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Abstract—Industry 4.0 involves the networking of production
equipment. This can be achieved thanks to the Time-Sensitive
Networking (TSN) set of network standards. However, this new
paradigm brings new challenges because TSN features opti-
mization relies on the dynamic characteristics of the underlying
communication network (e.g., network topology, routing strategy,
critical flows requirements, etc.). This paper focuses on the case
of the IEEE 802.1Qbv standard by exploring the applicability
of a Deep Reinforcement Learning (DRL) approach in order to
reduce the configuration time of the TSN-specific parameters,
compared to exact or heuristic methods.

I. INTRODUCTION

One of the main features of Industry 4.0 is the networking
of production equipment. From a network perspective, the
most important objective for Industry 4.0 remains the real-
time performance of communications. Time Sensitive Net-
working (TSN) is a set of standards aimed at adding real-time
characteristics to wired Ethernet networks. The first benefit
of TSN is its ability to ensure higher bandwidth and deter-
ministic communications (high synchronicity, bounded latency
and strict latency). The second benefit is its configurable
mechanisms that allow supporting a mix of heterogeneous
traffic constraints on the same medium. In this paper, we
are particularly interested in the IEEE 802.1Qbv standard -
Amendment 25: Enhancements for Scheduled Traffic [1]. The
aim of the standard is to reduce the queuing delay in switches
for critical cyclic traffic allowing then to achieve low and
bounded end-to-end latency.

In the envisaged scenarios for industry 4.0 the produc-
tions lines are reconfigurable. This implies a certain dynamic
in network topology or network flows, which makes the
configuration of TSN mechanisms challenging. Alone the
scheduling in IEEE 802.1Qbv can lead to a NP-hard well-
known problem [2]. In the literature, the main approach is
generally based on engineering tools: simulation tools like
RTaW Pegase1or mathematical optimization tools like Inte-
ger Linear Programming (ILP) formulations or Satisfiability
Modulo Theories (SMT) solvers [3]. These engineering tools
are not suitable for dynamic configuration of IEEE 802.1Qbv

because they need a pre-knowledge of all the flows that
could be in the network. In fact, the configuration process
includes retrieving the list of existing flows in the network,
the topology, the characteristics of the new flow, providing
this information to the engineering tools in order to find the
new Qbv configuration to deploy. This could take a few hours
before being able to accept/reject the flow and deploy the
decided configuration. For these reasons, existing engineering
tools are rather suitable for closed network (i.e. where the
flows are known in advance and there will be no new flows
during the operation of the network) and for offline use (i.e.
before deploying the network).

To solve the above challenges, we need a method able
to quickly respond to any new event (new flow, change in
topology, change in flows configuration, etc.) by deciding
the adequate scheduling to be deployed in the network. This
method should have a small execution time (in seconds). For
these reasons, we leverage the Reinforcement Learning (RL)
techniques to design a TSN scheduling algorithm.

RL is already widely used for routing in computer net-
works [4]. Our objective is to show that an RL agent is able
to configure the scheduling of the IEEE 802.1Qbv within a
reasonable time. To achieve this goal, we use simulations to
train and evaluate the agent. The simulations are done with
the OMNeT++/INET network simulator. INET is an open-
source model library (that provides the TSN models) for the
OMNeT++ simulation environment.

The rest of the paper is structured as follows: section II
summarizes the state of the art and section III describes the
different components in the proposed solution. Section IV
explains how we set up the training loop and provides ways
to evaluate the quality of the schedules decided by the agent.
Section V concludes the paper and gives perspectives.

II. RELATED WORK

The TSN configuration challenge has been addressed by
several works. For example, [5] presents schedulability anal-

1Available at https://www.realtimeatwork.com/rtaw-pegase/
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ysis for the real-time traffic crossing the TSN network. The
proposed framework enables to assess whether time constraints
are met. The common approach to compute a deterministic
scheduling for IEEE 802.1Qbv relies on Integer Linear Pro-
gramming (ILP) formulation [2], [6]. Such approach is effi-
cient on small networks, but may take a long time to converge
on much larger networks. Furthermore, they are offline meth-
ods, unsuitable for open and reconfigurable networks. Another
example is [7]. This solution allows online reconfiguration
of an IEEE 802.1Qbv based network. However, it relies on
an admission control mechanism, they don’t modify the Qbv
time cycle in the switches. The online schedule reconfiguration
remains an open problem in TSN [8].

