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Abstract

In reliability engineering studies, computer codes are increasingly used to model physical phe-
nomena which, in many cases, can be very time-consuming to run. A widely accepted approach
consists in approximating the CPU-time expensive computer model by a surrogate model. One
of the most popular surrogate model is the Gaussian Process regression, as it provides, addition-
ally to a prediction at an unobserved point, an uncertainty around this prediction (a predictive
distribution). However, in practice, the quality of this metamodel depends on several choices, as
the estimation and validation algorithms. The present work aims at proposing a new algorithm,
based on constrained optimization multi-objective techniques, to estimate the Gaussian process
hyperparameters in order to ensure robust and reliable predictive distribution of the Gaussian
process. An intensive numerical benchmark on various analytical functions, with different input
dimensions and learning sample sizes, shows its good performance in comparison with standard
estimation algorithms. The new algorithm is also applied to a real test case modeling an aquatic
ecosystem. It is compared with a recent robust and sophisticated Bayesian method; it proves to
be as efficient while being less sensitive to the specification of the Gaussian process model.
Keywords: Computer experiments, Kriging, Machine learning, Optimization, Uncertainty,
Validation criteria

1. Introduction

In several engineering fields, numerical models are used to simulate physical phenomena of
industrial or environmental processes in order to improve its understandings, optimize some per-
formances or perform a risk analysis related to safety criteria. In this context, one key issue is that
the numerical model under study can be very time-consuming to run, which can drastically limit
the number of possible simulations. To solve this cost issue, a widely accepted approach consists
in approximating the CPU-time expensive computer model by a CPU-time inexpensive mathe-
matical function called “surrogate model” (or “metamodel”, term that is used in the following).
Fit from a set of inputs and outputs of computer code simulations, these metamodels can come
from any machine learning technique, as the simplest like the as polynomial regression, to more
complex as the random forests and neural networks, see the reviews of Villa-Vialaneix et al. [1] in
the environmental domain and Afshari et al. [2] in structural reliability.

In a first paper [3], companion of the present one, the value of Gaussian process (GP) regression
(kriging) metamodel for emulating costly computational codes has been emphasized. Thanks to
its great flexibility, this non-parametric regression tool has proved highly effective in modelling
numerical simulators, in a wide range of application fields [4]. Moreover, it yields an analytical
predictive distribution for the code output at each prediction point. Having a such probabilistic



metamodel, in the sense that it provides a predictive law for each new evaluation point, is of
great added value, particularly for safety, reliability or risk assessment studies. It also enables
the deployment of sophisticated GP-based approaches for active learning, robust optimization,
reliability assessment, etc, as reviewed for example in Fuhg et al. [5], Moustapha et al. [6]. In this
context, it is essential to guarantee confidence in the GP metamodel predictive law, and not just
in its mean value (i.e. the GP predictor).

This confidence first calls for a reliable estimation of the GP metamodel and, more precisely,
of its parameters, referred to as hyperparameters. Secondly, a rigorous validation of the entire GP
predictive distribution is required, as extensively outlined by Demay et al. [7] and Petit et al. [8].
With regard to the first requirement, the companion paper [3] has reviewed recent works dealing
with the estimation of GP hyperparameters, from a theoretical and empirical point of view. It
appears that the usual methods, based mainly on likelihood maximization or on minimizing an error
estimated by cross-validation, sometimes lead to poor-quality and provide non-robust estimates.
In such cases, the validation step (the second requirement) must detect any unreliability in the GP
predictive distribution. For this, it must be based on different criteria [7, 8] evaluating the GP’s
predictive capabilities, as well as the reliability of the associated prediction intervals. Furthermore,
particular care and informed consideration must also be taken when jointly analyzing these criteria.

To ensure a more robust estimation of hyperparameters and a more reliable prediction distri-
bution, some recent alternatives to standard estimation approaches have been proposed. Among
them, Bayesian approaches are theoretically very attractive, as they offer a kind of likelihood regu-
larization. However, their deployment in practice is limited by their complexity, not only in terms
of computational cost especially in large dimension (large number of inputs), but also in terms
of the expertise required to define so-called robust priors and analyze the resulting posteriors.
Other alternative approaches based on ad-hoc corrections of the quantiles of the GP predictive
distribution have also been proposed, as in Acharki et al. [9], in order to ensure reliable prediction
intervals for a given level. However, these approaches do not necessarily seem relevant for obtaining
a metamodel for multi-objective use.

The presented work aims at proposing a new algorithm to estimate the GP hyperparameters
in order to ensure robust and reliable GP predictive distribution. This algorithm is based on
a preliminary thorough analysis of estimation and validation criteria, both through the recent
literature on the subject (reviewed in Marrel and Iooss [3]) and through an empirical exploration of
their links on a large benchmark of analytic functions. On this basis, the new algorithm proposes
to jointly maximize the likelihood of observations and the accuracy of GP prediction intervals,
under the constraint of not degrading the GP predictivity.

The rest of the document is organized as follows. First, a brief reminder of the formalism
of GP regression, estimation methods and validation criteria are first proposed. The interested
reader is invited to refer to the companion paper [3] for more details on these subjects. Then, an
empirical study of the connections and links between estimation and validation criteria is presented
in Section 3. From this, the new estimation algorithm is proposed and detailed in Section 4. An
intensive numerical benchmark is performed in Section 5 on various analytical functions from the
literature on emulation and prediction of computer experiments. This benchmark makes it possible
to evaluate, for different input dimensions and learning sample sizes, the additional value brought
by the new algorithm (compared to standard algorithms). Finally, in Section 6, the algorithm
is applied to a real test case modeling an aquatic ecosystem and more precisely a prey-predator
chain. The last section gives some conclusions and prospects of this work.
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2. Reminders on Gaussian process regression, estimation and validation

All the notations introduced in our companion paper [3] are retained, and those necessary for
the present paper are recalled in what follows. The numerical model (computer code or simulator)
is represented by the following input-output relationship:

M :
∣∣∣∣∣ X −→ Y

X 7−→ Y = M(X) (1)

where X = (X1, . . . , Xd)⊤ are the d uncertain input parameters belonging to some measurable
space X ⊂ Rd. In the context of given-data and data-driven GP metamodeling, we only have
a n-size learning sample of inputs and associated outputs denoted by (Xs, Y(Xs)) where Xs =
{x(1), . . . , x(n)} with x(i) =

(
x

(i)
1 , . . . , x

(i)
d

)
denotes the matrix of n-size sample locations, and

Ys = {y(1), . . . , y(n)} the corresponding outputs observations with y(i) = M(x(i)).

