
HAL Id: cea-04332235
https://cea.hal.science/cea-04332235v1

Submitted on 8 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data management model to program irregular compute
kernels on FPGA: application to heterogeneous

distributed system
Erwan Lenormand, Thierry Goubier, Loic Cudennec, Henri-Pierre Charles

To cite this version:
Erwan Lenormand, Thierry Goubier, Loic Cudennec, Henri-Pierre Charles. Data management model
to program irregular compute kernels on FPGA: application to heterogeneous distributed system.
Lecture Notes in Computer Science, 2021, 13098, pp.91-103. �cea-04332235�

https://cea.hal.science/cea-04332235v1
https://hal.archives-ouvertes.fr


Data management model to program irregular
compute kernels on FPGA: application to

heterogeneous distributed system ?

Erwan Lenormand1, Thierry Goubier1, Löıc Cudennec2, and Henri-Pierre
Charles3

1 Université Paris-Saclay, CEA, LIST
F91191, Gif-sur-Yvette, France

{erwan.lenormand,thierry.goubier}@cea.fr
2 DGA Mâıtrise de l’Information

BP 7, 35998 Rennes, France
loic.cudennec@intradef.gouv.fr
3 Univ Grenoble-Alpes, CEA, LIST

F-38000 Grenoble, France
henri-pierre.charles@cea.fr

Abstract. This paper presents a data management model targeting het-
erogeneous distributed systems integrating reconfigurable accelerators.
The purpose of this model is to reduce the complexity of developing
applications with multidimensional sparse data structures. It relies on
a shared memory paradigm, which is convenient for parallel program-
ming of irregular applications. The distributed data, sliced in chunks,
are managed by a Software-Distributed Shared Memory (S-DSM). The
integration of reconfigurable accelerators in this S-DSM, by breaking the
master-slave model, allows devices to initiate access to chunks in order
to accept data-dependent accesses. We use chunk partitioning of multi-
dimensional sparse data structures, such as sparse matrices and unstruc-
tured meshes, to access them as a continuous data stream. This model
enables to regularize memory accesses of irregular applications, to avoid
the transfer of unnecessary data by providing fine-grained data access,
and to efficiently hide data access latencies by implicitly overlaying the
transferred data flow with the processed data flow.

We have used two case studies to validate the proposed data management
model: General Sparse Matrix-Matrix Multiplication (SpGEMM) and
Shallow Water Equations (SWE) over an unstructured mesh. The results
obtained show that the proposed model efficiently hides the data access
latencies by reaching computation speeds close to those of an ideal case
(i.e. without latency).

Keywords: Distributed Shared Memory · Field Programmable Gate
Array · Irregular application

? This work was supported by the LEXIS project, funded by the EU’s Horizon 2020
research and innovation programme (2014-2020) under grant agreement no. 825532.



2 E. Lenormand et al.

1 Introduction

As a response to the power wall problem, High Performance Computing (HPC)
systems heterogeneity is gradually increasing. Part of this heterogeneity comes
from the association of processors with co-processors. These latter allow the ex-
ecution of computational-intensive portions of applications, called compute ker-
nels, with high FLOP/W efficiency. Graphics Processing Units (GPUs) have be-
come very popular for performing high arithmetic intensity processing on dense
datasets. However, as illustrated by the efficiency on the High Performance Con-
jugate Gradient (HPCG) benchmark [1], these systems achieve only a fraction of
their theoretical peak performance and do not show efficiency gains from their
heterogeneity for irregular applications. This poor performance is due on one
hand, to the random data access patterns generated by these applications, and
on the other hand, to the complexity of porting irregular compute kernels to
GPUs. Data accesses cause saturation effects on memory subsystems and inter-
connection systems. Because GPUs are optimized to perform dense data vector
computations, running irregular compute kernels reduces their efficiency. On the
contrary, thanks to their reconfigurable architecture, Field-programmable gate
arrays (FPGAs) are particularly suitable for processing irregular compute ker-
nels [8]. The attractiveness of FPGAs for HPC systems is growing by means of
their increasing computing power and the improvement of High Level Synthe-
sis (HLS) tools. However, porting irregular compute kernels to FPGA remains
a challenging task, because random data access patterns limit the abilities of
HLS tools. Thus, designers must deal with low-level kernel design, optimization
of data structures for FPGA memory systems and orchestration of distributed
data transfers.

