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Abstract

This work deals with the hydrodynamic interaction of two parallel circular cylinders, with identical radii,
immersed in a viscous fluid initially at rest. One cylinder is stationary while the other one is imposed a
harmonic motion with a moderate amplitude of vibration. The direction of motion is parallel to the line joining
the centers of the two cylinders. The two dimensional fluid-structure problem is numerically handled by the
Arbitrary Lagrangian-Eulerian method implemented in the open-source CFD code TrioCFD. First, we show
that the fluid forces on the two cylinders are aligned with the direction of the imposed motion. Second, we show
that the moderate oscillations of the moving cylinder create nonlinear effects in the fluid that strongly affect the
characteristics (Fourier harmonics) of the hydrodynamic force acting on the stationary cylinder. The fluid force
on the moving cylinder is shown to be poorly affected by the nonlinear effects, which makes it possible to extend
the linear concept of self-added mass and damping coefficients. First, we show that the self-added coefficients
decrease as Sk−1/2, with Sk the Stokes number (dimensionless number constructed from the imposed vibration
frequency). Second, we show that the self-added mass (resp. damping) decreases (resp. increases) as −KC3

(resp. +KC3), with KC the Keulegan-Carpenter number (ratio between the imposed amplitude vibration and
the separation distance between the cylinders). These variations are included in new power laws derived from
nonlinear regressions of the numerical results. These new power laws for the self-added coefficients combine the
effect of both Sk and KC, covering the viscous (Sk ≥ 500) and weakly nonlinear (KC ≤ 0.3) regimes.

Keywords: Fluid-structure interaction; Keulegan-Carpenter number; Nonlinear effects; Stokes number;
Viscous effects; Self-added coefficients; ALE method

1. Introduction

The analysis of forced vibrations of structures immersed in flowing or quiescent fluids is of fundamental
importance in many scientific and engineering fields, spanning a wide range of applications, from the nuclear
industry and the flow-induced vibrations of heat exchanger tubes [1, 2, 3], the dynamics of trees and plants [4],
to the energy harvesting of flexible structures [5, 6, 7]. Since the seminal works of [8, 9, 10], a considerable
amount of theoretical, numerical and experimental studies have been conducted, considering single or multiple
immersed structures, rigid or flexible, with various geometries and kinematics (imposed or fluid coupled), and
different fluid conditions or assumptions, see [11, 12, 13, 14, 15, 16] for an extensive review.

For small oscillations of an immersed body, the nonlinear convective acceleration of the Navier-Stokes equa-
tion is small compared with the unsteady acceleration, see [17]. The fluid forces are linear combinations of
the velocity and the acceleration of the immersed body. The coefficients entering in these linear combinations
are referred to as the added-mass term and the added-damping term. These coefficients are sensitive to the
geometry of the moving body, the number of immersed structures, the degree of confinement of the problem,
the viscosity of the fluid, and the characteristics of the motion (for e.g., the frequency of the motion, or in
the case of a flexible structure the shape of its vibration modes, see [18]). In many practical cases, the Stokes
number, defined as the ratio of the unsteady acceleration of the Navier-Stokes equations versus the viscous term,
is large enough to consider the fluid forces to be purely inertial. In such cases, the added-damping coefficient is
disregarded, whereas the added-mass coefficient can be obtained from a potential theory, solving the Laplace
equation for a fluid potential, with given boundary conditions on the surface of the body and on the limits of
the fluid domain. The reader is referred to the books of [19, 20] for a detailed presentation on the concept of
the added-mass coefficient and the related calculation in different configurations.

In this paper, we consider the two dimensional problem of two circular cylinders immersed in a quiescent
viscous fluid. One cylinder is stationary while the other is imposed a harmonic motion in the direction of the
line connecting the center of the two cylinders. We expand on the findings of [17, 21] to explore the effect of
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finite amplitude vibrations on hydrodynamic loading. Specifically, we depart from small structural oscillations
and linear fluid-structure interaction to consider finite-amplitude structural vibrations with Keulegan-Carpenter
number up to 30%. The Keulegan-Carpenter number is defined as the ratio of the vibration amplitude versus
the distance between the two cylinders and is used to measure the relative effect of convective acceleration
with respect to local acceleration. Here, we consider Stokes numbers from 500 to 2000 and Keulegan-Carpenter
numbers from 0.005 to 0.3. In this regime, viscous effects and convection-driven nonlinearities in the fluid-
structure interaction are expected to be not negligible, as demonstrated in the literature on rigid cylinders in
oscillatory flows, see [22, 23, 24], and recent works on vibrations of slender beams in unbounded viscous fluid,
see [25, 26]. The fluid-structure problem is numerically handled by the Arbitrary Lagrangian-Eulerian (ALE)
method [27] implemented in the open-source CFD code, TrioCFD, see [28, 29, 30].