2.1. Gaussian process metamodel and associated parametric choices
In the GP regression, Y is considered as a realization of a Gaussian stochastic process:

Y (·) ∼ N (m(·), k(·, ·)) , (2)

where m(·) is the mean function and k(·, ·) is the covariance kernel function. The predictive GP
distribution is then the GP conditioned by the learning sample (Xs, Ys)

Y (·) | Ys ∼ N (ŷ(·), ĉ(·, ·)) , (3)

with
ŷ (x) = E[Y (x)|Ys] = m(x) + k(x, XS)T K−1

(
Ys − m(Xs)

)
, (4)

and
ĉ(x, x̃) = COV[Y (x), Y (x̃)|Ys] = k(x, x̃) − k(x, Xs)T K−1k(x̃, Xs), (5)

where m(Xs) = (m(x(i)))1≤i≤n ∈ Rn, K = k(x(i), x(j)))1≤i,j≤n ∈ Rn×n and k(x, Xs) = (k(x, x(i)))1≤i≤n ∈
Rn.

The efficiency of GP metamodeling strongly depends on the specifications of its regression and
covariance functions. In practice, this consists of making parametric choices for m(·) and k(x, x̃)
among a panel of usual functions. First, in the absence of prior knowledge, a constant m(x) = β0
or a one-degree polynomial trend m(x) = β0 + ∑

i βixi is usually considered.
Secondly, concerning k(x, x̃), as the isotropy hypothesis is often too restrictive to emulate

complicated models with inputs of very different kinds and influence, an anisotropic covariance is
generally assumed. More precisely, the following tensorized covariance is considered:

kσ,θ(x, x̃) = σ2
d∏

i=1
kθi

(xi − x̃i). (6)

where σ2 is the variance parameter and θi ∈ R+ correlation hyperparameter (also called correlation
length or length-scale) associated to the ith input. As discussed in a our companion paper [3], the
d 1-D covariance functions can be of different natures. But in practice, given the large number
of inputs and without any prior knowledge, the usual practice is to use the same function for all
variables. Moreover, the most popular choice for this correlation function is the Matérn function
defined in one dimension by:

kν,θ(x, x̃) = 21−ν

Γ(ν)

(√
2ν|x − x̃|

θ

)ν

Kν

(√
2ν|x − x̃|

θ

)
, (7)
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where Kν is a modified Bessel function of second kind with parameter ν ∈ R+, and Γ is the Euler
Gamma function. Parameter ν controls the smoothness of the GP (cf. Table 1 of Marrel and Iooss
[3]). Usual choices in machine learning are ν = 1/2 (exponential covariance), ν = 3/2 and ν = 5/2
(referred to as 3/2-Matérn and 5/2-Matérn covariances), and the Gaussian covariance which can
be viewed as the the limiting case of Matérn function when ν → ∞. Finally, an additional nugget
effect can be considered. It consists in assuming an additive white noise effect of variance σ2

ϵ which
results in an additional term σ2

ϵ δxx̃ in the covariance function. In practice, it is characterized by
the parameter λ =

(
σϵ

σ

)2
∈ R+.

2.2. Main estimation methods
Assuming the aforementioned parametric choices, estimating the GP from the learning sample

therefore boils down to estimating its parameters (β, σ2, θ) and eventually λ if a nugget effect is
considered. As described in our companion paper [3, Section 3], three main estimation procedures
are used: minimization of the squared prediction error calculated by cross-validation (CV), maxi-
mization of likelihood (denoted MLE for maximum likelihood estimation), and Bayesian approach.

For the first method, and considering the leave-one-out (LOO) procedure (specific case of CV),
the GP parameters are computed by minimizing the LOO-MSE:

LOO-MSE
(
β, σ2, θ

)
:= 1

n

n∑
i=1

(yi − ŷ−i)2 ,

where ŷ−i denotes the mean of GP predictive distribution in x(i) when (x(i), y(i)) is removed from
the learning sample (this comes down to consider the GP conditioned by Ys,−i). Note that the
calculation of the LOO predictive distribution is greatly facilitated by the use of CV Dubrule
[10]’s formulas, which provide analytical formulation for LOO mean ŷ−i and LOO variance ŝ2

−i =
ĉ−i(xi, xi).

The MLE method consists in identifying the values of the parameters that minimize the negative
log-likelihood (NLL) of the learning sample. Provided that θ is know, analytical solutions are
available for (β, σ2) and MLE boils down to minimize the profile NLL involving just θ. But, as
for LOO-MSE, there is no closed-form expressions for the optimal values of parameters θ̂ and
numerical methods are thus required to estimate them.

The last approach, the Bayesian one is close to the MLE as it considers the likelihood of the
learning sample but it also incorporates a prior distribution for the GP parameters. Bayesian
estimation thus relies on maximizing the marginal posterior distribution of the parameters with
regard to this prior distribution.

As discussed in Marrel and Iooss [3, Section 3.5], even if no consensus really emerges from
theoretical analysis and empirical comparison of estimation methods, the recent empirical results
of Petit [11] tend to argue that MLE is often preferable to its competitors. But MLE (as LOO-MSE)
can be theoretically an ill-posed problem [12, 13] and flatness of ML (or LOO-based criteria) around
the optimal parameter value can lead to poor performance of optimization algorithms. The full-
Bayesian approach under the assumption of suitable priors, offer better properties but suffer from
poor tractability. However, the recent RobustGaSP Bayesian method proposed by Gu et al. [13] and
detailed in Marrel and Iooss [3, Section 5.2] with its specific robust priors and approximations, could
overcome these limitations. Finally, considering a nugget effect jointly estimated with the other
hyperparameters can facilitates the estimation by MLE by regularizing the likelihood function,
improving the conditioning of the correlation matrix and numerical convergence of algorithms. It
is of much less interest in the Bayesian approach, where the prior already plays a regularizing role
and the additional estimation of the nugget can increase the identifiability problems.
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Beyond the problem of obtaining a reliable estimate of the hyperparameters θ, it also appears
that the choice of regularity of covariance function (ν in Matérn class) might be a key element to
ensure GP’s predictive capabilities.