To address this issue, we propose a data management model for irregular
compute kernels targeting heterogeneous distributed systems with reconfigurable
accelerators.The latter is based on a shared-memory provided by a Software-
Distributed Shared Memory (S-DSM). The application datasets are sliced in
chunks managed by the S-DSM. The integration of reconfigurable accelerators
in the S-DSM allows devices to initiate accesses to chunks. In this way, all the
processing units can make fine-grained random data accesses. This unified data
access model simplifies programming and meets the needs of irregular applica-
tions. By abstracting the data structure, chunk partitioning enables to prefetch
the data as streams of chunks. This prefetching should make it possible to hide
high data access latencies by implicitly overlaying the transferred data flow with
the processed data flow. The efficiency of the proposed data management model
relies on its ability to hide latencies. To assess this efficiency, we have used two
case studies: General Sparse Matrix-Matrix Multiplication (SpGEMM) and a
tsunami simulation code. These two applications generate a lot of irregular mem-
ory accesses, which are complex to optimize because they are data-dependent.

The paper is organized as follows: Section 2 presents the data management
model, Section 3 describes the experiments conducted to validate the model,
Section 4 gives some references on related work, finally, Section 5 concludes this
paper.



Data management model to program irregular compute kernels on FPGA 3

2 Data management model

Shared memory is a convenient programming paradigm to develop multi-threaded
applications, which randomly access data. Software-Distributed Shared Memory
can be used to aggregate distributed physical memories into a shared logical
space. In this work, we consider a S-DSM for heterogeneous micro-server that has
been proposed in previous work [6]. The latter is organized as a semi-structured
super-peer network, where a set of clients are connected to a peer-to-peer net-
work of servers. Clients execute the user code and servers manage the shared
data and related metadata. The proposed data management model relies on the
integration of reconfigurable accelerators in the S-DSM. The goal is to enable
compute kernels to request access to distributed data. Obviously, this way to
access the data can lead to high access latencies. To deal with this problem, the
data management model aims to hide data access latencies by overlaying the
transferred data flow with the processed data flow. This relies on the ability to
access data as continuous streams. To do this we use chunks. The chunk is a
common object in computer science, widely used in peer-to-peer programs. This
concept is to use metadata to describe the data stored in it. Chunks are the
atomic piece of data managed by the S-DSM. Each one has an unique identifier
(chunk ID) and their maximum size can be set by the application. We use them
to represent irregular data structures, as they are convenient objects for data
management in distributed systems and their metadata allow to abstract the
stored data. From the point of view of the compute kernels, the role of the S-
DSM is to transparently provide the data and metadata corresponding to chunk
ID. By partitioning the data structures according to the access granularity of
the applications, data streams can be generated from sequences of chunk ID.
Adapting the size of chunks to the granularity of access allows to avoid the
transfer of unnecessary data. We have chosen two data structures widely used in
irregular applications to illustrate the data management model: sparse matrix
and unstructured meshes.

Sparse Linear Algebra (SLA) consists in performing linear operations on ma-
trices (or vectors) for which the majority of the elements are equal to zero. Sparse
matrices are compressed to reduce their memory footprint and to accelerate ac-
cess to their nonzero elements (NNZ). The compressed sparse row format (CSR),
shown in Figure 1b, is one of the most used sparse matrix representations. The
column indices and the values of NNZ are stored in row-major order in the ar-
rays Col and Val. RP [i] indicates the position of the first element of row i in the

0 0 A0,2 0

0 A1,1 0 A1,3

0 0 0 0

A3,0 0 0 0

(a) Dense format.

Val A0,2 A1,1 A1,3 A3,0

Col 2 1 3 0

RP 0 1 3 3 4

(b) CSR format.