The paper is organized as follows. § 2 presents the problem and the governing equations for two circular
cylinders immersed in a viscous fluid initially at rest. The numerical approach used to solve the fluid-structure
problem is briefly described in this section. § 3 presents the results of the numerical simulations for the fluid
forces when one cylinder is stationary, and the other is imposed harmonic oscillations with different frequencies
and increasing amplitudes. In § 4, nonlinear regressions of the numerical results are performed to extend the
linear concept of self-added coefficients to the weakly nonlinear regime of moderate vibration amplitudes. Finally,
some conclusions are drawn in § 5.

2. Definition of the problem and numerical approach

2.1. Presentation of the problem

We consider the two-dimensional problem of two parallel circular cylinders Cj , radius R, boundaries ∂Cj ,
immersed in a viscous stagnant fluid, characterized by its volume mass density ρ and its kinematic viscosity ν.
The cylinders are separated by a distance E, as illustrated in Fig. 1. The cylinder C1 remains stationary while
C2 is imposed a harmonic displacement U = Q sin (Ωτ) ex, with Q the amplitude, τ the time, Ω the angular
frequency and ex the direction of motion, parallel to the line joining the cylinder centers. The oscillations of C2

generate an incompressible fluid flow (V,P) governed by the Navier-Stokes equations

∇ ·V = 0, (1a)

∂V

∂τ
+ (V · ∇)V +

1

ρ
∇P − ν∆V = 0, (1b)

V = 0 on ∂C1, (1c)

V − dU

dτ
= 0 on ∂C2. (1d)

The linear fluid force acting on Cj is the sum of a pressure and a viscous term and writes

Fj = −
∫

∂Cj

PndL+ ρν

∫
∂Cj

[
∇V + (∇V)

T
]
· ndL, (2)

with n the outward normal unit vector to ∂Cj , (∇V)
T
the transposate tensor of ∇V and dL an infinitesimal

line element of ∂Cj .
The dimensionless parameters of this study are

KC =
Q

E
, Sk =

R2Ω

ν
, ε =

E

R
, (3)

known as the Keulegan-Carpenter number, the Stokes number, and the dimensionless separation distance,
respectively. In what follows, we note t = Ωτ the dimensionless time, fj = Fj/

(
ρQR2Ω2

)
the dimensionless

fluid force and fi its x-component.

2.2. Numerical approach

To solve Eq. (1), numerical simulations are performed with the open-source code TrioCFD, coupled with an
Arbitrary Lagrangian-Eulerian (ALE) module. The reader is referred to [28, 29, 30, 27] for extensive details on
the CFD code and the ALE module.

In the ALE approach, the fluid flow is computed in a domain that is deformed in order to follow the
movement of the fluid-solid interface. The approach treats the mesh as a frame that moves with the arbitrary
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Figure 1 – Schematic diagram of two parallel circular cylinders with radius R, separated by a distance E,
immersed in a viscous stagnant fluid domain Ωfluid. The cylinder C1 is fixed while C2 is imposed a displacement
vector U.

velocity VALE. For moderate deformations, VALE is usually defined as the solution of an auxiliary Laplace
problem

∆VALE = 0, (4a)

VALE = 0 on ∂Ωfluid \ ∂C2 , (4b)

VALE − dU

dτ
= 0 on ∂C2. (4c)

from which the kinematics of the mesh grid is updated. In this new frame of reference, the Navier-Stokes
equation (1b) writes

∂JV

∂τ
+ J

(
(V · ∇)V − (VALE · ∇)V +

1

ρ
∇P − ν∆V

)
= 0, (5a)

with J the Jacobian of the transformation between the ALE and the Lagrange descriptions.
In our simulations, a first-order backward Euler scheme is used to time discretize the Navier-Stokes equations

and the space discretization is based on the hybrid Finite Element-Volume method [29, 31] for unstructured
grids, leading to the following discrete system

DVn+1
h = 0, (6a)