The use of AI techniques seems to be promising for network
management. For instance, [9] proposes to use RL technique
for scheduling streams in 5G deterministic asynchronous
networks. The proposed solution only configures the Asyn-
chronous Traffic Shaper (ATS) mechanism described in the
IEEE 802.1Qcr standard. In [10], authors use AI techniques
to determine if a possible configuration is feasible, i.e. if it
meets the application requirements. To do so, they test simple
supervised and unsupervised learning algorithms in order to
classify possible configurations as feasible/non-feasible. The
main drawback of this solution is that the AI is only effective
on a given topology. When the topology changes, their AI
needs to be retrained. In addition, the proposed solution can’t
be used for online configuration.

Closer to our solution, [11] uses DRL to schedule and route
mixed-criticality flows in a Deterministic Networking (DetNet)
environment. DetNet operates at the layer 3 whereas TSN
operates at layer 2. In [12], the authors use DRL to assist
their IEEE 802.1Qbv scheduling algorithm. However, their
work uses the no-wait model for TSN scheduling, introduced
in [13]. In this model, the scheduling is done in the clients,
which implies to have a pre-knowledge about each flow.

III. RL-BASED SCHEDULING FOR IEEE 802.1QBV

Here, we detail the considered environment as well as the
different assumptions taken to facilitate the training task, then
we present the RL formalization that will allow to configure
IEEE 802.1Qbv.

A. Network and traffic Model

An example of a TSN network is shown in Figure 1. All
topologies are done in a way that allows the IEEE 802.1Qbv
to be the same on each switch.

The IEEE 802.1Qbv mechanism is similar in idea to the
Time-Division Multiple Access (TDMA) method. The trans-
mission time is divided into cycles of constant duration. This
cycle is itself divided into time sequences of varying lengths.
Then, each sequence is assigned to a given traffic class.

Figure 1 shows an example of how TSN works on the
network. As shown on this figure, we assume two classes of
traffic: critical traffic with high priority and ’normal’ traffic,
known as Best Effort (BE), with low priority. This simplifies
the scheduling of the streams: there are in fact only two time
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Figure 1. An illustrative example of two talkers (Talker 1 for critical traffic
and Talker 2 for BE traffic) exchanging with two listeners (Listener 1 for
critical traffic and Listener 2 for BE traffic) via TSN network composed of
two TSN switches

sequences. The first is used by critical traffic while the second
is for the rest of the traffic. We made this assumption because
of the difficulty of making DRL work. It makes it possible
to have simple actions. We assume that end stations acting as
talkers and listeners are fixed. We considered two talkers and
two listeners.

For RL training to be effective, the environment should
change from one episode to another. In our case, the number
of switches (i.e. number of hops) connecting talkers to listener
as well as the theoretical capacity of links varies. The critical
traffic packets size is randomly determined in each episode.
Also, their emission interval varies from episode to another.
Furthermore, at the beginning of each episode, a new latency
deadline is randomly computed.

To evaluate whether the IEEE 802.1Qbv schedule allows
ensuring deterministic communications, we need to check
that the maximum allowed end-to-end delay (i.e. deadline)
is not exceeded. This can be achieved through a good IEEE
802.1Qbv schedule as we assume that all switches have the
same processing delay and all links have the same capacity.

We assume that the duration of the time sequence reserved
for critical traffic should be equal to two times the duration
of the emission of one frame. We do this to ensure that
critical traffic has time to reach its destination. Under these
assumptions, the configuration of IEEE 802.1Qbv implies
determining the adequate value for the cycle duration (in
nanoseconds).

In this work, we assumed a perfect time synchronization,
i.e., IEEE 802.1AS is configured and properly working. This
hypothesis is reasonable as we focus on configuring IEEE
802.1Qbv, which needs IEEE 802.1AS to work.

B. RL formalization

The RL relies on five major components (Figure 2): the
environment and the agent on the one hand, the RL formaliza-
tion (reward, state, action) on the other hand. The interactions
between the agent and the environment are discrete: at each
step t, the agent receives a new state and reward, and makes an
action. An episode is then a sequence of interactions between
the agent and the environment, that ends with a terminal state.
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Figure 2. The interactions between the agent and the environment

1) State: The state of the environment can be seen as an
image of the environment at an instant t. The agent will take
decisions based on it. In our case, it includes information
about the network topology, about each flow depending on its
priority and about the measured end-to-end latency for critical
traffics and the Qbv configuration. The difference between
the state at instant t and at instant t + 1 is the changed
Qbv configuration and the measured end-to-end latency. We
define two types of terminal states: when the agent ’wins’
(i.e., it solves the problem) and when the agent ’loses’ (i.e.,
the problem can’t be solved anymore). In our case, the state
space (which includes all potentials states) is huge. This is
because the range of the possible values (for the latencies for
example) is huge, too.

2) Action: The action consists in changing the IEEE
802.1Qbv configuration. As the goal is to find an appropriate
cycle length (i.e. an integer that gives the cycle duration in
nanoseconds), the action consists of increasing or decreasing
this parameter at each step.