(2,A0,2)

(1,A1,1) (3,A1,3)

(0,A3,0)

ID count

0

1

3

1

2

1

(c) Chunk-based CSR format

Fig. 1: Matrix representation.



4 E. Lenormand et al.

(a) Hilbert space-filling curve over the
mesh.

1

2 3

4

5

6

7

8
9

10
11

12

13
14

15
16

17

Chunk 1 Chunk 2

Chunk 3

Chunk 4

Chunk 5

Chunk 6Chunk 7

Chunk 8

Chunk 9

(b) Chunk partitioning of the mesh with
chunks of two elements.

Fig. 2: Reordering and partitioning of a 2D unstructured mesh.

arrays Val and Col and the operation RP [i+1]−RP [i] is equal to the number of
elements in the row. As shown in Figure 1c, we have adapted the CSR format to
the use of chunks. We colocalize the value and the column index of an element
to form a pair. The set of pairs representing a row is stored in a chunk. Then we
use chunks metadata to indicate the number of elements contained in the row.
This structure reduces the number of memory accesses required to read or write
a matrix row. It can be easily adapted to another compressed format (e.g. com-
pressed sparse column format). Reading or writing a matrix involves to request
access to each row and to request the transfer of rows data between the memory
and the compute kernel. Decoupling the access request and the transfer request
allows the prefetching of the data into the FPGA memory and thus hides the
access latency. Considering that the kernel is developed as a pipeline of stages,
which are separated by FIFOs, then the prefetching speed is implicitly limited by
the size of the FIFOs. This prevents the FPGA memory from being overloaded
due to too early data prefetching. In an ideal case prefetching speed corresponds
to the speed of data consumption of the following stages in the pipeline.

Shallow Water Equations (SWE) is a Finite Element Method (FEM) ap-
plications consists of loops iterating over elements, nodes, or edges of meshes.
Many HPC applications work on unstructured meshes with triangular elements
in 2D and tetrahedral elements in 3D. Typical kernels on such unstructured
meshes proceed by mesh updates - updating all elements of the mesh according
to a function of each element neighbourhood values, applying a convolution or
stencil and hence following indirections to both iterate over the mesh and to
access neighbourhood information. Consequently, the topology of the mesh and
indexing of data has a significant impact on data access locality and therefore
application performance. Space-filling curves (SFC) allow to improve data access
locality of the mesh [3]. We use this technique to do an efficient chunk parti-
tioning of the mesh. As shown in Figure 2a, a SFC is drawn in the geometric
space of the mesh. Vertices are indexed according the order in which they meet
the curve. As illustrated in Figure 2b, we apply a basic partitioning along the
curve, which consists in grouping the values of nodes of consecutive indices in
chunks of constant size. The elements are numbered in order of the smallest
index of their vertices. By following the path of the curve, most of the data of



Data management model to program irregular compute kernels on FPGA 5

the mesh could be accessed through a sliding window, whose size would not be
dependent of the mesh size. Thus, traversal of the mesh would be done through
a continuous flow of data, where the majority of chunks would be accessed only
once. Only the data of the elements located at the junction zones between the
different spaces of the curve would not be accessible through the window. By
following the curve, it is possible to identify the corresponding chunks. In this
way, a chunk ID sequence corresponding to these data can be generated. We
use these observations to design kernels iterating over unstructured meshes. The
sliding window is implemented with an addressable FIFO. Buffers are used to
access data not accessible through the sliding window.

3 Data management model validation

To validate the proposed data management model and assess its ability to hide
data access latencies, we have conducted experiments with a simulation tool.
This tool makes it possible to evaluate the performance of the system from
high level modeling without requiring a full FPGA synthesis. The experiments
focused on sparse matrix-matrix multiplication and a tsunami simulation code.

