with the numerical results, and that for all the Stokes and Keulegan-Carpenter numbers simulated. Indeed, the relative deviation δ between the numerical results and the predictions from the power laws is less than 0.25% for the self-added mass coefficient and less than 7% for the self-added damping coefficient, see Tables A.1-A.4 in Appendix A. The power laws [START_REF] Sigrist | Fluid-structure interaction: an introduction to finite element coupling[END_REF] have been obtained for Sk ≥ 500 and in the limit of moderate Keulegan-Carpenter numbers, KC ≤ 0.3. These new laws extend the concept of the self-added coefficients, initially introduced for linear problems involving small oscillations of an immersed structure, to the case of weakly nonlinear problems involving moderate oscillations.

Conclusion

In the present work, we have considered the interaction of two parallel circular cylinders immersed in a fluid at rest. Two dimensional numerical simulations have been performed to determine the fluid forces acting on the when one of them is imposed a harmonic motion with moderate vibration amplitudes.The direction of the imposed motion is parallel to the line joining the cylinder centers. First, we showed that the fluid forces on the two cylinders have only one component, along the direction of motion. Second, we showed that moderate vibration amplitudes enhanced nonlinear effects in the fluid, leading to increasing sub-harmonic Fourier components in the time signal of the fluid force acting on the stationary cylinder. The force on the moving cylinder has a strong fundamental harmonic, negligible sub-harmonics, so that it is poorly affected by the fluid nonlinear effects. From this observation, we have extended the concept of the self-added coefficients, initially introduced for linear problems involving small oscillations of the cylinder, to the case of weakly nonlinear problems involving moderate oscillations. Nonlinear regressions of our numerical results yielded new power laws for the self added-coefficients, expressed in terms of the Stokes and the Keulegan-Carpenter numbers. We showed that the two coefficients scale as Sk -1/2 , whereas the self-added mass (resp. damping) decreases (resp. increases) as -KC 3 (resp. +KC 3 ).

In future work, we will perform numerical simulations considering various values of the dimensionless separation distance, in order to derive new laws for the functions of ε appearing in [START_REF] Sigrist | Fluid-structure interaction: an introduction to finite element coupling[END_REF]. We will then investigate the highly viscous regimes, i.e. Sk ≪ 500, which require adequate meshes to accurately reproduce the fluid flow in the boundary layer of the moving cylinder. Finally, we shall investigate the case of large oscillations, i.e. KC ≫ 0.3, to reveal the limitations of the linear concept associated to the self-added coefficients. 

KC

Appendix B. Mesh convergence

In this appendix, we present the results of a mesh sensitivity analysis conducted for Sk = 900, KC = 0.005 and a dimensionless separation distance ε = 2. The Table B.5 shows that the two dimensional mesh with 379610 triangles is sufficiently refined to accurately estimate the self-added coefficients. This mesh uses two different local sizes for the elements: a small local size of 0.02 m for the elements close to the cylinders, and a large global size of 0.08 m for the other elements. m 0 c 0 Theoretical predictions of [START_REF] Lagrange | New estimations of the added mass and damping of two cylinders vibrating in a viscous fluid, from theoretical and numerical approaches[END_REF] 1 
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 1 Figure 1 -Schematic diagram of two parallel circular cylinders with radius R, separated by a distance E, immersed in a viscous stagnant fluid domain Ω f luid . The cylinder C 1 is fixed while C 2 is imposed a displacement vector U.

Figure 2 -

 2 Figure 2 -Time evolution of the dimensionless fluid force, for two different values of the Keulegan-Carpenter number, KC ∈ {0.005, 0.3}. Top figures : x-component, f i , of the fluid force. Bottom figures : y-component of the fluid force. On these figures the red (KC = 0.005) and blue (KC = 0.3) lines are superimposed. Left figure : fluid force acting on the fixed cylinder. Right figure : fluid force acting on the moving cylinder. The Stokes number is Sk = 500.