3) Reward: The reward is used to evaluate the new con-
figuration. It is determined according to the measured end-to-
end latency for critical traffic as well as the ratio of received
packets for each flow. We only give negative rewards to the
agent, in order that it tends to quickly find a solution (as its
goal is to maximize its reward over the long term).

C. Agent

The agent is the place where the learning algorithm will take
place. As we have a very huge state space, we are forced to use
an algorithm able to do approximation, because it is unrealistic
to map each state to an action within a policy. It is showed
in [14] that we can approximate a function with a neural
network, which is the base idea behind DRL. Furthermore,
we need to explore the state space properly; otherwise, the
agent will be unable to resolve all situations. Our agent relies
on the use the Soft Actor-Critic (SAC) [15] learning algorithm.
SAC is an algorithm that uses neural networks to approximate
an optimal policy and that will encourage the agent to explore
the state space, using the entropy of the policy (i.e., it makes
the agent very unpredictable during the early phases of the
training).

IV. EVALUATION

We present in this section the evaluation of our RL-based
scheduling for TSN. We begin by explaining how we designed

the training loop where the proposed RL agent will be trained,
using a specific environment as depicted in Figure 3.

A. Implementation

Our implementation includes three components: the en-
vironment (is a simulation tool), the RL-agent (the Python
implementation of the SAC algorithm) and the environment’s
interface with the RL-agent (OmnetppEnv).

OMNeT++ 5.5.1

INET Framework 4.1.2
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Figure 3. Architecture of the proposed solution

The environment on which the agent is trained is mod-
eled using the network simulator OMNeT++/INET2and the
extension NeSTiNg [16]. OMNeT++ and NeSTiNg have been
recommended by the IEEE 802.1 TSN Working Group when
it comes to performing TSN network simulations. The simula-
tions are parametric. The agent can launch a simulation while
providing as arguments the links’ capacity, the switch number,
critical traffic characteristics, and the Qbv configuration.

When a simulation ends, the agent retrieves the end-to-end
latency per packet and the number of packets sent/received
per flow. NeSTiNg reads the IEEE 802.1Qbv configuration
through XML files. Therefore, the agent simply modifies this
XML files with the schedule that it has decided. In order to
accelerate the training, the simulation time is set to 0.1 second
each time. In fact, OMNeT++/INET simulation does not allow
parallelization.

Regarding the RL-agent implementation, we used the
RL Baselines3 Zoo [17] which is build upon Stable-
Baselines3 [18], a set of reliable and open source implemen-
tations of RL algorithms, written in Python.

One of the hardest tasks in RL is to implement the interac-
tions between the agent and the environment. To achieve that,
one solution is to use a library, called OpenAI Gym [19], that
allows to model RL problem. We conceived and developed
a module called OmnetppEnv which tasks are to interpret

2Available at https://omnetpp.org/ and https://inet.omnetpp.org/



the actions provided by the agent and to translate them into
instructions for OMNeT++ and to translate the results of the
simulation into a reward and a new state that can be interpreted
by the agent.

B. Preliminary evaluation

We trained our agent over 50000 steps. At the end of the
training, we tested the agent on an environment unknown by
the agent. The test environment is composed of 5 switches
and 4 endnodes. The Ethernet links have 1 Gbps capacity.
The TSN packets have a payload size of 1000 Bytes and are
sent each 500 µs. The TSN deadline is of 2.5 ms. The BE
packets have a payload size of 500 bytes and are sent each
200 µs. We will verify whether the designed agent is able
to find a good IEEE 802.1Qbv configuration that allow to
respect the deadline imposed by TSN traffic. The evaluation
is based on three observations: whether the TSN deadline has
been respected, whether the proposed configuration led to a
percentage of packet loss and how much time was needed by
the agent to come out with a good configuration The time
needed to configure the network is monitored because the
objective of this study is to determine whether our solution
is an interesting approach to, in the end, configure a complex
industrial network.

Figure 4 shows the measured end-to-end latency for the
TSN traffic during the first 1000ms of the simulation. We note
that the scheduling decided by the agent respects the deadline
imposed by the TSN traffic.
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Figure 4. End-to-end delays of the TSN flow during the first 1000ms of the
simulation

V. CONCLUSION AND FURTHER WORK

In this article, we proposed an RL-based configuration agent
for IEEE 802.1Qbv scheduling in TSN networks. The next
step will consist in conducting more tests and evaluation
studies on the agent. In addition, in this work, we made some
assumptions to simplify the scheduling problem from the RL
point of view. Those assumptions allow investigating whether
the RL-agent is capable to configure Qbv in simple scenarios.

In the future, we intend to relax these assumptions in order to
tend toward a more realistic simulation.
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