2.3. Validation criteria
Whatever the parametric choices and the estimation method chosen, it is essential to have

criteria for assessing the reliability of the obtained GP predictive distribution. These validation
criteria can be used both to select the most appropriate covariance function and to check that
the estimated hyperparameters lead to a reliable predictive distribution. They can be estimated
from a test sample (different from the learning sample), or, as is often the case in our small-data
application context (i.e. limited number of simulations), by cross-validation (or LOO, as a special
case of cross validation). Hence, as described in Demay et al. [7], different validation criteria have
been proposed to assess the whole GP conditional distribution:

• predictivity coefficient Q2 to assess the accuracy of the GP predictor ŷ (x):

Q2 = 1 −
1
n

∑n
i=1 (yi − ŷ−i)2

1
n

∑n
i=1

(
yi − 1

n

∑n
i=1 yi

)2 = 1 − LOO-MSE
1
n

∑n
i=1

(
yi − 1

n

∑n
i=1 yi

)2 .

The closer to one the Q2, the better the accuracy of the metamodel predictor.

• predictive variance adequacy (PVA) factor to check if the conditional GP variance is of the
right order of magnitude: PVA =

∣∣∣∣log
(

1
n

∑n
i=1(yi − ŷ−i)2/ŝ2

−i

)∣∣∣∣. The smaller the PVA, the
more reliable the prediction intervals.

• IAEα criterion to assess the reliability of GP prediction intervals: IAEα =
∫ 1

0

∣∣∣∆̂(α) − α
∣∣∣ dα

where ∆̂(α) is the empirical coverage function [14]. IAEα quantitatively summarizes the
α-PI plot of Demay et al. [7]. It lies in [0, 1] and the closer to zero the IAEα, better the PI
in average.

To tackle the problems of estimating hyperparameters, and given the importance of having a
reliable GP predictive distribution in the context of uncertainty quantification, we are convinced of
the benefits of considering these criteria, rather reserved for validation, directly in the estimation
process, in addition to NLL. And to find out how best to use and combine them, the links between
them are firstly investigated, according to the values of the hyperparameters.

3. Empirical study of connections between likelihood and validation criteria

To design the new estimation algorithm, a preliminary study considers the links between some
of the estimation and validation criteria, according to the values of the hyperparameters. Based
on the review of recent works on GP estimation [3], the MLE is considered as the main estimation
criterion. The interest is then to assess how this criterion can really control the quality of the
predictive distribution (under the assumption that the optimization of this criterion has converged
well). For this, the three following validation criteria (to be minimized) are considered: the MSE
(∝ 1 − Q2), the PVA and the IAEα.

A wide range of analytical functions, commonly used in metamodeling benchmarks, are then
considered. For each function, random learning samples of different size n are simulated to build
the conditional GP (Eqs 4,5). The domains of variation for the hyperparameters are discretized
finely (on a grid for example if d = 2). And for each set of values of the hyperparameters (i.e.
point of the grid if d = 2), the corresponding GP conditioned by the learning sample is built and
different criteria are computed. More precisely, are computed:
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• on the one hand, the negative log-likelihood (NLL) of the learning sample (criterion that one
would seek to minimize in practice in the case of MLE),

• on the other hand, three validation criteria of the conditional GP computed on a large test
sample of 1000 points: (1 − Q2), PVA and IAEα. Ideally, these three criteria should be as
low as possible to ensure GP accuracy and predictivity (as detailed in Marrel and Iooss [3]).

In summary, for all the aforementioned criteria, the objective is to have the minimum value.
Different sample sizes n are considered, well chosen w.r.t. the analytical functions tested in order
to encompass cases of underlearning (n too small w.r.t. the complexity of the function) and
overlearning (n much larger than necessary). For each test case, all the procedure is repeated 100
times for different i.i.d. random learning samples.

3.1. Illustration on an infinitely differentiable toy function
This section provides some results representative of the general trends observed over the 100

repetitions. First, the “re-scaled” Branin function [15], illustrated in Marrel and Iooss [3, Section
4.2 and Figure 2], is considered. The results obtained for the four quantities of interest aforemen-
tioned are given for the exponential, 3/2-Matérn, 5/2-Matérn and Gaussian covariances, by Figure
1 for n = 30. Similar plots are given for n = 50 by Figure A.11 in Appendix A. Note that NLL
is plotted in logarithmic scale (hence the legend logNLL). First of all, the NLL and especially its
optimal values are closely correlated to those of the predictivity coefficient Q2, whatever the covari-
ance considered. Minimizing the NLL for the estimation of the GP hyperparameters is therefore a
good way to control the quality of the metamodel predictor and to ensure a good predictivity. On
the other hand, the optimal points of the NLL do not correspond to the optimal points of the two
other criteria controlling the quality of the whole predictive distribution, namely PVA and IAEα.
Their behaviors w.r.t. the hyperparameters is relatively similar and more irregular than NLL and
Q2, with notably different zones with local minima. Moreover, the optimal points of PVA and
IAEα do not correspond to those of NLL and Q2. It would therefore be unwise to consider only
PVA or IAEα in the optimization of hyperparameters, without first ensuring that the NLL is close
to its optimal values.

This example is representative of the close links often observed between NLL and Q2, and
between PVA and IAEα. It also illustrates that these same two groups can be antagonistic, partic-
ularly in the case of a rough covariance (exponential for instance), while for smoother covariances,
some interesting compromises between the two groups can be found. For instance, for Gaussian
covariance, without degrading Q2 too much (by staying on the same level line for it), the second
group of criteria can be improved. This concordance between the criteria, which is observed all
the more when the covariance is regular, makes sense here, given the high regularity of the Branin
function. In the case of a well-specified covariance, the NLL optimization could thus be relevantly
completed by an additional optimization of PVA or IAEα (under the constraint, for example, of
not degrading the Q2).

3.2. Illustration on a non-differentiable function
This section considers a more irregular function (non-differentiable and non-monotonic rela-

tionships), namely the G-Sobol function, defined in dimension d for uniform independent inputs
on [0, 1] by:

MSobol(X) =
d∏

k=1
gk(Xk) where gk(Xk) = |4Xk − 2| + ak

1 + ak

and ak ≥ 0. (8)

The same procedure as for Branin function is applied, with d = 2, ak = k for k = 1, 2 and n = 50.
An illustration representative of the results obtained is given by Figure 2.
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Figure 1: M̃Branin Function – Comparison of NLL (computed on the learning sample) and validation criteria
(computed on a test sample), for a GP built on a Monte Carlo learning sample of size n = 30. The optimal value
for each quantity is indicated by a red square.