Figure 3 -

 3 Figure 3 -Evolution of the magnitude, h 1 of the fundamental harmonic of the fluid force, the normalized magnitude, h j /h 1 of the j-th harmonic, and the total harmonic distortion, T HD, as a function of the Keulegan-Carpenter number, KC, for different values of the Stokes number, Sk ∈ {500, 1000, 1500, 2000}. Left figure : fluid force f 1 acting on the fixed cylinder. Right figure : fluid force f 2 acting on the moving cylinder.
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 4 Figure 4 -Phase, ϕ 1 of the fundamental harmonic of the fluid force, as a function of the Keulegan-Carpenter number, KC, for different values of the Stokes number, Sk ∈ {500, 1000, 1500, 2000}. Left figure : fluid force f 1 acting on the fixed cylinder. Right figure : fluid force f 2 acting on the moving cylinder.

Figure 5 -

 5 Figure 5 -Direction (+e x or -e x ) of the fluid forces, depending on Sk ∈ {500, 1000, 1500, 2000}, KC ∈ {0.005, 0.1, 0.2, 0.3} and the dimensionless displacement u of C 2 . Left figure : fluid force f 1 acting on the fixed cylinder. Right figure : fluid force f 2 acting on the moving cylinder. On this figure the arrows show the direction of motion of C 2 . The black line shows the graph of Eq. (13), derived in the case of an isolated cylinder with KC → 0. In both figures, the open symbols represent numerical results. The solid (resp. dashed) lines correspond to u = u(1) i (resp. u = u (2) i ). .

Figure 6 -

 6 Figure 6 -Evolution of the angular frequency ratio, ω/ω 0 , dimensionless mean value, M , and RMS amplitude ratio A/A 0 of the dimensionless fluid force f i , as a function of the Keulegan-Carpenter number, KC, for different values of the Stokes number, Sk ∈ {500, 1000, 1500, 2000}. Left figures : fluid force f 1 acting on the fixed cylinder. figures : fluid force f 2 acting on the moving cylinder.
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 7 Figure 7 -Evolution of the dimensionless self-added coefficients, m self and c self , as a function of the Keulegan-Carpenter number, KC.

Figure 8 -

 8 Figure 8 -Evolution of the dimensionless self-added coefficients, m 0 and c 0 , as a function of the Stokes number, Sk. The solid lines are theoretical predictions from [21] and the symbols are numerical results. The horizontal dashed lines correspond to the asymptotic limits Sk → +∞. The Keulegan-Carpenter number is KC = 0.005.
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 9 Figure 9 -Comparison between the dimensionless self-added coefficients, m self and c self , obtained numerically, and those predicted by the fitted power laws (16). The shaded gray areas show the relative deviations δ ≤ 1% and δ ≤ 5%. The dashed lines correspond to δ = 0%.

Table A .

 A 2 -Comparison between the numerical results and the fitted power laws[START_REF] Sigrist | Fluid-structure interaction: an introduction to finite element coupling[END_REF] for the dimensionless self-added coefficients. The maximum relative deviation is highlighted in red color. The Stokes number is Sk = 1000.

