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Abstract

This work describes quasi real time flaw(s) characterization in conductive

plate(s) through the inversion of eddy current testing (ECT) signals using

learning by examples (LBE) paradigm. Within the framework of LBE, a fast

and accurate learning model is fitted on an optimal training set based on

simulated eddy current testing data and the corresponding set of parameters

during a preliminary offline phase. More specially, the optimal training set

has been generated in the offline phase by adopting an adaptive sampling

strategy through exploiting Partial Least Squares (PLS) feature extraction

and output space filling (OSF). Subsequently, a non linear model is fitted on

the training set and used to predict the set of parameters associated to an

unknown (possibly large) test set during the so-called online phase. Different

models, i.e., learning algorithms, such as Support Vector Regression (SVR),

Kernel Ridge Regression (KRR), Relevance Vector Regression (RVR) and
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Augmented Radial Basis Function (A-RBF) have been adopted in order to

build different accurate predictors. Afterwards, quasi real-time inversion has

been performed on unknown test set by utilizing the corresponding trained

models. Comparative results are reported through numerical and experi-

mental data sets to assess the inversion performance of different learning

algorithms based on the PLS-OSF sampling strategy.

Keywords: Eddy Current Testing, Real Time Inversion, Learning By

Examples, Partial Least Squares, Output-Space-Filling, Support Vector

Regression, Kernel Ridge Regression, Relevance Vector Regression,

Augmented Radial Basis Function.

1. Introduction

Nowadays, machine learning and statistical methods are becoming per-

vasive data analysis tools in many scientific fields ranging from signal and

image processing, chemometrics, biophysics to biomedical imaging and many

more. In the very recent years, non-destructive testing scientific community

is starting also to profit of the most advanced machine learning methods in

order to enhance the capability of already established procedures. That is,

automatic classification and regression tasks can be performed in a very effi-

cient way by enabling almost real-time feedback to on field operators during

inspection campaigns. In this context, the coming machine learning tools

could be applied in order to enhance the accuracy in inspections and miti-

gate, to some extents, decision of errors due to the so called human factor.

In this paper, we studied and implemented a machine learning method-

ology targeting regression tasks in view of crack characterization. Inverse
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problem solutions in electromagnetic non-destructive testing (E-NDT) can

be solved in iterative [1], [2] and non-iterative [3], [4], [5] approaches. Due

to higher computational complexity of the iterative solutions for minimiz-

ing certain cost function related to the discrepancy between simulation and

observation, non-iterative approaches are gaining more interest for real time

inversion. Application of machine learning algorithms started to appear in

E-NDT almost three decades ago. Authors in [6] showed eddy current testing

(ECT) signals interpretation dealing with classification problem. Longitudi-

nal and transverse surface-breaking notches detection and characterization

are shown in [7] by using time-domain parameters as the functions of digitized

in-phase and quadrature components of probe impedance. Reconstruction of

stress map in the strained metallic plates by using electromagnetic measures

have been exploited in [8] through support vector regression (SVR). Combi-

nation of principal component analysis (PCA) feature extraction and k-mean

algorithms is used [9] for cracks detection and classification by applying pulse

eddy current testing. Defect localization, and classification tasks are explored

in [10] by applying Fisher linear discriminant analysis (FLDA) feature ex-

traction with support vector machine (SVM) by applying pulse eddy current

testing. In [11], Tikhonov regularization has been applied as an inversion

algorithm for visualization of the geometric profile and size of the cracks

through the determination of the 2D image of the eddy current density.

In this work, an adaptive sampling strategy has been addressed for ECT

crack characterization problem in order to increase the prediction ability of

machine learning algorithms (refers as learning algorithms hereafter) within

the framework of Learning by Examples (LBE) [5], [12], [13] paradigm. LBE
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can be formulated into two phases approach. A fast and accurate model is

built on a training set of input-output (I/O) pairs at the preliminary offline

phase by regression/prediction techniques (i.e., learning algorithms). During

the second phase (online phase), the developed model from offline phase

is used to predict the output associated to an unknown test sample. The

performance of different learning techniques for crack detection, localization

and characterization depends on the particular choice of the training set gen-

eration. Especially, the choice of optimal features selection/extraction from

ECT signal space and selection of the corresponding crack parameters from

parameter space have impacts on inversion accuracy. Moreover, in case of

very time consuming simulations/experiments, one needs to face limitations

of available data (e.g., samples). Towards this end, this work describes an

adaptive-sampling strategy which combines Partial Least Squares (PLS) [14]

feature extraction and modified version of output space filling (OSF) [15].

This strategy aims to uniformly explore the extracted feature space that col-

lects enough information during training set generation phase [16], [17], [18].

Different learning algorithms such as Support Vector Regression (SVR) [19],

Kernel Ridge Regression (KRR) [20], Relevance Vector Regression (RVR)

[21] and Augmented Radial Basis Function (A-RBF) [22] have been utilized

for accurate training model creation and real time flaw characterization by

the corresponding trained model. Rather than finding the optimal learning

algorithm, the main objective and contribution of this work is to show the

impact and robustness of the mentioned PLS-OSF adaptive sampling ap-

proach on inversion by applying different learning algorithms in presence of

corrupted (additive synthetic noise) test sets as well as experimental data.
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Therefore, initially the performance evaluation of the mentioned prediction

approaches on the data set obtained by PLS-OSF sampling strategy will be

explored in presence of noisy test set and compared with more standard sam-

pling approach (i.e., full factorial grid (GRID) [12]). Finally, a set of unknown

samples consisting in real experimental data are utilized for evaluating the

performance of crack characterization. The paper is organized as follows.