3.1 Simulation methodology

To conduct the experiments, we have chosen to use a simulation tool that we
have developed [12]. The objective was to evaluate the performance of the system
from a high-level modeling. The irregularity of the applications we are studying
and the distributed nature of the system we are targeting imply high and vari-
able data access latencies. Thus, the main objective of this tool is to evaluate
the effects of latency on the ability to speed up compute kernels using our data
management model. Performance evaluation is based on the generation of data
access latencies relating to the activity of the compute kernel. The tool uses a
hybrid method: the activity of the compute kernel is generated by a simulation
engine and latencies are produced by measuring the real latencies of S-DSM
requests executed on the physical architecture, in order to produce faithful la-
tencies. The simulation engine and the S-DSM server can be run on different
nodes. This makes it possible to study different topologies associated with dif-
ferent latency profiles. In the rest of the section three topologies are used: No
Latency which corresponds to the ideal case where all the data is stored in the
FPGA memory, Local which corresponds to the case where the FPGA is located
on the node running the S-DSM server and storing the data, and Remote which
corresponds to the case where the FPGA is located on a node remote from the
one running the S-DSM server. Local node latencies are medium (383 µs for a
read request and 207 µs for a write request) and remote node latencies are high
(1311 µs for read and 533 µs for write). We have used a Xilinx Virtex VC707 as a
reference FPGA to set up the simulation engine. Thus, the clock frequency was
set to 200 MHz and the theoretical peak memory bandwidth between the DDR
and compute kernels was 12.8 Gb/s. The simulation being non-deterministic, the
results presented are the median values of 10 runs.



6 E. Lenormand et al.

3.2 Case study 1: General Sparse Matrix-Matrix Multiplication

Request
Ai &Ci

Read
Ai

Request
Bk0,:

Ai,k0

Read
Bk0,:

Compute
Ai,k0 ×Bk0,:

PE0

Request
Bk1,:

Ai,k1
Read
Bk1,:

Compute
Ai,k1 ×Bk1,:

PE1

Request
Bk2,:

Ai,k2
Read
Bk2,:

Compute
Ai,k2 ×Bk2,:

PE2

∑
Ci

Cpi,:

Cpi,:

Cpi,:

Write
Ci

Fig. 3: Dataflow of the SpGEMM compute kernel using 3 PEs.

SpGEMM is widely used to study acceleration methods for sparse linear al-
gebra. This application generates irregular memory access patterns that makes
it complex to optimize, with usually a low efficiency in terms of floating point
operations per unit of time. We have designed the compute kernel by using
the row-wise sparse matrix-matrix multiplication algorithm formulated by Gus-
tavson [11]. Thanks to the row-wise traversal of the matrices, this algorithm is
well suited to dataflow processing and is quite straightforward to parallelize. As
illustrated in Figure 3, to parallelize the computations, the kernel is implemented
with several processing elements (PEs). The first stages of the kernel access the
nonzero elements of the first input matrix and distribute them to the PEs. Each
PE multiplies the elements received by the corresponding rows of the second
input matrix. Finally, the last stages sum the partial results computed by the
PEs and write the result matrix. The indices and the values of the matrix are
encoded with 4 bytes (Single precision computations).

As the arithmetic intensity of SpGEMM are strongly data-dependent, we
have chosen matrices, presented in Table 1, with varying sizes, densities and
patterns. Thus, the experiments allows to evaluate the capacity of the data
management model model to adapt to irregularity. In order to limit the simu-
lation time, the memory footprints of the matrices are smaller than a FPGA
DRAM. To reproduce a situation where the capacity of the accelerator memory
requires to transfer the data during the execution, we have adapted the simulated
memory capacity accordingly to the dataset. Thus, the accelerator memory have
been configured with 65536 locations of 1 kib (64 Mib). For each matrix, we have
defined the theoretical peak computation speed by considering the processing
time as the size of data transferred between the memory and the compute kernel
divided by the FPGA memory bandwidth.

Table 1: Square matrices, from [7], used for simulations. NNZ and density refer
to the source matrix. The memory footprint includes the three operand matrices.