M
Jn+1Vn+1

h − JnVn
h

∆t
− Jn+1

(
AVn+1

h − L(Vn
h)V

n+1
h + L(Vn)Vn+1

h,ALE −GPn+1
h

)
= 0, (6b)

whereVh is the discrete fluid velocity, Ph is the discrete fluid pressure,Vh,ALE the discrete mesh velocity, ∆t the
time step, M is the mass matrix, A is the discrete diffusion operator, L(Vh) is the non-linear discrete convection
operator, G is the discrete gradient operator, and D is the discrete divergence operator. The superscripts n and
n+ 1 indicate the time step at which the variable is computed. The nonlinear convective term, L(Vn

h)V
n+1
h , is

approximate with the upwind MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws, see [32])
scheme.

A projection-correction technique [33, 34] is employed to solve the velocity-pressure coupling. A predicted
velocity V∗

h is computed

Jn+1

(
1

∆t
M −A+ L(Vn

h)

)
V∗

h =
1

∆t
MJnVn

h + Jn+1L(Vn
h)V

n+1
h,ALE − Jn+1GPn

h , (7)

and the mass conservation is then enforced by solving a Poisson equation for pressure

DM−1G
(
Pn+1
h − Pn

h

)
=

1

∆t
DV∗

h. (8)

The velocity is corrected using the predicted velocity V∗
h

Vn+1
h = V∗

h −∆tM−1G
(
Pn+1
h − Pn

h

)
. (9)

Iterative solvers from the PETSc library (Portable, Extensible Toolkit for Scientific Computation, see [35])
solve the discrete equations (7) and (8).
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3. Presentation of a case study

We now present the results of our two dimensional numerical simulations, considering the case in which
the cylinder C1 is fixed while C2 is imposed a dimensionless displacement in the ex direction, of the form
u = sin (t). To investigate the weakly nonlinear effects generated by the oscillations of C2 on the fluid forces, the
Keulegan-Carpenter number is varied in the range KC ∈ [0.005, 0.3]. Four representative values were chosen for
the Stokes number, Sk ∈ {500, 1000, 1500, 2000}, thereby covering a viscous regime for Sk = 500 and an almost
inviscid regime for Sk = 2000. Finally, in all our numerical simulations, the dimensionless separation distance
is ε = 2. Concerning the numerical setup, the fluid properties are ν = 1.007 · 10−6 m2/s, ρ = 1000 kg/m3

and the two cylinders have the same radius, R = 1 m. The computational domain is rectangular and its size
(Lx = 11.5 m and Ly = 10.5 m) is considered sufficiently large to minimize the end effects. To discretize the
fluid domain, a locally refined grid of triangles generated by the open-source Gmsh mesh generator, see [36], is
used. An analysis of mesh sensitivity yields convergent results with a mesh of 379610 triangles, see Table B.5
in Appendix B. This mesh refinement is used in all our numerical simulations.

3.1. Fluid forces

Figure 2 – Time evolution of the dimensionless fluid force, for two different values of the Keulegan-Carpenter
number, KC ∈ {0.005, 0.3}. Top figures : x-component, fi, of the fluid force. Bottom figures : y-component
of the fluid force. On these figures the red (KC = 0.005) and blue (KC = 0.3) lines are superimposed. Left
figure : fluid force acting on the fixed cylinder. Right figure : fluid force acting on the moving cylinder. The
Stokes number is Sk = 500.

In Fig. 2, we show the time evolution of the x and y-components of the dimensionless fluid force fi, i ∈ {1, 2},
for KC ∈ {0.005, 0.3} and Sk = 500. First, we observe that fi has no component along the y-direction so that
the fluid force fi = fiex is aligned with the direction of motion of C2. Second, we show that fi is maximum
on C2, and is a periodic function whose amplitude, angle with respect to the imposed displacement, and more
generally the overall shape, are affected by the value of the Keulegan-Carpenter number. For small values of
KC, i.e. small vibration amplitudes of C2, the magnitude of the convective term of the Navier-Stokes equations
remains negligible. It follows that fi is poorly affected by the nonlinear effects from the fluid and has a sinusoidal
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shape, as the imposed displacement. For larger values of KC, such as KC = 0.3, the vibrations of C2 create
nonlinear effects in the fluid that strongly affect the shape of fi (especially f1).