In Section 2, a brief summary on the mathematical formulation of the eddy

current signal modelling is provided. Thus an exhaustive description of the

adaptive sampling strategy and the addressed learning methods employed in

the paper are described. In Section 3, training and test set configurations are

provided for both numerical and experimental cases. Moreover, a compar-

ative analysis of the treated LBE solutions on numerical and experimental

data are detailed in Section 4. Concluding remarks and further research

directions are outlined in Section 5.

2. Mathematical formulation

2.1. Problem definition

Let us consider a homogeneous conductive specimen inspected by two

coils working in emitting-receiving mode as the one shown in Fig.1. The pres-

ence discontinuities within the inspected medium (e.g., flaws, voids, inclu-

sions, etc.) perturb the eddy current flow compared to the flawless specimen.

The differential signal between eddy currents in healthy and flawed medium

represents the so called crack signature or ECT signal signature. Magnitude

and phase of the ECT signals are changed in function of the crack parameters

e.g., crack geometry, conductivity, position in the specimen, probe geome-
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try, specimen characteristics etc. Numerical modelling of ECT signals aims

at simulating inspection problems in which all these quantities vary. For

sake of simplicity we introduce the modelling based on the inspection of a

plate structure affected by a three dimensional crack with rectangular sec-

tion. The extension of the model described hereafter has been provided for

planar multi-layered structures affected by multiple cracks elsewhere [23].

Let us describe the presence of the crack as a local variation of conductiv-

ity described as δσ (r) = σc (r)−σ, where σ stands for the plate conductivity

and σc (r) stands for the crack conductivity at the point r = (x, y) which

represents a coordinate in a three dimension Cartesian space. The eddy

currents are induced within the specimen by a driven coil and having the

incident electric field within the specimen in absence of flaw(s) described by

Einc (r). Considering the Volume Integral Method (VIM) formalism [24], one

can show that the total field within the crack zone Etot (r) is obtained in

terms of the following Fredholm equation of second kind

Etot (r) = Einc (r) + iωµ0

∫
Vf

G (r, r′) δσ (r′)

Etot (r′) dVf . (1)

In equation (1), Vf stands for the the volume occupied by the flaw and G (r, r′)

is the electric-electric dyadic Green function which is employed to describe

the effects of a electric dipole source located at r′ on the electric field at the

position r. Equation (1) is solved by using the method of moments thus

the unknown of the problem i.e., the equivalent electric dipole density in the

crack zone d (r) = Etot (r′) δσ (r′), is retrieved. Consequently, the impedance

variation on the receiving coil at the k-th scanning position with k = 1, ..., K,
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can be calculated via the reciprocity theorem as

∆Zk =
1

I2

∫
Vf

δσ (r′k) Einc (r′k) · Etot (r′k) dVf . (2)

In this paper, in order to describe the different crack configurations, we

have chosen to define the volume Vf with a set of Q = 3 descriptors defined

through the vector p = (lc, hc, wc) where the different components represent

the crack length, height and width, respectively. Crack center and direc-

tion are assumed to be a priori for the described problem. However, in case

of other problems (e.g., crack localization or crack characterization and lo-

calization), crack position parameters can be defined by considering them

within vector p. For sake of brevity, hereafter we refer to equation (2) as

∆Zk = F
{

r′k, p
}

where F stands for the employed black box forward solver.

In this work we have employed the CIVA software [25] in order to carry out

the simulation campaign. Due to their complex valued nature, ECT signals

are laying in a 2K-dimensional feature space which can be very large when

a large number of coil positions are needed to properly describe the signal in

space. Furthermore, ECT signals may not vary smoothly in function of the

different crack parameter combinations thus a possibly high number of sam-

ples is needed in order to generate the suitable training set. These two issues

make the learning problem very cumbersome to address in the native 2K-

dimensional feature space, this problem is known in the literature as curse of

dimensionality (COD). In order to overcome this issue, this paper proposed

a strategy in which the ECT signals are projected first onto a latent space,

i.e. the extracted features space, via PLS having a dimension J << 2K.

Subsequently, we propose an adaptive algorithm called PLS-OSF aiming at

homogeneously fill the the projected feature space. We will show that this
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strategy leads to an uneven sample filling of the parameter space. The sam-

ples locations obtained by the adaptive algorithm are such that an higher

emphasis is provided on the set of parameters “carrying” more information

content i.e., the ones for which the outputs vary more.

Figure 1: Example of the studied plate geometry.

Figure 2: Flow chart representation of PLS-OSF sampling.