Similar results are found, with agreement between NLL and Q2 and between PVA and IAEα,
but here, there is more compatibility between the two groups in particular for covariance 3/2-
Matérn. For more regular covariance, it’s more difficult to optimize both groups simultaneously.
However, for Gaussian covariance, the optimum area of PVA and IAEα corresponds to a local
optimum zone of Q2 and NLL, whose value is close to that of the global optimum. On this
example, it could be interesting to shift slightly from the optimal point of the NLL towards more
optimal values for the IAEα under the constraint of remaining in a region of Q2 values close to
the optimal Q2.

3.3. Concluding remarks
We have carried out several other simulations on different analytical functions and for different

dimensions, which are not presented here for the sake of brevity. In summary, similar observations
often emerge with:

• a close behavior between NLL and Q2 which pleads in favor of keeping NLL as the main
estimation method to control the predictivity of the metamodel, which is consistent with the
results obtained by Petit et al. [8];
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Figure 2: MSobol Function – Comparison of NLL (computed on the learning sample) and validation criteria (com-
puted on a test sample), for a GP built on a Monte Carlo learning sample of size n = 50. The optimal value for
each quantity is indicated by a red square.

• PVA and IAEα validation criteria often have a similar and more irregular behavior w.r.t.
the hyperparameter values, and according to the covariance structure. They often present
areas with local minima: some of them can be very compatible with rather optimal values
of NLL and Q2, while other minima correspond to very degraded values of NLL and Q2. It
would therefore be unwise to optimize only PVA or IAEα, without considering NLL or Q2;

• In many examples, it appears possible to find in the neighborhood of the optimal NLL point,
a better point w.r.t. PVA and IAEα. But this second optimization must be done while
controlling the possible degradation of Q2 value, which is the first guarantee of the good
prediction capacity of the metamodel.

In addition, we also studied the shape of the Pareto fronts of the different pairs of criteria,
considering their values computed either on a test basis (to have the “true” value), or by cross val-
idation (LOO estimators) to be more representative of the results of a multi-objective optimization
that would be carried out on the learning sample. In conclusion, it first emerges that the priority
must be given to the minimization of the NLL to have accurate GP predictions. In addition,
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Q2 and IAEα appear as complementary criteria but without redundancy in the information they
convey: the Q2 validating the predictive mean of the GP and the IAEα validating the quality
of the prediction intervals if the mean of the interval has been previously validated by the Q2.
The IAEα taken alone does not constitute a validation of the predictive distribution, it is only
under condition of a good Q2. All these considerations have guided the choice of the constrained
multi-objective algorithm proposed in the next section.

4. New algorithm based on MLE and IAEα under constraint on Q2

In line with the reparametrization considered by Gu et al. [13] and based on our expertise
acquired on the optimization of GP hyperparameters, the inverse reparametrization is used in the
rest of the document, namely θ̃i = 1

θi

for i = 1, . . . , d. In the same way, the set of input variables
are systematically re-scaled on [0, 1] to allow an homogeneous interpretation of bounds, initial or
estimated values of the hyperparameters. Hence, from the previous analysis, our new algorithm
for optimizing the GP hyperparameters is based on the following three main steps:

▶ Step 1: initial optimization based on NLL. A first set of GP hyperparameters θ̃
init

MLE

is obtained by minimizing the NLL of the learning sample. For this, a multistart procedure
is used combined with a BFGS algorithm, on the bounded domain of hyperparameters D

θ̃
.

The LOO estimator of Q2 corresponding to θ̃
init

MLE is computed and denoted Q̂2,init
LOO . Note

that the BFGS algorithm is one of the most widely used quasi-Newton method for solving
unconstrained nonlinear optimization problems.

▶ Step 2: constrained multi-objective optimization based on NLL and LOO-IAEα.
A second optimization is carried out by considering two objectives: the NLL and IAEα
computed by LOO on the learning sample (using Dubrule’s formula [10]). For the constraint,
a minimum threshold value for the Q2 (computed by LOO), denoted cQ2 , is considered. In
practice, this value can be defined in absolute value cQ2 = Q̂2,init

LOO −γ or relatively to Q̂2,init
LOO by

cQ2 = γQ̂2,init
LOO , with γ ∈ [0, 1] for both cases. For instance, possible choices for the two cases

are γ = 0.05 and γ = 0.9, respectively. The constraint is then expressed for any new candidate
θ̃

new by Q2,new ≥ cQ2 with Q2,new the Q2 associated to the GP of hyperparameters θ̃
new. To

perform this optimization, a constrained multi-objective evolutionary algorithm, namely the
constrained NSGA-II (Non-dominated Sorting Genetic Algorithm), is used. Proposed by Deb
et al. [16], it allows to reduce the computational complexity, and alleviate the non-elitism
approach (of classic genetic algorithm) by using a modified mating and survival selection.
Moreover, to ensure a search in the neighborhood of the point estimated by NLL at Step 1,
the initial population is built upon θ̃

init

MLE. More precisely, half of the individuals are selected
by randomly drawing a relative perturbation of +/- 10% of the values of θ̃

init

MLE. The other
half is chosen via a space-filling design on D

θ̃
, namely a maximin Latin Hypercube Sampling

(LHS), for more exploratory purposes [17, 18].

▶ Step 3: Selection of the best individual in the Pareto front. Once the set of solutions
of the Pareto front has been provided by NSGA-II algorithm, a classification algorithm is first
used: a k-means algorithm is carried out where the optimal number of clusters is determined
by the Elbow method [19, 20]. A fundamental step for any unsupervised algorithm is to
determine the optimal number of clusters into which the data may be clustered. The Elbow
method is one of the most popular methods to determine this optimal value of k. Silhouette
method or Gap statistic-based approach could also be used [21]. Then, several best candidates
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could be chosen: the best individual in cluster 1 (cluster with minimal value of the 1st

objective NLL) according to the 2nd objective (IAEα), the centroid of cluster 1, and the
best individual for IAEα criterion among all the points of the Pareto Front. The first two
approaches are recommended for more conservative Q2 results.

In all the numerical experiments presented in the following, the algorithmic parameters of the
different steps are set as follows:

• Step 1: D
θ̃

= [0.01; 10]d and a BFGS algorithm is used with a multistart approach of 10
points chosen by maximin LHS on D

θ̃
. An additional central initial point is considered with

all the hyperparameters set at θ̃ = 2.