To quantitatively determine the effects of KC on fi, a nonlinear least-squares formulation is used to fit a
model to numerical data. As fi is a periodic function, a Fourier model of the form

fi(t) =
a0
2

+

N∑
j=1

[aj cos (jωt) + bj sin (jωt)] =
a0
2

+

N∑
j=1

hj sin (jωt+ ϕj) , (10)

is used with {aj , bj , ω} a set of 2(N + 1) fitting parameters. These fitting parameters, namely the real Fourier
coefficients aj , bj and the angular frequency ω, are functions of the dimensionless separation distance, ε, the
Stokes number, Sk, and the Keulegan-Carpenter number, KC. The magnitude hj and the phase ϕj of the j-th

Fourier harmonics of fi, see second equality of (10), are defined as hj =
√

a2j + b2j and ϕj = arg (bj + iaj). With

such a definition of ϕj , the j-th Fourier harmonics of fi is in phase (resp. in phase opposition) with the imposed
displacement if ϕj = 0 (resp. ϕj = π). From the fitting parameters {aj , bj}, we also define

THD = 1− a21 + b21∑N
j=1

(
a2j + b2j

) , M =
a0
2
, A =

√√√√a20
4

+
1

2

N∑
j=1

(
a2j + b2j

)
, (11)

as the total harmonic distorsion, the mean value, and the Root Mean Square (RMS) amplitude of fi, respectively.
The total harmonic distorsion is an indicator of the importance of the nonlinear effects present in the fluid force
signal fi. The root mean square amplitude A indicates the deviation of fi from its mean value a0/2. Finally, we
note A0 and ω0 the limit of A and ω, respectively, as KC → 0.
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3.2. Effect of the Keulegan-Carpenter number

Figure 3 – Evolution of the magnitude, h1 of the fundamental harmonic of the fluid force, the normalized
magnitude, hj/h1 of the j-th harmonic, and the total harmonic distortion, THD, as a function of the Keulegan-
Carpenter number, KC, for different values of the Stokes number, Sk ∈ {500, 1000, 1500, 2000}. Left figure :
fluid force f1 acting on the fixed cylinder. Right figure : fluid force f2 acting on the moving cylinder.

In Fig. 3, we show that the magnitude of all the harmonics of the fluid force fi, i ∈ {1, 2}, decreases
as the Stokes number Sk increases. Thus fi is all the more intense as the viscous effects are important, as
already observed by [21] in the case of small oscillations of C2, i.e. KC → 0. For moderate oscillations of C2,
the magnitude of all the harmonics of f1 also increases as the Keulegan-Carpenter number KC increases. For
KC = 0.3, we observe that the magnitude of the second harmonic of f1 is about 37% of the magnitude of
the fundamental harmonic, thus explaining the nonlinear effects shown in the time evolution of f1, depicted in
Fig. 2. As expected, the strengthening of all the harmonics of f1 as KC increases eventually yields an increase
of its total harmonics distortion. On the other side, the magnitude of the fundamental harmonic (resp. sub-
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harmonics) of f2 decreases (resp. increases) as KC increases. This behavior indicates that the kinetic energy
of C2 is transferred to the fluid, and distributed from the fundamental harmonic of the pressure field to the
sub-harmonics. For KC ≤ 0.3, the magnitude of the sub-harmonics of f2 remains very small compared to the
magnitude of the fundamental harmonic. Still, this effect is sufficiently sensitive to generate a slight increase of
the total harmonic distortion of f2 as KC increases. Finally, the variations of hj shown in Fig. 3 confirm that
the moderate oscillations of C2 create some nonlinear effects in the fluid that tend to intensify (resp. weaken)
the hydrodynamic force acting on the stationary (resp. moving) cylinder, as expected from the observation of
the time signals in Fig. 2.

Figure 4 – Phase, ϕ1 of the fundamental harmonic of the fluid force, as a function of the Keulegan-Carpenter
number, KC, for different values of the Stokes number, Sk ∈ {500, 1000, 1500, 2000}. Left figure : fluid force f1
acting on the fixed cylinder. Right figure : fluid force f2 acting on the moving cylinder.