2.2. Adaptive sampling through feature extraction

The sampling strategy apply, as a first step, the PLS feature extraction on

the ECT signal space N4Z to reduce the dimension of N4Z . Subsequently,

an adaptive sampling strategy is performed directly in the reduced extracted
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feature space NT in order to retrieve the lowest number of training samples

during training phase. The following steps describe the iterative procedure

of PLS-OSF sampling approach summed-up by the flow chart in Fig. 2. It

is worth to be mentioned that this preliminary and mandatory stage, also

known as offline phase, enable to build suitable I/O pairs for building optimal

training model.

i Initialization- Generate N0 number of initial samples by using a uniform

GRID (i.e., full factorial grid) sampling [12] within the parameter space

Np. Thus, a matrix of defect parameters p = (p(n);n = 1, ..., N0) having

(N0 ×Q) dimension is formed, where p(n) is the n-th row of p. By using

F{.}, generate the associated ECT coil signals having (N0 × 2K) feature

matrix 4Z =
(
4Z(n);n = 1, ..., N0

)
, where n-th signal is represented

by 4Z(n). The n-th signal vector of 2K ECT features in the N4Z , is

represented by 4Z(n) =
{(
<
{
4Z(n)

k

}
;=
{
4Z(n)

k

})
; k = 1, ..., K

}
.

ii PLS Feature Extraction- In this step, the 2K-dimension ECT fea-

tures associated to the ECT signal are reduced to J-dimension extracted

features where J << 2K. Considering a data set composed by N0

samples, we refer to the predictors as the set of whole ECT signals

4Z∗ =
[
<
{
4Z
}
,=
{
4Z
}]

with 4Z∗ ∈ RN0×2K and to the responses

as the set of p∗ parameters having size RN0×Q. 4Z∗ and p∗ are the zero

mean versions of 4Z and p, respectively. That is, each of the columns

of 4Z and p has been centered by subtracting to the mean value of that

column. The underlying concept in PLS algorithm assume that predic-

tors and responses can be properly described by a linear combination of a

subset of J variables. These variables are also known as latent variables
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or extracted features which maximize the covariance between the predic-

tors and responses. PLS decomposes the predictors 4Z∗ and responses

p∗ such that [14]:

4Z∗ = TP> + E

p∗ = TC> + F
, (3)

where P ∈ R2K×J is the predictors loading matrix and E ∈ RN0×2K is

the matrices of residuals associated to the predictors. C ∈ RQ×J and

F ∈ RN0×Q the response loading and the matrices of residuals associ-

ated responses, respectively. Finally, T ∈ RN0×J is the score matrix and

superscript “>” stands for transpose operation. One can show that the

score matrix can be defined as T = 4Z∗ ×W with W ∈ RN0×J is the

so-called weights matrix and it is calculated such that each column of T is

orthogonal to each other. The columns of T represent the latent variables

associated to a given ECT signal. T is obtained by multiplying 4Z∗ with

W that maximizes the covariance between 4Z∗ and p∗. In this sense, T

can be seen as the projection of 4Z∗ signal having 2K-dimensions onto a

J-dimensional space. In this paper the weights have been calculated by

using SIMPLS algorithm [26] as detailed in Annex 1. Assign the number

of training sample Niterative = N0 and construct an initial training set

D̂Niterative
=
{(

T(n); p(n)
)

;n = 1, ..., Niterative

}
for the adaptive step.

iii Adaptive Sampling- Generate V candidate samples within the pa-

rameter space (i.e., Np) by p(v)
cand

=
(
p

(v)
cand,q; q = 1, ..., Q

)
through Latin

Hypercube Sampling (LHS) strategy where v = 1, ..., V . An estima-

tion of the J-dimensional set of extracted features corresponding to each

v-th candidate, T̃
(v)

cand is retrieved by applying a multi-dimensional lin-
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ear interpolator on D̂Niterative
. Select the optimal v = vopt candidate

(i.e., p
(vopt)
cand ) from V such that the minimum distance between the ob-

tained extracted features T̃
(vopt)

cand and all the available extracted features

T(n) (n = 1, ..., Niterative) within D̂Niterative
is maximized [i.e., vopt =

arg (maxv=1,..., V {minn=1,..., N [dvn]})]. dvn is the Euclidean distance be-

tween T̃
(v)

cand (v = 1, ..., V ) and T(n)(n = 1, ..., Niterative), which can

be described by dvn =

√∑J
j=1

(
T̃

(v)
cand,j − T

(n)
j

)2

. The ECT features

4Z(vopt)

cand
=
{(
<
{
4Z(vopt)

cand,k

}
;=
{
4Z(vopt)

cand,k

})
; k = 1, ..., K

}
associated to

the selected candidate sample is computed by utilizing F{.}. Finally, the

set of extracted features is obtained by T
(vopt)
cand =

(
4Z(vopt)

cand

)∗
×W. Finally,

update the training set with D̂Niterative+1 = D̂Niterative
∪
{

T
(vopt)
cand ; p

(vopt)
cand

}
and update Niterative = Niterative + 1. We shall refer to this adaptive sam-

pling schema a customized OSF version (i.e., candidate parameters are

chosen such that features are uniformly distributed).

iv Stop Criterion- The adaptive sampling step adds new sample iteratively

until Niterative = N (N is the desired/feasible training size).

Figure 3 represents the exploration of adaptive training samples generation

in parameter space as well as in extracted feature space. In Fig. 3, fea-

ture space is represented for the first two extracted features (out of five)

based on the obtained training set. At this stage, different predictions tech-

niques have been utilized to train separately q-th set of I/O pairs D̂N,q ={(
T(n); p

(n)
q

)
;n = 1, ..., N

}
on the generated training set for each q-th pa-

rameter (q = 1, ..., Q) of the crack.