• Step 2: for the NSGA-II algorithm the crossover and mutation percentages are both set at
50%, the mutation rate and step size are respectively µNSGA = 0.02 and σNSGA = 0.1∆

θ̃
with

∆
θ̃

the width of the definition interval of θ̃ (same values are considered for all the (θ̃i)1≤i≤d).
Moreover, the total size of the initial population of NSGA-II algorithm is 80 (40 from random
perturbation of θ̃

init

MLE an 40 from maximin LHS design on D
θ̃

). The maximum number of
iterations is set at 50. The rest of NSGA-II parameters are set at their default values (see
Table B.2 in Appendix B). Concerning the constraint, it is here defined as cQ2 = Q̂2,init

LOO −0.05.
This parameter is fixed just for the automation of the procedure. In practice, this choice is
really to be made by the user w.r.t. the initial value Q̂2,init

LOO and the acceptable degradation
of Q2.

• Step 3: usual default values of the elbow algorithm are used. More precisely, the maximum
number of clusters to try is fixed at ⌈

√
m⌉ with m the number of individuals in the Pareto

front. The optimal number of clusters is selected so that a fraction equal to 0.95% of the
variance is explained and the k-means procedure is repeated three times, taking the best
result at the end.

For all the numerical tests in the following, all the parameters of the optimization algorithm
are fixed, independently of the model M, the dimension d and the sample size n. Thus, the results
obtained will be less dependent on these choices. It aims to illustrate that a use with standard
values is quite possible, without real optimization of the algorithm parameters. It is obvious that
in practice a more expert choice would also be possible and could further improve the results.

5. Numerical benchmark on analytical functions

This section focuses on different analytical functions usually used in the literature on emulation
of computer experiments, from dimension d = 3 to d = 20. All the functions have been redefined
for uniform independent inputs on [0, 1] and the learning sample sizes n have been chosen to obtain
from medium to high GP predictivities: Q2 around 0.7 and Q2 ≥ 0.9, respectively. Hence, a large
number of functions have been tested, and a representative sample is given below for:

• Friedman function in dimension d = 5 proposed by Friedman [22]:

MFried-d5(X) = 10 sin(πX1X2) + 20 (X3 − 0.5)2 + 10X4 + 5X5; (9)

• Dette & Pepelyshev function in dimension d = 8 defined by Dette and Pepelyshev [23]:

MDette−d8(X) = 4
(
X1 − 2 + 8X2 − 8X2

2

)2
+(3 − 4X2)2+16

√
X3 + 1 (2X3 − 1)2+

8∑
i=4

i ln

1 +
i∑

j=3
Xj

 ;

(10)
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• a function in dimension d = 20 proposed by Marrel et al. [24] and inspired from the Friedman
function:

MMarrel−d20(X) = a1 sin
(
6π X

5/2
1 (X2 − 0.5)

)
+a2(X3 −0.5)2 +a3X4 +a4X5 +rX6,...,X15 (11)

where rX6,...,X15 = a5√
(
∑

i=6...15 i2)

∑
i=6...15

√
12i(Xi −0.5). More details and illustration of main

effects of MMarrel−d20 are given in Appendix C.1.

We also consider the G-Sobol (introduced in the companion paper [3]), Ishigami and Becker’s
functions for dimension d = 8, d = 3 and d = 9, respectively. Details on the two last functions
and associated results are given in Appendix C, for the sake of brevity.

5.1. Results without additional nugget effect
No nugget effect is considered at first and a constant mean m(x) = β0 is assumed for all the

GP. The learning samples are randomly generated according to space-filling LHS and, for each
configuration, all the procedure is repeated 100 times by generating independent LHS designs.
Hence, for each test case, three methods for estimating the GP hyperparameters are compared:

• a simple BLFG algorithm, as a very rudimentary estimate (not to be used in practice).

• A “multistart” BFGS (denoted “Multi-BFGS”), as a commonly used reference method offer-
ing in general a good compromise between simplicity (theoretical and in its practical use),
efficiency and execution time.

• Our constrained multi-objective algorithm denoted “C-NSGA-II-BestC1”: the best individ-
ual (in the Pareto front) according to the IAEα is chosen in the cluster denoted C1 with the
minimal mean value of the NLL (see the description of Step 3 in Section 4).

For each configuration, validation criteria Q2, PVA and IAEα, are computed on a random test
sample of 104 simulations (independent from the learning sample). The results obtained are given
in boxplot form by Figures 3 to 5, for the different functions ordered by increasing input dimension.
For each function, different covariance functions are presented by order of increasing regularity, to
facilitate interpretation. Thus, several observations can be made from these initial tests.

▶ Concerning the GP predictivity (Q2), for all functions and whatever the covariance con-
sidered, the Multi-BFGS and C-NSGA-II-BestC1 algorithms are largely better in terms of
predictivity than a simple BFGS which presents significantly lower and more variable Q2

(especially when the sample size n is small). A bad estimation of the hyperparameters can
thus be very penalizing for the quality of the metamodel. Then, C-NSGA-II-BestC1 does not
yield a degradation of Q2 w.r.t. Multi-BFGS. This is obviously explained by the candidate
selected in the Pareto front in Step 3 of the algorithm (see 4): choosing the best candidate in
C1 being the most conservative and safe from the point of view of Q2. However, even with a
threshold of 0.05 (on the Q2 computed by LOO on the learning sample), the observed loss of
Q2 is often much lower or even almost zero. Note that other possibilities for the choice of best
candidate in Pareto front have also been tested: the centroid of cluster C1 gives equivalent
results (sometimes a little worse) while the choice of the optimal point in terms of IAEα on
the whole Pareto Front causes too much degradation of the Q2 on average.

▶ Regarding now the accuracy of the GP predictive distribution, C-NSGA-II-BestC1 makes it
possible to improve PVA and IAEα criteria, almost all the time and sometimes in a very
significant way. The improvement brought by the algorithm is even more interesting in the
following cases:

11



(a) 3/2-Matérn covariance

(b) 5/2-Matérn covariance

(c) Gaussian covariance

Figure 3: MDette-d8 Function – Evolution of validation criteria, according to sample size n, for different hyperpa-
rameter estimation methods (GP with different covariances and all without nugget effect).