Having analyzed the variations of the magnitude of the harmonics of fi, we now proceed with the discussion
on the variations of the phase ϕ1 of the fundamental harmonic of fi. In Fig. 4 we show that the two forces
have fundamental harmonics that are nearly in phase opposition, as expected from the time evolutions of the
fluid forces shown in Fig. 2. At first order, the fundamental harmonic of f1 (resp. f2) is in phase opposition
(resp. in phase) with the imposed sinusoidal displacement of C2. The phase of the fundamental harmonic of
fi, i ∈ {1, 2}, is sensitive to the Stokes number and is shown to increase as Sk decreases, as already observed
by [21] in the case of small oscillations of C2, i.e. KC → 0. For moderate oscillations of C2, the phase of the
fundamental harmonic of f1 is poorly sensitive to the Keulegan-Carpenter number whereas the phase of the
fundamental harmonic of f2 exhibits a slight decrease as KC increases. The variations of ϕj with the Stokes
and the Keulegan-Carpenter numbers imply that the direction of the fluid force fi depends on both Sk and
KC. For one oscillation of the moving cylinder C2, the fluid force fi vanishes and reverses its direction when

fi (t) = 0, i.e. when t = t
(1)
i and t = t

(2)
i . At these two specific times, the dimensionless displacement of the

moving cylinder is u
(1)
i = sin

(
t
(1)
i

)
and u

(2)
i = sin

(
t
(2)
i

)
> u

(1)
i . In Fig. 5, we show that f1 is positive (resp.

negative) when −1 ≤ u ≤ u
(1)
1 (resp. u

(2)
1 ≤ u ≤ 1). As f2 is at first order in phase opposition with f1, it is

negative (resp. positive) when −1 ≤ u ≤ u
(1)
2 (resp. u

(2)
2 ≤ u ≤ 1). It follows that the fluid forces cause the

cylinders to attract (resp. repel) each other when −1 ≤ u ≤ min
(
u
(1)
1 , u

(1)
2

)
(resp. max

(
u
(2)
1 , u

(2)
2

)
≤ u ≤ 1).

In the narrow range u
(1)
i ≤ u ≤ u

(2)
i the sign of fi depends on the direction of motion of the cylinder C2. When

C2 approaches C1, f1 (resp. f2) is negative (resp. positive) so that the fluid forces cause the cylinders to repel

each other when max
(
u
(1)
1 , u

(1)
2

)
≤ u ≤ min

(
u
(2)
1 , u

(2)
2

)
. On the contrary, when C2 moves away from C1, f1

(resp. f2) is positive (resp. negative). In that case, the fluid forces cause the cylinders to attract each other

when max
(
u
(1)
1 , u

(1)
2

)
≤ u ≤ min

(
u
(2)
1 , u

(2)
2

)
.

To assess the validity of our numerical predictions, we refer to the work of [10] who considered the small
oscillations, i.e. KC → 0, of an isolated cylinder, i.e. ε → ∞, immersed in a viscous fluid initially at rest. In
such a case the fluid problem is fully linear and can be solved by introducing a stream-function from which
the fluid force f2 (t) = ℜ{eitf̄2} is derived, ℜ being the real part operator. For a harmonic displacement, i.e.
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u (t) = ℜ{eitū} , the complex representation of the force writes

f̄2 = ūπ

1 + 4√
iSk

K1

(√
iSk

)
K0

(√
iSk

)
 , (12)

with K0 and K1 the modified Bessel functions of second kind. The change of sign of the fluid force function
occurs when t = −arg

(
f̄2/ū

)
+ kπ, k ∈ Z, leading to

u
(j)
2 = (−1)

j | sin
(
arg

(
f̄2/ū

))
|. (13)

In Fig. 5 , we show that the graph of Eq. (13) is in line with the one obtained numerically for KC = 0.005,
thereby corroborating our predictions.

Figure 5 – Direction (+ex or −ex) of the fluid forces, depending on Sk ∈ {500, 1000, 1500, 2000}, KC ∈
{0.005, 0.1, 0.2, 0.3} and the dimensionless displacement u of C2. Left figure : fluid force f1 acting on the fixed
cylinder. Right figure : fluid force f2 acting on the moving cylinder. On this figure the arrows show the direction
of motion of C2. The black line shows the graph of Eq. (13), derived in the case of an isolated cylinder with
KC → 0. In both figures, the open symbols represent numerical results. The solid (resp. dashed) lines correspond

to u = u
(1)
i (resp. u = u

(2)
i ). .