It is worth to mention that the test set containing 2K ECT features associ-
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ated to previously-unseen crack parameter configurations are also projected

to the J-dimensional PLS-extracted feature space. Thus, the m-th unknown

test sample 4Z(m) having 2K ECT features for the defect parameters p(m)

is projected to NT through W [i.e., T(m) =
(
4Z(m)

)∗
× W].

(
4Z(m)

)∗
is obtained by using the mean values obtained from the already described

PLS Feature Extraction step (i.e., from offline phase). Finally, T(m) is given

as input to the corresponding trained model in order to estimate the q-th

parameter of the crack, p̃
(m)
q (q = 1, ..., Q).

2.3. Learning algorithms

Given a data set D̂N,q =
{(

T(n); p
(n)
q

)}
through adaptive sampling de-

tailed in the previous section (Subsec. iii), the aim of the learning algo-

rithm is to find a function Θ̃q{.} that estimates the relationship between

T(n) and p
(n)
q and provides a predicted/estimated output which is close to

p
(n)
q for all n. The obtained Θ̃q{.} is then used to estimate the q-th crack

parameter, p̃
(m)
q = Θ̃q(T

(m)) for an unknown m-th test sample T(m) where,

q = 1, ..., Q;m = 1, ..., M . This section briefly describes the formulation of

different learning algorithms that are treated within the scope of LBE.

2.3.1. Augmented Radial Basis Function (A-RBF)

A-RBF is the extended version of actual Radial Basis Function (RBF)

interpolator, where a polynomial term is added with the standard RBF in-

terpolator. The prediction of the pq-th crack parameter by applying A-RBF

can be formulated by

p̃(m)
q =

S∑
s=1

zs(T
(n))ρs +

N∑
n=1

κ(T(n), T(m))ω(n)
q . (4)
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where zs(T
(n)) = 1, T n1 , ..., T

n
J , (T

n
1 )2 , (T n1 T

n
2 ) , ..., (T nJ )2 , ... defines the poly-

nomial function with polynomial coefficient ρs. ω
(n)
q is the RBF weight for

the n-th sample that is obtained during training model development. κ is

the kernel function whose value depends on the radial distance between T(n)

and T(m). Different types of kernel function such as linear, Gaussian, thin

plate spline, multi-quadratic etc. can be used as a kernel function. To be

consistent with all other learning methods, we have applied Gaussian kernel

that can be expressed by

κ(T(n), T(m)) = exp

(
−γq

∣∣∣∣∣∣T(n) − T(m)
∣∣∣∣∣∣2) (5)

where γq is the Gaussian coefficient that needs to be calibrated to obtain

optimal training model in offline phase.

2.3.2. Support Vector Regression (SVR)

Analogously to [12, 27], by employing ε-SVR, prediction of pq-th param-

eter for the m-th unknown test sample can be derived by

p̃(m)
q =

N∑
n=1

(ς(n)
q − ι(n)

q )κ(T(n), T(m)) + bq. (6)

where ς
(n)
q , ι

(n)
q ∈ (0, Cq) are Lagrange multipliers that are determined by

solving dual optimization problem [27]. Cq is the user defined constant pa-

rameter that controls error larger than εq for N number of training samples.

bq is the bias coefficient that is computed by fulfilling Karush-Kuhn-Tucker

(KKT) conditions [28]. Gaussian kernel κ has been utilized which is con-

trolled by Gaussian coefficient γq. Thus, the learning ability of SVR depends

on the appropriate value of εq, Cq and γq.
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2.3.3. Kernel Ridge Regression (KRR)

Kernel ridge regression combines the well known ridge regression with

kernel trick [20]. Through applying KRR, the prediction of pq-th parameter

for the m-th unknown test sample can be obtained by

p̃(m)
q = p>

q

(
κ
(

T(n), T(o)
)

+ aqI
)−1

κ
(

T(n), T(m)
)

(7)

where n = 1, ..., N ; o = 1, ..., N . aq is the fixed positive constant that is also

known as regularization parameter. For using Gaussian kernel κ, accurate

KRR model development is depended on the appropriate choice of Gaussian

coefficient γq and user defined parameter aq.

2.3.4. Relevance Vector Regression (RVR)

Relevance vector regression adopts Bayesian probabilistic framework for

developing regression model. Having the model parameters, for an unknown

m-th test sample, the pq-th parameter can be obtained through the posterior

predictive density [21]

p
(
p̃(m)
q | p

q
, αML, βML

)
= N

(
p̃(m)
q | y(m)

q , (σ(m))2
)

(8)

whereN specifies a Gaussian distribution over p̃
(m)
q with y

(m)
q = µ>

q
ϕ
(

T(m)
)

is the posterior predictive mean that is obtained by the basis vector weighted

by a sparse vector of mean weights µ
q
. αML and βML define a vector of hyper-

parameters and the precision on the noise, respectively that are computed by

maximum likelihood estimation. (σ(m))2 = β−1
ML + ϕ

(
T(m)

)>
Σϕ
(

T(m)
)

is

the variance on the predictions. The posterior co-variance matrix is denoted

by Σ =
(
βφ>φ+ A

)−1

with [N×N+1] design matrix φ =
[
ϕ
(

T(1)
)
, ..., ϕ

(
T(N)

)]>
.