Name Row NNZ Density (%) Memory footprint Peak GFLOP/s

consph 83334 6010480 0.087 294 Mb 2.99

cop20k A 121192 2624331 0.018 182 Mb 2.52

F2 71505 5294285 0.10 383 Mb 2.93

m t1 97578 9753570 0.10 427 Mb 3.07

s3dkt3m2 90449 3753461 0.046 134 Mb 2.94



Data management model to program irregular compute kernels on FPGA 7

consph
cop20k_A F2

m_t1

s3dkt3m2
0.0

0.5

1.0

1.5

2.0

2.5

3.0
GF

LO
P/

s

4 PE
8 PE

16 PE
32 PE

64 PE

(a) Computation speed in GFLOP/s
(higher is better). The horizontal lines are
the theoretical peak computation speeds.

consph
cop20k_A F2

m_t1

s3dkt3m2
0

20

40

60

80

100

Oc
cu

pa
tio

n 
%

4 PE
8 PE

16 PE
32 PE

64 PE

(b) Memory controller activity (occu-
pancy percentage). Close to 100% means
saturation.

Fig. 4: Performance according to the number of processing elements (PEs).

consph
cop20k_A F2 m_t1

s3dkt3m20.0

0.5

1.0

1.5

2.0

2.5

3.0

GF
LO

P/
s

No Latency Local Remote

Fig. 5: Computation speed in GFLOP/s
according the system topology (higher
is better). The horizontal lines are the
theoretical peak computation speeds.

For the first experiment, we var-
ied the parallelism level of the com-
pute kernel by implementing between
4 and 64 PEs on the local node. Fig-
ure 4a shows the computation speed
obtained for this experiment. This
shows that the increase in parallelism
makes it possible to speed up compu-
tations, up to 16 PEs. The speed up
obtained between 16 PEs and 32 PEs
is low (between 1.04 and 1.22) or even
negative. Between 32 and 64 PEs the
speed ud is always negative. This effi-
ciency limitation means that the PEs
are under-exploited due to an insuffi-
cient supply of data (data starvation).
The latter can be explained either by
a data starvation in FPGA memory
(due to excessive latencies), or by a

FPGA memory bandwidth bottleneck. Figure 4b illustrates the occupancy rate
of the FPGA memory controller. These results show that the controller is sat-
urated for the configuration with 16 PEs. This information highlights that the
FPGA memory bandwidth is the bottleneck for this kernel. This bandwidth limit
is also one of the explanations for the nonlinear speed up between the configura-
tions with 4 PEs and 16 PEs. The second experiment aimed to study the impact
of topology on performance. For this we have used a configuration with 16 PEs,
able to saturate the memory controller on the local node. The results obtained



8 E. Lenormand et al.

are illustrated in Figure 5. It shows that for the matrices consph, F2 and m t1
the performance gap with the ideal case for the local node (between 1% and 2%)
and the remote node (between 2% and 6%) is very low. This small performance
gap is mainly explained by the time to load the first data required to reach the
nominal mode of the kernel. This shows the ability of the data management
model to hide data access latencies. For the matrices cop20k A and s3dkt3m2,
the performance gap is larger, but remains relatively small, respectively 38% and
6% for local node and 54% and 32% for remote node. For these two latter, the
performance gap with the theoretical peak is also the largest, even for the ideal
case. These results highlight a correlation between data density and the ability
to speed up computations. Indeed, for the most sparse matrices, the memory
accesses at row granularity do not use all the width of the data bus. Therefore,
sparsity amplifies the effect of memory bandwidth bottleneck. Moreover, the
more the rows are sparse, more processing time is short. This limits the ability
to overlay the processing flow with the data transfer flow.

3.3 Case study 2: Shallow Water Equation

The Shallow Water Equations (SWE) are hyperbolic partial differential equa-
tions that describe a layer of fluid below a pressure surface. They can be solved
with FEM. The code under study is the TsunAWI simulation code, a production
code that implements the SWE with inundation, and whose results are used in
the Indonesia Tsunami Early Warning System (InaTEWS), and under real-time
constraints in the LEXIS European project [9]. The base data structure is a 2D
unstructured mesh. This code has been optimized for performance, especially
concerning the mesh ordering [10].