Having analyzed the properties of the Fourier harmonics of the fluid forces, we now proceed with the
determination of the variations of the angular frequency ω, mean value M and RMS amplitude A of fi, as KC
and Sk are varied. The quantities ω0,M0 = 0 and A0, corresponding toKC → 0, are used as references. In Fig. 6,
we show the variations of ω/ω0,M and A/A0 forKC ≤ 0.3. For all Stokes numbers Sk ∈ {500, 1000, 1500, 2000},
we observe that ω/ω0 is a constant function of KC. It follows that the moderate oscillations of C2 do not
significantly affect the period of fi, so that ω = ω0 = 2π. These moderate vibration amplitudes mostly affect
the dimensionless mean value M and the RMS amplitude ratio A/A0 of fi. The mean value of f1 (resp. f2) is
shown to linearly decrease (resp. increase) as KC increases. On the other hand, the RMS amplitude ratio of f1
(resp. f2) increases as KC2 (resp. decrease as −KC3) as KC increases.
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Figure 6 – Evolution of the angular frequency ratio, ω/ω0, dimensionless mean value, M , and RMS amplitude
ratio A/A0 of the dimensionless fluid force fi, as a function of the Keulegan-Carpenter number, KC, for different
values of the Stokes number, Sk ∈ {500, 1000, 1500, 2000}. Left figures : fluid force f1 acting on the fixed cylinder.
Right figures : fluid force f2 acting on the moving cylinder.

4. Self-added coefficients and power laws

In the previous section, we have shown that the amplitude of the sub-harmonics of f2 remain small compared
with the amplitude of the fundamental harmonic, and that even in the case of moderate vibration amplitudes
of C2. Thus, in first approximation, f2 is a linear combination of cos (t) and sin (t). Introducing mself = b1/π
and cself = −a1/π as the self-added mass and damping coefficients, see [21], f2 writes

f2 (t) ≈ π [mself sin (t)− cself cos (t)] . (14)

The self-added coefficients relate the fluid force acting on the cylinder C2 due to its own motion. As a1 and b1,
these coefficients depend on both the Keulegan-Carpenter number, the Stokes number and the dimensionless
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separation distance. As shown in § 3.2, the fluid force on C1 is affected by the nonlinear effects and so does not
express as a linear combination between the velocity of C2 and its acceleration. Therefore, the linear concept of
cross-added mass and damping coefficients cannot be extended to the case of moderate oscillations of C2.

In Fig. 7, we show that mself → m0 as KC → 0 and decreases monotonically as KC increases in the
range [0, 0.3]. The self-added damping coefficient first slightly decreases from its asymptotic limit cself → c0
as KC → 0, and eventually increases as KC increases. From these variations and in first approximation, it is
assumed that the fluid added-coefficients follow power laws of the form mself = m0 (1 +m1Sk

qmKCpm) and
cself = c0 (1 + c1Sk

qcKCpc), with m0, c0 some functions of (Sk, ε) and m1, c1 some functions of ε only. The
self-similarity of the lines in Fig. 7, obtained for different Stokes numbers Sk ∈ {500, 1000, 1500, 2000}, also
suggests that pm and pc do not depend on Sk. In our analysis, we assume that qm, pm, qc and pc actually do
not depend on ε, and therefore are constant power coefficients.

Figure 7 – Evolution of the dimensionless self-added coefficients, mself and cself , as a function of the Keulegan-
Carpenter number, KC.

To precisely determine these constants, we first study the variations of m0 and c0 with the Stokes number,
by carrying out numerical simulations for small vibrations amplitudes of C2, i.e. KC = 0.005. The evolutions
of m0 and c0 are depicted in Fig. 8, for Sk ∈ [100, 900]. In agreement with the theoretical predictions of [21],
we show that m0 and c0 decreases as Sk−1/2. Noting m00 the limit of mself as Sk → ∞ (inviscid limit, i.e.
c00 = 0), we assume that m0 and c0 follow power laws of the form

m0 ≈ m00 (ε)

(
1 +

m01 (ε)

Sk1/2

)
, c0 ≈ c01 (ε)

Sk1/2
, (15)

with m00, m01 and c01, some functions of ε.
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Figure 8 – Evolution of the dimensionless self-added coefficients, m0 and c0, as a function of the Stokes
number, Sk. The solid lines are theoretical predictions from [21] and the open symbols are numerical results.
The horizontal dashed lines correspond to the asymptotic limits Sk → +∞. The Keulegan-Carpenter number
is KC = 0.005.