– If the Q2 is very good and/or n is very large compared to the complexity of the function.
The NLL function is probably very flat in a rather large area of the hyperparameters.
As a result, its optimization is not discriminative enough, many values of the hyperpa-
rameters leading to interesting NLL (and Q2) values. Taking into account the IAEα
criterion allows to focus on more interesting hyperparameters to obtain more reliable
prediction intervals. The example of MFried-d5 with 3/2-Matérn covariance (Figure 4
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(a) 3/2-Matérn covariance

(b) 5/2-Matérn covariance

Figure 4: MFried-d5 Function – Evolution of validation criteria, according to sample size n, for different hyperpa-
rameter estimation methods (GP with different covariances and all without nugget effect).

(a) 3/2-Matérn covariance

(b) 5/2-Matérn covariance

Figure 5: MMarrel-d20 Function – Evolution of validation criteria, according to sample size n, for different hyperpa-
rameter estimation methods (GP with different covariances and all without nugget effect).

13



plot(a)) is a good illustration.
– If the model is misspecified, i.e. if the covariance function does not match the regularity

of the function. This is what is observed for example for MFried-d5 with 3/2-Matérn
covariance (Figure 4 plot (a)) or for the infinitely differentiable MIshig-d3 function with
a 3/2-Matérn covariance whose trajectories are only once differentiable (Figure C.13
plot (a), in Appendix C.2). In this particular case, the C-NSGA-II-BestC1 algorithm
allows to divide by two the IAEα for n = 150.

– When the dimension of the inputs d is large (and consequently the number of hyperpa-
rameters in the case of a tensorized anisotropic stationary covariance). The C-NSGA-
II-BestC1 algorithm provides significantly better and more robust results, less sensitive
to sampling. This is what is observed for MMarrel-d20 in dimension d = 20 and MBecker-d9
in dimension d = 9 (see Appendix C.3).

5.2. Results with an additional estimated nugget effect
We now consider an additional homoscedastic nugget effect in the covariance in order to evaluate

the robustness of the method with this additional parameter to estimate. This nugget effect is
included in the proposed algorithm in the same way as the other hyperparameters: the nugget
parameter λ is also estimated in the multi-objective optimization. Its variation domain is Dλ =
[10−3; 0.5] with an initial value set at λ = 0.3. A few results are given by Figures 6 to 8. As
in the case without the nugget effect, a general improvement brought by the C-NSGA-II-BestC1
algorithm on PVA and IAEα criteria is observed, with no degradation of Q2. In large dimension,
the contribution of the constrained multi-objective algorithm is all the more significant on the
reliability of the GP predictive law, provided that the metamodel is already sufficiently predictive
(Q2 > 0.8 e.g.), as it can be observed for MMarrel-d20 from n = 200 (see Figure 8). Note that on
this last function, we observe a re-increase of PVA and IAEα indicators when the model becomes
highly predictive (Q2 > 0.95 for n = 400), this increase being mitigated by the use of C-NSGA-II-
BestC1. In this case, the GP metamodel predicts the function almost perfectly but the width of
the prediction intervals does not decrease quickly enough with n and they become too conservative.

Finally, similar benchmarks have also been performed considering simple Monte Carlo designs
for the learning samples (instead of space-filling LHS designs). An extract of the results obtained is
given in Appendix D. Overall, the results are close to those obtained with LHS designs, but more
variable, due to the more variable sampling and, above all, less efficient for metamodeling purpose.
Similar conclusions are drawn about the relative performance of the methods: the constrained
multi-objective approach again gives better results (larger Q2 and more reliable prediction intervals)
and is significantly more robust to the sampling variance.

6. Application to an aquatic ecosystem model

In this section, a test case modeling a prey-predator chain in an aquatic ecosystem is studied.
This so-called model MELODY (for MESocosm structure and functioning for representing LOtic
DYnamic ecosystems) simulates the functioning of aquatic mesocosms and the impact of toxic
substances on the dynamics of populations. Inside the model, two compartments linked within
a prey-predator chain are considered: the Periphyton and the Grazers. The Periphyton-Grazers
sub-model is representative of processes involved in dynamics of primary producers and primary
consumers, i.e. photosynthesis, excretion, respiration, egestion, mortality, sloughing and predation.
More details are available in Ciric et al. [25] and Iooss et al. [26]. In this test case, a total number of
d = 20 uncertain and independent input parameters are considered. These parameters characterize,
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(a) 3/2-Matérn covariance

(b) 5/2-Matérn covariance

Figure 6: MFried-d5 Function – Evolution of validation criteria, according to sample size n, for different hyperpa-
rameter estimation methods (GP with different covariances and all with an estimated nugget effect).

among others, the photosynthesis, consumption, respiration, mortality or excretion rates of both
populations. In absence of any expert opinion or relevant information on their uncertainty, these
parameters are assumed to follow uniform distributions whose variation intervals are given in Ciric
et al. [25]. As output from the model, we focus on the Grazers biomass at a given reference time
(day 60 of simulations), denoted YG.

A sample of n = 100 simulations of the model MELODY is available, drawn from a LHS
with low discrepancy [18]. Previous sensitivity analysis studies [27] have revealed the presence of
strong non-linear and interaction effects for YG. Considering the inputs’ high dimensionality, these
outputs are consequently very complex to emulate, making this test case relevant to evaluate the
contribution of the multi-objective algorithm.

6.1. Description of the dataset and lognormal-kriging approach
The highly dispersed nature of the data requires to apply a preliminar logarithmic transfor-

mation to represent them. The histograms of the obtained values, denoted ZG = log(YG), is given
by Figure 9. A kernel density estimation plot is also added to provide a graphical illustration
of the probability density function. This logarithmic transformation will also be considered for
the metamodeling, considering a lognormal-kriging approach to return to the initial space of the
output values [28, 29]. Note that a more general Box-Cox transformation could also be consid-
ered. Hence, a predictive Gaussian distribution N (ẑG(x), ŝ2

zG
(x)) is obtained for ZG (see Eqs (4)

and (5)). Lognormal-kriging backtransformations [29] are then used to obtain the predictor and
associated variance prediction for the original data YG:

ŷG (x) = e(ẑG(x)+0.5ŝ2
zG

(x)) (12)

ŝ2
Y (x) =

(
eŝ2

zG
(x) − 1

)
e(2ẑG(x)+ŝ2

zG
(x)). (13)
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(a) 3/2-Matérn covariance

(b) 5/2-Matérn covariance

Figure 7: MDette-d8 Function – Evolution of validation criteria, according to sample size n, for different hyperpa-
rameter estimation methods (GP with different covariances and all with an estimated nugget effect).