A = diag(α0, α1, ..., αN) is the precision vector on the weight vector w. The
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basis function vector ϕ
(

T(m)
)

=
[
1, κ

(
T(m),T(1)

)
, ..., κ

(
T(m),T(N)

)]>
is

defined by the input observations through kernel function κ. Due to the use

of Gaussian kernel, the accurate training model depends on the choice of

Gaussian coefficient γq which must be properly selected.

3. Training and test set configuration

This section describes the numerical and experimental configurations that

are addressed in this paper. We consider a homogeneous plate of thickness

1.27 mm and conductivity 1.02 MS/m affected by a single sub-surface crack

(crack is placed opposite side of the inspecting coil probe) as shown in Fig.

1. The plate is inspected by 2 coils in emitting and receiving mode working

at a frequency of f = 200 kHz. More details on coil parameters can be found

in [29]. Q = 3 crack parameters (length lc, height hc, and width wc) will be

investigated for the rest of the paper. CIVA simulator has been utilized as

forward operator F{.} for obtaining ECT signals. Real life inspections suffer

for various types of noise sources (e.g., set up noise, man-made noise etc.).

Therefore, before dealing with real experimental data, it is a good practice

to validate the trained models on noisy test set. To partially consider noise

effects, the test set response signal collected by the coil is blurred by an Ad-

ditive White Gaussian Noise (AWGN) with a signal-to-noise ratio (SNR),

where SNR = 10 log10{
ΣK

k=1|4Zk|2

ΣK
k=1|ζk|2

}. ζk denotes the complex valued additive

noise which corrupts the ECT signal 4Zk at k-th measurement point. The

performance of the inversion scheme is analyzed by computing the normalized

mean error, NMEq = 1
M

∑M
m=1

(∣∣∣p(m)
q − p̃q(m)

∣∣∣ /p(m)
q

)
and relative prediction

error, ξ
(m)
q =

(∣∣∣p(m)
q − p̃q(m)

∣∣∣ /p(m)
q

)
for numerical and experimental evalua-
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tion, respectively. p
(m)
q and p̃

(m)
q are the actual and predicted q-th parameter

(q = 1, ..., Q) of the m-th (m = 1, ..., M) unknown test sample respectively.

N
=

27

(a) (b)

N
=

12
5

(c) (d)

N
=

51
2

(e) (f)

Figure 3: Disposition of training samples obtained by PLS-OSF in (a)(c)(e) crack pa-

rameter space and (b)(d)(f) extracted feature space for (a)(b) N = 27, (c)(d) N = 125,

(e)(f) N = 512.

3.1. Numerical set up

A set of N ∈ [27, 512] samples has been built by utilizing GRID and PLS-

OSF sampling methods separately by changing the crack dimensions within

the range lc ∈ [3, 14] mm, hc ∈ [0.189, 0.931] mm and wc ∈ [0.05, 0.4] mm
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within the selected ranges. In case of PLS-OSF approach, N = 512 maxi-

mum samples have been obtained adaptively starting from N0 = 27 initial

samples and N = [27, 64, 125, 216, 343, 512] has been considered for GRID

approach. ECT signals are generated for each of these training samples and

collected from K = 644 inspected points by F{.}. Hence each sample point is

associated to 2K = 1288 ECT features. Six different training sets have been

obtained for three crack parameters (lc, hc, wc) for each sampling method

(i.e., GRID, PLS-OSF) using N number of training samples. An unknown

test set of M = 1000 samples for 3 crack parameters has been generated by

using LHS design. 1288 ECT features are also considered for each test sam-

ple for treating the training models obtained by GRID sampling. Whereas,

J = 5 features are extracted from 1288 actual ECT features for both training

and test set generation as described in Sec. 2.2 for PLS-OSF sampling strat-

egy. The choice of optimal selection of J with other calibration parameters

are described in the following section.
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Figure 4: Prediction error, NMEq vs. number of extracted features J representation while

performing inversion on the test set at SNR = 10 dB using PLS regression technique for

N = 512 and M = 1000 obtained by PLS-OSF sampling strategy.
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3.2. Parameters selection

Dealing with feature extraction and learning algorithms, it is essential

and fare to use their own parameter in their optimal state. Our main goal is

to show comparative analysis instead of showing superiority of each learning

algorithm by utilizing as much as lower number of tuning parameters. As

a consequence, the choice of optimal number of features (i.e., J) to be ex-

tracted from actual ECT signal space is a crucial issue. There is no particular

criteria available for selecting optimal J value. Nevertheless, it is well known

in machine learning framework that the lower the number of features to be

learned the more robust learning model can be obtained. That is, the num-

ber of extracted features should be kept as low as possible to minimize the

complexity of the learning algorithm in training phase. However, it should

be large enough to ensure that all the essential information from ECT data is

compressed within the extracted features. Within this guideline, it is worth

pointing out that the PLS technique ranks the features from the most to the

less important ones accordingly to the corresponding amount of information

on the unknown quantity to be predicted [14]. So, an effective and easy-to-

implement strategy for choosing the optimal value of J is to build a training

set with a maximum number of extracted features Jmax. Then, iteratively

removing the higher-order (i.e., less informative) ones such that an optimum

error is found. Figure 4 shows the behavior of the error index for predicting

each crack parameter for J ∈ [2, 20] with a step size 1, while processing noisy

test data (i,e., SNR = 10 [dB]) for applying PLS as a regression technique

[14]. By averaging the optimal values obtained for each defect parameter,

Jopt = 5 has been chosen.
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Using ε-SVR from LibSVM [30], ε is fixed for 10−2. Whereas, Dlib [31]

has been adopted for KRR regression. For initialization, α = 1012 has been

assigned as par the default value while using the RVR library described

in [32], which is updated during training model development. All learning

techniques are exploited by Gaussian kernel. Thus, the choice of the kernel

hyper-parameter γq for all the learning algorithms and Cq for SVR are ob-

tained by performing 5-folds cross-validation during offline phase. Table 1

reports the optimal parameters obtained for different learning techniques for

the training sets at N = 512 obtained by both PLS-OSF and GRID sampling

strategies.