Having obtained power laws for the small oscillation terms, m0 and c0, a nonlinear least-squares formulation
is used to fit the numerical data shown in Fig. 7 (and given in Appendix A) to the models for moderate
oscillations, i.e. mself = m0 (1 +m1Sk

qmKCpm) and cself = c0 (1 + c1Sk
qcKCpc). This formulation yields

power constants qm = −1/4, pm = 3, qc = 1/8 and pc = 3 so that the added-mass and damping coefficients
eventually write

mself ≈ m00 (ε)

(
1 +

m01 (ε)

Sk1/2

)(
1 +

m1 (ε)

Sk1/4
KC3

)
, cself ≈ c01 (ε)

Sk1/2

(
1 + c1 (ε)Sk

1/8KC3
)
, (16)

with m1 and c1 some functions of ε. For ε = 2, the nonlinear least-squares formulation yields m00 = 1.009,
m01 = 2.8, m1 = −6.5, c01 = 3.14 and c1 = 4.81. In Fig. 9, we show that the predictions from the power laws
(16) are in very good agreement with the numerical results, and that for all the Stokes and Keulegan-Carpenter
numbers simulated. Indeed, the relative deviation δ between the numerical results and the predictions from the
power laws is less than 0.25% for the self-added mass coefficient and less than 7% for the self-added damping
coefficient, see Tables A.1-A.4 in Appendix A.

Figure 9 – Comparison between the dimensionless self-added coefficients,mself and cself , obtained numerically,
and those predicted by the fitted power laws (16). The shaded gray areas show the relative deviations δ ≤ 1%
and δ ≤ 5%. The dashed lines correspond to δ = 0%.

The power laws (16) have been obtained for Sk ≥ 500 and in the limit of moderate Keulegan-Carpenter
numbers, KC ≤ 0.3. These new laws extend the concept of the self-added coefficients, initially introduced for
linear problems involving small oscillations of an immersed structure, to the case of weakly nonlinear problems
involving moderate oscillations.
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5. Conclusion

In the present work, we have considered the interaction of two parallel circular cylinders immersed in a
fluid at rest. Two dimensional numerical simulations have been performed to determine the fluid forces acting
on the cylinders when one of them is imposed a harmonic motion with moderate vibration amplitudes.The
direction of the imposed motion is parallel to the line joining the cylinder centers. First, we showed that the
fluid forces on the two cylinders have only one component, along the direction of motion. Second, we showed
that moderate vibration amplitudes enhanced nonlinear effects in the fluid, leading to increasing sub-harmonic
Fourier components in the time signal of the fluid force acting on the stationary cylinder. The force on the
moving cylinder has a strong fundamental harmonic, negligible sub-harmonics, so that it is poorly affected by
the fluid nonlinear effects. From this observation, we have extended the concept of the self-added coefficients,
initially introduced for linear problems involving small oscillations of the cylinder, to the case of weakly nonlinear
problems involving moderate oscillations. Nonlinear regressions of our numerical results yielded new power laws
for the self added-coefficients, expressed in terms of the Stokes and the Keulegan-Carpenter numbers. We showed
that the two coefficients scale as Sk−1/2, whereas the self-added mass (resp. damping) decreases (resp. increases)
as −KC3 (resp. +KC3).

In future work, we will perform numerical simulations considering various values of the dimensionless sepa-
ration distance, in order to derive new laws for the functions of ε appearing in (16). We will then investigate
the highly viscous regimes, i.e. Sk ≪ 500, which require adequate meshes to accurately reproduce the fluid
flow in the boundary layer of the moving cylinder. Finally, we shall investigate the case of large oscillations, i.e.
KC ≫ 0.3, to reveal the limitations of the linear concept associated to the self-added coefficients.

Appendix A. Tables of results

In this appendix, we provide the numerical and fitted values, see Eq. (16), of the self-added coefficients,
depicted in Fig. A.10. These values are reported in Table A.1 for Sk = 500, A.2 for Sk = 1000, A.3 for
Sk = 1500, and Table A.4 for Sk = 2000.

Figure A.10 – Evolution of the dimensionless self-added coefficients, mself and cself , as a function of the
Keulegan-Carpenter number, KC. Open circles are numerical results. The black dashed lines are the graphs of
the fitted power laws (16).
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KC Numerics TrioCFD Fitted power laws Relative deviation (%)
mself cself mself cself mself cself

0.005 1.1529 0.1383 1.1529 0.1404 0 1.5459
0.025 1.1526 0.1382 1.1529 0.1404 0.0260 1.6198
0.05 1.1520 0.1386 1.1527 0.1406 0.0642 1.4084
0.1 1.1499 0.1412 1.1514 0.1419 0.1279 0.5003
0.15 1.1463 0.1452 1.1476 0.1454 0.1108 0.1218
0.2 1.1403 0.1522 1.1403 0.1522 0.0028 0.0367
0.25 1.1300 0.1631 1.1282 0.1634 0.1597 0.1717
0.3 1.1115 0.1802 1.1102 0.1801 0.1178 0.0356

Table A.1 – Comparison between the numerical results and the fitted power laws (16) for the dimensionless
self-added coefficients. The maximum relative deviation is highlighted in red color. The Stokes number is
Sk = 500.