		Numerics TrioCFD	Fitted power laws	Relative deviation (%)
		m self	c self	m self	c self	m self	c self
	0.005	1.1529	0.1383	1.1529	0.1404	0	1.5459
	0.025	1.1526	0.1382	1.1529	0.1404	0.0260	1.6198
	0.05	1.1520	0.1386	1.1527	0.1406	0.0642	1.4084
	0.1	1.1499	0.1412	1.1514	0.1419	0.1279	0.5003
	0.15	1.1463	0.1452	1.1476	0.1454	0.1108	0.1218
	0.2	1.1403	0.1522	1.1403	0.1522	0.0028	0.0367
	0.25	1.1300	0.1631	1.1282	0.1634	0.1597	0.1717
	0.3	1.1115	0.1802	1.1102	0.1801	0.1178	0.0356
	Table A.1 -Comparison between the numerical results and the fitted power laws (16) for the dimensionless
	self-added coefficients. The maximum relative deviation is highlighted in red color. The Stokes number is
	Sk = 500.						
	KC	Numerics TrioCFD	Fitted power laws	Relative deviation (%)
		m self	c self	m self	c self	m self	c self
	0.005	1.1143	0.0997	1.1143	0.0993	0	0.3987
	0.025	1.1139	0.0992	1.1142	0.0993	0.0267	0.1498
	0.05	1.1134	0.0991	1.1141	0.0994	0.0612	0.3325
	0.1	1.1117	0.1001	1.1130	0.1004	0.1114	0.3693
	0.15	1.1088	0.1030	1.1099	0.1031	0.1015	0.1049
	0.2	1.1036	0.1081	1.1040	0.10842	0.0296	0.2123
	0.25	1.0945	0.1160	1.0941	0.1170	0.0331	0.8416
	0.3	1.0769	0.1304	1.0795	0.1299	0.2274	0.3564
	KC	Numerics TrioCFD	Fitted power laws	Relative deviation (%)
		m self	c self	m self	c self	m self	c self
	0.005	1.0970	0.0839	1.0970	0.0811	0	3.3651
	0.025	1.0968	0.0828	1.0970	0.0811	0.0191	2.0319
	0.05	1.0964	0.0822	1.0969	0.0812	0.0436	1.1914
	0.1	1.0951	0.0823	1.0959	0.0820	0.0729	0.3622
	0.15	1.0926	0.0843	1.0931	0.0844	0.0509	0.0211
	0.2	1.0881	0.0883	1.0878	0.0889	0.0212	0.6583
	0.25	1.0800	0.0950	1.0791	0.0963	0.0828	1.4013
	0.3	1.0641	0.1096	1.0661	0.1074	0.1796	2.0887

Table A .

 A 3 -Comparison between the numerical results and the fitted power laws[START_REF] Sigrist | Fluid-structure interaction: an introduction to finite element coupling[END_REF] for the dimensionless self-added coefficients. The maximum relative deviation is highlighted in red color. The Stokes number is Sk = 1500.

	KC	Numerics TrioCFD	Fitted power laws	Relative deviation (%)
		m self	c self	m self	c self	m self	c self
	0.005	1.0867	0.0752	1.0867	0.0702	0	6.6559
	0.025	1.0866	0.0735	1.0866	0.0702	0.0064	4.4836
	0.05	1.0863	0.0723	1.0865	0.0703	0.0173	2.7282
	0.1	1.0853	0.0721	1.0856	0.0711	0.0243	1.3541
	0.15	1.0833	0.0735	1.0831	0.0732	0.0147	0.4382
	0.2	1.0792	0.0769	1.0782	0.0772	0.0940	0.4347
	0.25	1.0720	0.0822	1.0702	0.0839	0.1738	2.0658
	0.3	1.0580	0.0938	1.0581	0.0938	0.0139	0.0288

Table A .

 A 4 -Comparison between the numerical results and the fitted power laws[START_REF] Sigrist | Fluid-structure interaction: an introduction to finite element coupling[END_REF] for the dimensionless self-added coefficients. The maximum relative deviation is highlighted in red color. The Stokes number is Sk = 2000.

Table B .

 B 5 -Mesh convergence. The Stokes number is Sk = 900 and the Keulegan-Carpenter number is KC = 0.005.

		.11	0.105
	Dimension of the mesh	Numerics Numerics
	29620	1.09	0.134
	110116	1.11	0.112
	242916	1.12	0.108
	379610	1.12	0.106
	678 088	1.12	0.106

Appendix A. Tables of results

In this appendix, we provide the numerical and fitted values, see Eq. ( 16), of the self-added coefficients, depicted in