(a) 3/2-Matérn covariance

(b) 5/2-Matérn covariance

Figure 8: MMarrel-d20 Function – Evolution of validation criteria, according to sample size n, for different hyperpa-
rameter estimation methods (GP with different covariances and all with an estimated nugget effect).
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Figure 9: MELODY test case – Histogram of the output YG after log-transformation, for the n = 100-size dataset.

6.2. Results of Gaussian process metamodeling
The lognormal-kriging approach is applied to the dataset: a GP is fitted on ZG sample with

either the usual multistart-BFGS or our new C-NSGA-II multi-objective algorithm (C-NSGA-II-
BestC1 algorithm). Different covariance functions are considered, with or without an estimated
nugget effect, and a constant mean is considered in all cases. Validation criteria are computed
by LOO on the learning sample, for both ZG and YG. It should be noted that the computation
of criteria by cross-validation for small data results in a double loop cross-validation structure for
the C-NSGA-II algorithm, since it already includes a cross-validation loop. However this internal
loop remains largely tractable for n = 100 and thanks to Dubrule’s formulas [10]. The obtained
results, with the most interesting highlighted, are given in Table 1 (columns “Multi-BFGS” and
“New C-NSGA-II Algorithm” of Tables 1(a) and 1(b)).

First, for the transformed variable ZG, the predictivity is similar for the different metamodels
with nearly 90% of output variance explained. Results differ when we go back to the variables
YG. This is explained by the expression of the log-kriging predictor (Eq. (12)) which depends
on the prediction variance ŝ2

Z . The multi-objective algorithm, which has more reliable prediction
variances for Z, has consequently a much better predictivity for Y , with Q2 on average increased
by 0.04. Log-kriging is a further illustration of the need for reliable predictive variances in GP
regression.

Moreover, C-NSGA-II algorithm also yields more reliable prediction intervals, with a IAEα
significantly reduced, whatever the covariance considered and whether or not there is a nugget
effect. Note that for the IAEα criterion, the results are identical in both spaces, the empirical
coverage function in GP framework being invariant by strictly monotonic transformation of the
output variable. Note that IAEα is invariant by logarithmic transformation and more generally by
strictly monotonic transformations since they preserve (for increasing transformations) or reverse
(for decreasing transformations) the order of data. For example, in the case of the logarithmic
transformation, the quantiles of the predictive law for Y are equal to the exponential of the
quantiles of the GP predictive law obtained for ZG = log(YG). The values of ∆̂(α) computed with
the set of zG or yG = ezG are therefore equal.

Some diagnostic plots are also given by Figure 10 with 5/2-Matérn covariance, to illustrate
more clearly the improvement brought by the C-NSGA-II algorithm on the accuracy of prediction
intervals. As an indication of the degree of non-linearity of the output, it may be mentioned that
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a linear regression with an ElasticNet-type penalization [30] leads to Q2 = 0.57 for ZG and to zero
Q2 if directly fitted on YG.

(a) With nugget parameter (estimated)

(b) Without nugget parameter

Table 1: MELODY Output YG – Validation criteria computed by cross validation for GP with different covariances
and estimation methods, without and with (estimated) nugget effect. The significantly better (resp. best) results
are framed in black (resp. red).

6.3. Comparison with the RobustGaSP simplified Bayesian approach
To the best of our knowledge, and as detailed in our companion paper [3], the RobustGaSP

approach proposed by Gu et al. [13] is the most interesting existing Bayesian approach to per-
form robust hyperparameter estimation, while being tractable in large dimension. To carry out
the comparison with our approach, the R package RobustGaSP [31] is used. The jointly robust
prior is considered to efficiently approximate the reference prior (argument prior choice set at
ref approx in the rgasp function). In addition, we have also combined our multi-objective al-
gorithm with RobustGaSP. To do so, the new algorithm is adapted by, replacing the NLL in the
multi-objective procedure, by the marginal posterior of θ proposed by Gu et al. [13] with their
jointly robust priors (see Eq. (27) of companion paper [3]). The obtained results for Robust-
GaSP approach and C-NSGA-II combined with RobustGaSP are given by Table 1 in columns
‘RobustGaSP” and “New C-NSGA-II with Robust NLL”, respectively.

If a nugget effect is considered and estimated, the C-NSGA-II algorithm gives significantly
better results than RobustGaSP, for both Q2 and IAEα criteria. Best results are obtained with
5/2-Matérn covariance. If no nugget effect is considered, RobustGaSP performs much better for
the smoother covariances, namely 5/2-Matérn and Gaussian ones. Compared with C-NSGA-II
algorithm, it yields an equivalent Q2 for 5/2-Matérn covariance but much better Q2 for Gaussian
covariance. But in any case, it performs less well in terms of prediction interval reliability with a
IAEα two to three times higher. RobustGasp results are therefore very sensitive to GP specifica-
tions (covariance function and nugget), whereas our C-NSGA-II algorithm is more robust to these
choices. If we finally look at the combination of both approaches in the so-called “New C-NSGA-II
with Robust NLL” algorithm, its results are promising: it seems to be a good option since the
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Figure 10: MELODY Output YG – Diagnostic plots for GP metamodeling with 5/2-Matérn covariance and nugget
effect: LOO predicted values versus exact values on the left (with log-scale) and α-plot on the right.

results of C-NSGA-II algorithm are systematically improved. Moreover, it leads to the best overall
result with 5/2-Matérn covariance and nugget effect (Q2 = 0.88 and IAEα = 0.02).

7. Conclusion

In the framework of emulation of numerical simulators with GP regression, this work has
introduced a new algorithm for the estimation of GP covariance parameters, referred to as GP
hyperparameters. Since the use of the entire GP predictive distribution is one of the major assets
of this metamodel, a reliable and robust estimation of the hyperparameters is a cornerstone of
successful metamodeling. For this purpose, and convinced of the value of going beyond the usual
maximum likelihood approach, a new constrained multi-objective algorithm has been proposed.
Based on a thorough analysis of the links between different estimation and validation criteria, this
algorithm consists in jointly maximizing the likelihood of the observations as well as the empirical
coverage function of GP prediction intervals computed by a leave-one-out (LOO) procedure, under
the constraint of not degrading the GP predictivity. Particular care has been taken to detail
and justify the parametric choices of the algorithm to facilitate its implementation and favor
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reproducible results.
A large benchmark on analytical functions of variable dimension (1-D to dimension 20) has been

performed, considering different designs of experiments and different covariance models. The new
algorithm was compared to usual simple and multi-start Quasi-Newton algorithms (which focuses
only on the likelihood optimization). The constrained multi-objective algorithm provided better
results in terms of predictivity and reliability of prediction intervals, and was much more robust
to the sampling variance. The improvement brought by the algorithm is all the more interesting
when the covariance model is misspecified, when the number of GP hyperparameters is large or
even when the size of the data is large.