KC Numerics TrioCFD Fitted power laws Relative deviation (%)
mself cself mself cself mself cself

0.005 1.1143 0.0997 1.1143 0.0993 0 0.3987
0.025 1.1139 0.0992 1.1142 0.0993 0.0267 0.1498
0.05 1.1134 0.0991 1.1141 0.0994 0.0612 0.3325
0.1 1.1117 0.1001 1.1130 0.1004 0.1114 0.3693
0.15 1.1088 0.1030 1.1099 0.1031 0.1015 0.1049
0.2 1.1036 0.1081 1.1040 0.10842 0.0296 0.2123
0.25 1.0945 0.1160 1.0941 0.1170 0.0331 0.8416
0.3 1.0769 0.1304 1.0795 0.1299 0.2274 0.3564

Table A.2 – Comparison between the numerical results and the fitted power laws (16) for the dimensionless
self-added coefficients. The maximum relative deviation is highlighted in red color. The Stokes number is
Sk = 1000.

KC Numerics TrioCFD Fitted power laws Relative deviation (%)
mself cself mself cself mself cself

0.005 1.0970 0.0839 1.0970 0.0811 0 3.3651
0.025 1.0968 0.0828 1.0970 0.0811 0.0191 2.0319
0.05 1.0964 0.0822 1.0969 0.0812 0.0436 1.1914
0.1 1.0951 0.0823 1.0959 0.0820 0.0729 0.3622
0.15 1.0926 0.0843 1.0931 0.0844 0.0509 0.0211
0.2 1.0881 0.0883 1.0878 0.0889 0.0212 0.6583
0.25 1.0800 0.0950 1.0791 0.0963 0.0828 1.4013
0.3 1.0641 0.1096 1.0661 0.1074 0.1796 2.0887

Table A.3 – Comparison between the numerical results and the fitted power laws (16) for the dimensionless
self-added coefficients. The maximum relative deviation is highlighted in red color. The Stokes number is
Sk = 1500.
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KC Numerics TrioCFD Fitted power laws Relative deviation (%)
mself cself mself cself mself cself

0.005 1.0867 0.0752 1.0867 0.0702 0 6.6559
0.025 1.0866 0.0735 1.0866 0.0702 0.0064 4.4836
0.05 1.0863 0.0723 1.0865 0.0703 0.0173 2.7282
0.1 1.0853 0.0721 1.0856 0.0711 0.0243 1.3541
0.15 1.0833 0.0735 1.0831 0.0732 0.0147 0.4382
0.2 1.0792 0.0769 1.0782 0.0772 0.0940 0.4347
0.25 1.0720 0.0822 1.0702 0.0839 0.1738 2.0658
0.3 1.0580 0.0938 1.0581 0.0938 0.0139 0.0288

Table A.4 – Comparison between the numerical results and the fitted power laws (16) for the dimensionless
self-added coefficients. The maximum relative deviation is highlighted in red color. The Stokes number is
Sk = 2000.

Appendix B. Mesh convergence

In this appendix, we present the results of a mesh sensitivity analysis conducted for Sk = 900, KC = 0.005
and a dimensionless separation distance ε = 2. The Table B.5 shows that the two dimensional mesh with 379610
triangles is sufficiently refined to accurately estimate the self-added coefficients. This mesh uses two different
local sizes for the elements: a small local size of 0.02 m for the elements close to the cylinders, and a large global
size of 0.08 m for the other elements.

m0 c0
Theoretical predictions of [21] 1.11 0.105

Dimension of the mesh Numerics Numerics
29620 1.09 0.134
110116 1.11 0.112
242916 1.12 0.108
379610 1.12 0.106
678 088 1.12 0.106

Table B.5 – Mesh convergence. The Stokes number is Sk = 900 and the Keulegan-Carpenter number is
KC = 0.005.
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