Table 1: Optimal setup for the calibration parameters

PLS-OSF SVR KRR RVR A-RBF

Parameters Copt γopt γopt γopt γopt

lc 105 1 1 5 1

hc 102 10−1 1 1 10

wc 102 1 1 10 10

GRID SVR KRR RVR A-RBF

Parameters Copt γopt γopt γopt γopt

lc 104 10−2 10−2 10−2 10−5

hc 104 10−3 10−2 10−3 10−4

wc 104 10−2 10−1 10−5 10−4

Training models are obtained separately by different learning algorithms

on the obtained training sets with the corresponding calibration parameters

in offline phase. Finally, the estimation of crack parameters on the unknown

test set is evaluated (online phase) by the obtained trained models.
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Table 2: Crack dimension in experimental test set

Crack No. 1 2 3 4 5 6

lc [mm] 6 7 8 12 9 9

hc [mm] 0.508 0.508 0.508 0.508 0.254 0.381

wc [mm] 0.2 0.2 0.2 0.2 0.2 0.2

3.3. Experimental set up

A homogeneous conductive plate having the same properties described in

Sec. 3 is affected by an external crack for 6 different crack configurations

(Fig. 5). The actual dimensions of these cracks are indicated in Tab. 2. All

other inspection parameters remain unchanged. ECT response signals are

collected from K = 644 inspected points. As a consistency check, Fig. 6

compares the real and the imaginary parts of experimental ECT signals with

the CIVA simulated signals along the x-axis of the cracks. For proper adjust-

ment with the simulated data, a calibration factor [< = −0.0049;= = 0.0135]

and bias factor [< = 0.004;= = 0.005] have been applied on the experimental

data. This is worthy to mention that the discrepancy between experimen-

tal and simulated data may encounter due to the presence of uncertainties

between normal and real parameters (e.g., probe lift-off, probe tilt/pitch,

plate thickness etc.) employed in both cases. Moreover, non negligible noise

components can also corrupt the realistic measurement. Fig. 5 (b) and Fig.

5 (e) contain the signal maps of two cracks which are partially corrupted

during real experiment. Similar to the numerical test set, Jopt = 5 optimal

features are extracted for each test sample (i.e., ECT signal map for each
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crack) for applying PLS-OSF sampling. The obtained training models for

N = 512 samples by PLS-OSF sampling with the corresponding optimal pa-

rameters (Tab. 1) of the learning algorithms are applied for predicting the

experimental cracks parameters.
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Figure 5: Referring to Table 2, ECT signal maps of (a) Crack 1, (b) Crack 2, (c) Crack 3,

(d) Crack 4, (e) Crack 5 and (f) Crack 6.

4. Results and discussion

4.1. Numerical assessment

As a reference and the further discussion, let us first analyze the predic-

tion accuracy of the learning algorithms by applying GRID sampling strat-

egy. In case of higher number of ECT features (i.e., F = 2K) while dealing

with GRID sampling, higher N is required for solving COD problem. Hence,

prediction accuracy improves significantly by each learning algorithm with
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(a) (b)

(c) (d)

(e) (d)

Figure 6: Referring to Tab. 2, real and imaginary parts of the coil voltage variation

experimental/CIVA simulated for the coil position along x direction at y = 15 [mm].

the increment of N while dealing with Noiseless test set (Fig. 7(a), 7(c),

7(e)). Due to the use of polynomial function with RBF interpolator, A-

RBF shows higher prediction accuracy with respect to other algorithm for

Noiseless data. The employed A-RBF is an interpolation technique that

commonly do not assess any regularization, consequently, mostly affected in

presence of noisy data and shows so higher error to be visible within the

Fig. 7(a), 7(c), and 7(e) for the training set obtained by GRID sampling.

This is a sign of over-fitting phenomenon, where the trained model does not

work at all in case of very unknown/corrupted noisy test set. On the other

hand, having regularization parameters, the applied regression methods (i.e.,
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GRID PLS-OSF

(a) (b)

(c) (d)

(e) (f)

Figure 7: Prediction error, NME versus training size N representation at (a)(b) p1 = lc,

(c)(d) p2 = hc and (e)(f) p3 = wc when processing noiseless and noisy test set (SNR = 20

[dB]) by GRID and PLS-OSF.