In this code, we have designed a kernel to speed up the calculation of the gra-
dient, one of the operations of the tsunami simulation code. This operation is an
interpolation of the sea surface height via barycentric coordinates. The barycen-
tric coordinates are precomputed for each vertex element. The processing of an
element requires five floating point operations, resulting in a low FLOP/byte
ratio. The kernel is implemented with several independent processing elements
(PEs). Each PE process a different part of the mesh. The size of the sliding
window is 1024 words. For the experiments, we have used five meshes presented
in Table 2. The FPGA memory have been configured with 32 Mib. This was
defined according to the maximum number of processing elements implemented
(16 PEs), in order to allow each PE to prefetch up to 512 chunks of 1 kib per

Table 2: Characteristics of the set of meshes used for the experiments.

Region Name # Elements # Vertices Memory footprint

Indian Ocean
Padang C 460 119 231 586 14 Mb
Padang F 2 470 345 1 242 653 74 Mb

Pacific Ocean
Coquibo C 3 396 755 1 709 506 102 Mb
Coquimbo F 9 762 027 4 887 927 293 Mb

Mediterranean Sea Mediterranean 9 917 645 4 999 404 298 Mb



Data management model to program irregular compute kernels on FPGA 9

Padang_C
Padang_F

Coquimbo_C

Coquimbo_F

Mediterranean0

50

100

150

200

250

300

350

400
M

illi
on

 E
le

m
en

ts
/s

1 PE
2 PE

4 PE
8 PE

16 PE

(a) Computation speed in MElements/s
(higher is better).

Padang_C
Padang_F

Coquimbo_C

Coquimbo_F

Mediterranean0

20

40

60

80

100

Oc
cu

pa
tio

n 
%

1 PE
2 PE

4 PE
8 PE

16 PE

(b) Memory controller activity (occu-
pancy percentage). Gray bars correspond
to the loading time of the first data.

Fig. 6: Performance according to the number of processing elements (PEs).

stream of data. Considering the memory footprint of each mesh and the maxi-
mum memory bandwidth of the FPGA, the theoretical peak computation speed
is approximately 426 MElements/s for all meshes.

The first experiment aimed to study the speed up efficiency of the kernel ac-
cording the parallelism level. To do this, the kernel has been implemented with
1 to 16 PEs. The computation speeds obtained are represented in Figure 6a. It
shows that the speed up efficiency decreases sharply beyond 2 PEs. The occu-
pancy rate of the memory controller illustrated in the Figure 6b provides a better
understanding of these results. In this figure, the colored bars represent the per-
centage of time the controller is active. The gray bars correspond to the loading

Pad
ang

_C
Pad

ang
_F

Coq
uim

bo_
C

Coq
uim

bo_
F

Med
iter

rane
an

0

50

100

150

200

250

300

350

400

M
illi
on

 E
le

m
en

ts
/s

No Latency Local Remote

(a) Computation speed in MElements/s
(higher is better).

Pad
ang

_C
Pad

ang
_F

Coq
uim

bo_
C

Coq
uim

bo_
F

Med
iter

rane
an

0

20

40

60

80

100

Oc
cu
pa
tio

n 
%

No Latency Local Remote

(b) Memory controller activity (occu-
pancy percentage). Gray bars correspond
to the loading time of the first data.

Fig. 7: Performance according the system topology.



10 E. Lenormand et al.

time of the first data as a percentage of simulation time. This way the space
between the colored bars and the gray bars represents the part of time during
which the controller could have been used more. For the four largest meshes the
results show a saturation of the memory controller for configurations with 4 PEs
or more. We have concluded that the bandwidth of the FPGA memory limits
the performance scaling of the kernel. From 2 PEs, the controller occupancy rate
is too high to efficiently speed up the processing by increasing the parallelism.
For the smallest mesh, the loading time of the first data represents a significant
part of the total processing time, which reduces the computation speed.