SVR, KRR, RVR) can slightly deal with noisy data which show, off-course,

higher prediction error with respect Noiseless test case. For a given number

of samples N = 512, GRID sampling strategy could not generate optimal

training sets to build robust training models by the regression methods to

handle noisy test set. Comparatively, through applying PLS feature extrac-

tion, actual ECT features from N4Z are transformed to J = 5 dimensional

extracted feature space NT with most significant features. This overcomes
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the COD problem. Consequently, it requires lower number of training sam-

ples to have more accurate training models by the learning algorithms. By

applying PLS-OSF, NT is uniformly filled such a way that represents opti-

mal (i.e., complete and non-redundant) feature space. Accordingly, optimal

training sets are obtained for lower N . This improves the learning ability of

the treated algorithms and provides higher prediction accuracy on Noiseless

as well as noisy data by means of lower prediction error (i.e., NME) for crack

dimension estimation (Fig. 7(b), 7(d), 7(f)). Though, PLS-OSF can provide

optimal training set, prediction accuracy of different crack parameters are

dependent on different prediction techniques. We can observe this behavior

from Fig. 7 for lc, hc and wc estimation. For a given number of training

samples N = 512, PLS-OSF/SVR and PLS-OSF/A-RBF show lowest pre-

diction error for lc estimation for Noiseless as well as on noisy data (Fig.

8). However, all learning algorithms have comparable prediction error for

hc estimation for applying PLS-OSF sampling. Due to the narrower crack

gap (i.e., crack width wc) ranges with respect to the probe diameter, ECT

signal for the variation of crack width is suffered for spatial resolution prob-

lem which becomes more difficult for dealing with external crack. Moreover,

eddy current does not significantly change due to the variation of crack width.

This impacts on ECT signals and consequently wc estimation that leads to

higher NME. One of the significant outcomes of PLS-OSF sampling is that

the obtained training sets significantly improve the learning ability which is

robust on noisy test set. Indeed, PLS-OSF/A-RBF shows better prediction

accuracy on noisy test sets (i.e., SNR = 10 [dB]), while GRID/A-RBF could

not predict any defect parameter on noisy data. The overall prediction accu-

24



racy has shown higher prediction accuracy (Fig. 8) for PLS-OSF sampling

compare to GRID sampling by applying all the learning algorithms.

Figure 9 depicts the true vs. predicted plots of crack dimension esti-

mation by applying PLS-OSF sampling and different learning algorithms,

testing on noisy data (SNR = 20 [dB]). Almost all prediction methods can

estimate crack length lc and height hc with higher accuracy. Similar to higher

estimation error, crack width wc estimation has shown poorest prediction on

noisy test set for all the learning methods. In short, by properly treating

ECT data through PLS-OSF sampling, almost all learning algorithms show

similar prediction accuracy on synthetic noisy test set data.

4.2. Analysis of computational time efficiency

Concerning quasi real time inversion we are focusing on testing time (on-

line). All simulations are done on a standard laptop having 4-core, 2.20 GHz

CPU and 8 GB of RAM. A-RBF and SVR take highest (0.16s) and lowest

(0.03s) CPU simulation time, respectively for testing on 1000 test samples.

SVR deals with the retrieval of number of support vectors during training

phase, which is lower than the actual number of training samples. For ex-

amples, developing a training model for lc estimation on a training set of

N = 512 samples obtained by PLS-OSF sampling strategy, 232 support vec-

tors are retrieved. This makes the learned model more coarser to deal with

lower number of kernel function during testing. Thence, SVR takes lowest

prediction time. The prediction solution provided by RVR is much sparser

than SVR, which retrieved 95 relevance vectors from N = 512 samples. Thus,

the prediction time comprises the weight multiplication with the test set of

1000 samples that takes only 0.007s. However, RVR needs to calculate de-
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Figure 8: Prediction error, NME versus SNR representation at (a) p1 = lc, (b) p2 = hc

and (c) p3 = wc when processing noiseless and noisy test set by GRID and PLS-OSF.

sign matrix φ based on the training and test set, which takes extra time and

increases the total testing time to 0.12s. Whereas, KRR takes 0.07s, that

need to deal with all the weights obtained during training phase. Moreover,

we can also remark that all prediction techniques take lower prediction time,

ranging from 0.03s - 0.16s. This also confirms that all predictors are suitable

for quasi real time inversion.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9: Actual versus predicted values of p1 = lc at (a)(d)(g)(j), p2 = hc at (b)(e)(h)(k),

and p3 = wc at (c)(f)(i)(l) when processing noisy test set (SNR = 20 [dB]) for training

size N = 512 through (a)− (c) PLS-OSF/SVR, (d)− (f) PLS-OSF/KRR, (g)− (i) PLS-

OSF/RVR and (j)− (l) PLS-OSF/A-RBF.

4.3. Experimental assessment

Referring to Tab. 2, Fig. 10 describes the experimental assessment of

crack parameters (lc, hc and wc ) estimation through different learning tech-

niques using PLS-OSF sampling strategy by means of relative error, ξq (q =

1, ..., Q). Among all the prediction techniques, SVR shows highest prediction

accuracy for predicting crack 4 (largest crack with lc = 12 mm) length and

height in terms of lowest error with relative error ξ
(4)
lc(PLS−OSF/SV R) ≈ 0.7%
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and ξ
(4)
hc(PLS−OSF/SV R) ≈ 1%, respectively where, RVR also shows lower error