For the second experiment, we have evaluated the kernel performance ac-
cording to the topology with 4 PEs. Figure 7a and 7b respectively illustrate the
computation speed obtained and the associated occupancy rate of the memory
controller. These results show that increasing data access latency reduces com-
putation speed and highlight a correlation between the size of the mesh and the
slowdown. As shown in Figure 7b, this effect can be explained by the proportion
of the processing time spent to load the first data. For the large datasets pro-
cessing on the local node, where the load time is the least impacting, processing
speeds almost reach those of the ideal case. For the remote node, where the read
access latency is three times greater than on the local node, the slowing down of
the computation speed is relatively low for the three largest meshes (from 10%
to 17%). Finally, the performance of the No Latency configuration is close to the
theoretical peak computation speed. The gap is due to the inability to access all
the node from the sliding window, which requiring to read several times some
data. Thus, we have concluded that this mesh traversal method is almost ideal.

3.4 Discussion

The experiments have evaluated a data management model where accelerator
tasks initiate access to distributed data. The experimental scenario used was
the most disadvantageous, as the FPGA memory was empty at startup and
all data had to be transferred during runtime. The results showed that thanks
to prefetching, the programming model can efficiently hide the latencies of dis-
tributed data access. Nevertheless, this efficiency depends on the workload of the
compute kernel. In practice, the observed workloads are huge. The size of the
sparse matrices used in scientific applications can exceed ten gigabytes. The size
of the complete datasets used for the tsunami simulation are at least ten times
larger than the data subset used for the calculation of the gradient only. For
the complete simulation each element of the mesh involves a hundred floating
operation per iteration. Thus, the processing time of the largest meshes on a
high end processor can exceed several hours. This processing time is much too
long for urgent computing applications as tsunami simulation. What motivates
to distribute the processing. This work shows that an S-DSM could simplify
the distributed data management thanks to chunk partitioning and that the
presented data management model solves the data access latency issue. Exper-
iments have shown how in this model an FPGA can be supplied with data. As



Data management model to program irregular compute kernels on FPGA 11

each accelerator is master of its access to data, this model can be extended to a
distributed system integrating several FPGAs.

4 Related Work

Prior work have been done to provide shared memory for distributed systems
with accelerators. Willendberg et al. [16] have proposed an FPGA communi-
cation infrastructure compatible to GASNet. This enables processing elements
implemented on an FPGA to initiate remote direct memory access to remote
FPGAs. Unicorn [5] provides a distributed shared memory (DSM) for CPU-
GPU clusters. This is achieved with transactional semantics and deferred bulk
data synchronization. StarPU [2] uses a DSM to manage data replication for het-
erogeneous distributed systems, but this DSM is not directly exposed to users.
Recent work has studied chunk partitioning applied to sparse matrix for accel-
eration of sparse linear algebra. Winter et al. [17] have proposed an adaptive
chunk-based SpGEMM for GPU. This approach uses chunks to store the par-
tial results of multiplication, then uses the chunk metadata for the merge stage.
Rubensson and Rudberg [13] have proposed the Chunks and Tasks program-
ming model for parallelization of irregular applications. In this model, matrices
are represented by sparse quatrees of chunks. MatRaptor [15] and REAP [14]
uses a chunk-based CSR format adaptation and the row-wise product to imple-
ment SpGEMM kernel on FPGA. Barrio et al. [4] have proposed an unstructured
mesh sorting algorithm to enabling stream processing for finite element method
applications. This algorithm was applied to study the acceleration of scientific
codes on CPU-FPGA platform.

5 Conclusion

Increasing the energy efficiency of HPC systems has become a major issue.
Thanks to their reconfigurable architecture, FPGAs could increase power ef-
ficiency for HPC applications with irregular compute kernels. However, due to
their complexity of use, FPGAs are underemployed in HPC systems. In this pa-
per we have proposed a data management model for irregular compute kernel
acceleration on FPGA integrated in distributed system. This model relies on a
S-DSM to allow accelerators to initiate access to distributed data and on chunk
partitioning to abstract the irregular structure of the datasets. We have shown
how this data management model could be applied to compute kernels of sparse
linear algebra and finite element method. We have conducted experiments with
a hybrid simulation tool, which exploits the physical system to provide accurate
data. These experiments have shown that the data management model enables
to efficiently hide high data access latencies. Finally, experiments have shown
that memory bandwidth is a bottleneck. This phenomenon is normal since the
studied applications are memory bound. High Memory Bandwidth (HBM) tech-
nologies as available on current and future FPGAs should help to remove this
bottleneck and improving performance of compute kernels.



12 E. Lenormand et al.

References

1. High-Performance Conjugate Gradient (HPCG) Benchmark results (november
2020), https://www.top500.org/lists/hpcg/list/2020/11/

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2) (2011)

3. Bader, M.: Space-Filling Curves: An Introduction with Applications in Scientific
Computing. Springer Publishing Company, Incorporated (2012)

4. Barrio, P., Carreras, C., López, J.A., Óscar Robles, Jevtic, R., Sierra, R.: Memory
optimization in FPGA-accelerated scientific codes based on unstructured meshes.
Journal of Systems Architecture 60(7), 579–591 (2014)

5. Beri, T., Bansal, S., Kumar, S.: The Unicorn Runtime: Efficient Distributed Shared
Memory Programming for Hybrid CPU-GPU Clusters. IEEE Transactions on Par-
allel and Distributed Systems 28(5) (2017)

6. Cudennec, L.: Software-Distributed Shared Memory over heterogeneous micro-
server architecture. In: Euro-Par 2017: Parallel Processing Workshops (2017)

7. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw. 38(1) (2011)

8. Escobar, F.A., Chang, X., Valderrama, C.: Suitability Analysis of FPGAs for Het-
erogeneous Platforms in HPC. IEEE Transactions on Parallel and Distributed Sys-
tems 27(2) (2016)

9. Goubier, T., Martinovic, J., Dubrulle, P., Ganne, L., Louise, S., Martinovic, T.,
Slaninová, K.: Real-Time Model of Computation over HPC/Cloud Orchestration
- The LEXIS Approach. In: Proceedings of the 14th International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS-2020). Advances in
Intelligent Systems and Computing, vol. 1194 (2020)

10. Goubier, T., Rakowsky, N., Harig, S.: Fast Tsunami Simulations for a Real-Time
Emergency Response Flow. In: 2020 IEEE/ACM HPC for Urgent Decision Making,
UrgentHPC@SC 2020. pp. 21–26. IEEE (2020)

11. Gustavson, F.G.: Two Fast Algorithms for Sparse Matrices: Multiplication and
Permuted Transposition. ACM Trans. Math. Softw. 4(3), 250–269 (1978)

12. Lenormand, E., Goubier, T., Cudennec, L., Charles, H.P.: A combined fast/cycle
accurate simulation tool for reconfigurable accelerator evaluation: application to
distributed data management. In: 2020 International Workshop on Rapid System
Prototyping (RSP) (2020)

13. Rubensson, E.H., Rudberg, E.: Chunks and Tasks: A programming model for par-
allelization of dynamic algorithms. Parallel Computing 40(7) (2014)

14. Soltaniyeh, M., Martin, R.P., Nagarakatte, S.: Synergistic CPU-FPGA Accelera-
tion of Sparse Linear Algebra (2020)

15. Srivastava, N.K., Jin, H., Liu, J., Albonesi, D.H., Zhang, Z.: MatRaptor: A
Sparse-Sparse Matrix Multiplication Accelerator Based on Row-Wise Product. In:
53rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
(2020)

16. Willenberg, R., Chow, P.: A Remote Memory Access Infrastructure for Global Ad-
dress Space Programming Models in FPGAs. In: Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (2013)

17. Winter, M., Mlakar, D., Zayer, R., Seidel, H.P., Steinberger, M.: Adaptive Sparse
Matrix-Matrix Multiplication on the GPU. In: Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming (2019)