for ξ
(4)
lc(PLS−OSF/RV R) ≈ 4% and ξ

(4)
hc(PLS−OSF/RV R) ≈ 5%. KRR and A-RBF

exhibits reasonable prediction accuracy on lc and hc estimation on the same

crack. Though RVR shows highest prediction accuracy (ξ
(4)
wc(PLS−OSF/RV R) ≈

11%), similar to numerical evaluation, other learning algorithms have shown

higher prediction error for wc estimation. Let’s consider the prediction per-

formance on the smallest crack (i.e., crack 1). KRR and RVR depict higher

prediction accuracy with ξ
(1)
lc(PLS−OSF/KRR) ≈ 1% and ξ

(1)
hc(PLS−OSF/RV R) ≈ 6%

respectively. Having regularization capability, SVR also shows lower pre-

diction error for both lc and hc estimation (ξ
(1)
lc(PLS−OSF/SV R) ≈ 10% and

ξ
(1)
hc(PLS−OSF/RV R) ≈ 9%). The training models have also been treated on

some corrupted experiential test samples (e.g., crack 2, 5, 6). Considering

the most corrupted crack (i.e., crack 5) shown in Fig. 5, we can observe that

almost all learning methods can predict crack height for relative error ≈ 10%

(Fig. 10 (e)). However, due to corrupted signal, crack length estimation has

been highly affected. In this case, we can also observe that SVR is showing

lowest error (ξ
(5)
lc(PLS−OSF/SV R) ≈ 27%) for crack length estimation. Similarly,

SVR outperforms for lc estimation on crack 2 and 6 with estimation error

ξ
(2)
lc(PLS−OSF/SV R) ≈ 16% and ξ

(6)
lc(PLS−OSF/SV R) ≈ 2%. Whereas, KRR and

RVR have lowest estimation error on hc estimation for crack 2 and crack

6, respectively (ξ
(2)
hc(PLS−OSF/KRR) ≈ 11%, ξ

(6)
hc(PLS−OSF/RV R) ≈ 8%). Being

an interpolator A-RBF fails to predict crack length of all the experimental

crack which are effected by noise. Finally, it is quite visible that, through ob-

taining optimal training set by PLS-OSF sampling, regression methods (i.e.,

SVR, KRR, RVR) are able to deal with noisy experimental data for crack
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characterization. Sparser, regression models (SVR, RVR) are preferable for

CPU efficiency. Nevertheless, we can refer that SVR has promising inversion

accuracy of experimental data in presence of noise, while RVR shows better

accuracy for smaller crack.

(a) (b)

(c) (d)

(e) (f)

Figure 10: Referring to Tab. 2, relative error, ξ on crack parameters estimation of (a)

Crack 1, (b) Crack 2, (c) Crack 3, (d) Crack 4, (e) Crack 5 and (f) Crack 6 for N = 512,

F = 1288 J = 5 processed by PLS-OSF sampling through A-RBF, RVR, KRR and SVR

algorithms.

5. Conclusion

In this paper, we have shown an adaptive sampling strategy, called PLS-

OSF, within the framework of LBE for enhancing the learning abilities of

different learning algorithms (e.g., SVR, KRR, RVR and A-RBF). A test
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case, consisting a single crack in a conductive plate has been treated for

solving crack characterization problem by means of inversion. Comparative

analysis of learning algorithms for performing inversion has been numerically

performed on the training set obtained by PLS-OSF sampling and compared

with more standard GRID sampling approach. Quasi-real time inversion has

also been demonstrated by predicting M = 1000 test samples within 0.03s

to 0.16s during online phase on a standard laptop. By applying PLS-OSF

sampling strategy, an optimal training set can be retrieved which implies on

higher prediction accuracy in presence of noisy data. Moreover, PLS-OSF

sampling strategy increases the learning capability of all prediction meth-

ods. This strategy also demonstrates higher prediction accuracy for crack

dimension estimation on real experimental data. Due to the generalization

capability SVR, RVR and KRR exhibit higher prediction accuracy during

experimental assessment. Other linear feature extraction techniques such as

principle component analysis, linear discriminant analysis, canonical corre-

lation analysis and non linear extensions based on the use of kernels can be

straightforwardly applied within the framework of LBE. As different learning

algorithms can be useful for estimating different crack parameters by means

of optimal prediction accuracy, multi-regression by combining the treated

regression techniques, i.e. the framework known under the name of ensem-

ble learning in the machine learning community, may improve the overall

prediction accuracy during crack characterization. In authors’ opinion, the

presented LBE strategy can also be extended to other NdT methods such

as ultrasounds testing (UT) and infra-red thermography testing. In particu-

lar, due to the characteristics of the treated data, it would be interesting to
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apply PLS-OSF on the UT signals issued by post processing (i.e. scattering

matrix), collected by ultrasonic arrays [33].
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Annex 1: SIMPLS Algorithm

1. A matrix R = (4Z∗)>p∗ is computed.

2. Run a for loop over J- For j = 1, ..., J

� Apply the Singular Value Decomposition to R.

If j > 1, R = R−
(
P
)> (

P
(
P
)>)−1

PR;

� The j-th column of W denoted by Wj = (Wjk; k = 1, ..., 2K), is set

equal to the first left singular vector, where W =
(
Wj; j = 1, ..., J

)
.

� The j-th 4Z- score denoted by Tj = 4Z∗Wj is computed while, T =(
Tj; j = 1, ..., J

)
, Tj = (Tnj; n = 1, ..., N) and Wj = (Wjk; k = 1, ..., 2K).

� Compute the j-th row of P such that

Pj =

(((
4Z∗

)>
Tj

)>
/
(
Tj

)>
Tj

)
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