The application relevance of this algorithm has been shown on a real test case modeling an
aquatic ecosystem and more precisely a prey-predator chain. The GP metamodeling is used to
predict the biomass of the two species at a given time. Once again, the multi-objective algorithm
performs better than standard algorithms. Furthermore, the log-kriging approach notably illus-
trates the need for well-estimated and reliable prediction variances in GP regression. Finally, these
good results have been confirmed by a comparison with the RobustGaSP method of Gu et al. [13],
which is to our knowledge the only efficient and tractable Bayesian method. The multi-objective
algorithm achieves results at least as good as those of RobustGaSP, while being less sensitive to
GP specifications (covariance function and nugget). The combination of both approaches in a
modified version of our algorithm yields promising results, taking the best of both methods.

This paves the way for other improvements and variants of the algorithm (e.g. use of gradients
for the optimization of LOO-based criteria, see Petit et al. [8], focusing the multi-objective proce-
dure only on the main influential hyperparameters to reduce the computation cost, etc.). But the
aim of this work was elsewhere: to demonstrate the value of going beyond standard estimation
approaches by combining several criteria, and of taking particular care to control its quality in fine.
GP metamodel is a powerful tool but its implementation requires a certain expertise which can be
a limiting factor in practice for its automation and its use on complex industrial cases. While this
paper attempts to provide guidance, the fact remains that GP validation also requires careful and
informed consideration of the topic, to ensure confidence in its use for predictive purposes.
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Appendix A. Additional results on the links between NLL and validation criteria

As in Section 3, a further illustration of the behavior of NLL and validation criteria for the
“re-scaled” Branin function is given below by Figure A.11, for a dataset of size n = 50.

Figure A.11: M̃Branin Function – Comparison of NLL (computed on the learning sample) and validation criteria
(computed on a test sample), for a GP built on a Monte Carlo learning sample of size n = 50. The optimal value
for each quantity is indicated by a red square.
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Appendix B. Parameters of NSGA-II algorithm

The default (and recommended) values used in all the paper for the NSGA-II algorithm are
specified in Table The default (and recommended) values for the NSGA-II algorithm are specified
in Table B.2. They are fixed and used for all the tests in the article, for the sake of reproducibility
of results.

Maximum number of iterations Maxlt = 50
Population size nPop = 80
Crossover percentage pCrossover = 0.5
Mutation percentage pMutation = 0.5
Mutation rate mu = 0.02
Number of parnets (offsprings) nCrossover = 2*round(pCrossover*nPop/2)
Number of mutants nMutation = round(pMutation*nPop)
Mutation step size sigma = 0.1 ∗ (θ̃max − θ̃min)
Generating reference points nDivision = 10 Zr = GenerateReferencePoints(nObj, nDivision)

Table B.2: Default values of parameters of NSGA-II algorithm.

Appendix C. Benchmark of Section 5: details on test functions and additional results

Appendix C.1. Details on a modified version of Friedman function
The analytical model proposed by Marrel et al. [24] and inspired from the Friedman function

[22] is defined in dimension d = 20 by:

MMarrel−d20(X) = a1 sin
(
6π X

5/2
1 (X2 − 0.5)

)
+ a2(X3 − 0.5)2 + a3X4 + a4X5 + rX6,...,X15 (C.1)

where rX6,...,X15 = a5√
(∑

i=6...15 i2)

∑
i=6...15

√
12i(Xi −0.5) and X = (X1, . . . , X20) are independent and

uniform random variables on [0, 1].
The model depends only on the 15 first inputs. The first term represents a strong and non

monotonic interaction between the two first inputs. The second term is a quadratic function of X3
while the other ones are linear. The parameters for tuning the influence of the different inputs are
chosen as follows: a = (5, 20, 8, 5, 1.5)⊤. Under this parametrization, X2 explains alone around
10% of the output variance, X1 has no individual effect but its interaction effect with X2 is strong
(around 30% of the output variance). X3, X4 and X5 only have individual effects (no interaction)
and explain, respectively, around 11%, 28% and 10% of the output variance. The effects of the ten
remaining inputs (X6 to X15) represent around 11.5% of the output variance. The one-dimensional
mean effects of the five first (and main influential) inputs are plotted on Figure (C.12).

Appendix C.2. Results for Ishighami function in dimension d = 3
Following a protocol strictly similar to that described in Section 5, tests were carried out

on other analytic functions, among them the Ishighami and Becker’s functions. The Ishighami
function introduced by Ishigami and Homma [32] is defined in dimension d = 3 by:

MIshig-d3(X1, X2, X3) = sin(2πX1 −π)+7 sin2(2πX2 −π)+0.1 (2πX3 −π)4 sin(2πX1 −π); (C.2)

Results obtained for Ishighami function without nugget effect are given by Figure C.13.
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Figure C.12: MMarrel-d20 – Illustration of the one-dimensional mean effects for the first five inputs, figure extracted
from Marrel et al. [24].

Appendix C.3. Results for Becker’s function in dimension d = 20
We also considered the Becker’s function in dimension d = 20 proposed by Becker [33]. This

function relies on a list of univariate basis functions that may possibly appear, representing response
features observed in physical models. This list of basis functions is the following:

f 1(x) = x (linear)
f 2(x) = x2 (quadratic)
f 3(x) = x3 (cubic)
f 4(x) = (ex − 1) /(e − 1) (exponential)

f 5(x) = 1
2 sin(2πx) + 1

2 (periodic)

f 6(x) = 1 if x >
1
2 and 0 otherwise (discontinuity)

f 7(x) = 0 (no effect)

f 8(x) = 4
(

x − 1
2

)2
(quadratic, non-monotonic)

f 9(x) = (10 − 1/1.1)−1(x + 0.1)−1 − 0.1 (inverse with small shift)

where each basis function has been scaled so that inputs in [0, 1] also map to outputs in [0, 1] (see
Figure of Becker [33]).

Given these inputs, the function MBecker is built as a sum of the main effects and interactions:

MBecker(x, u, V, w, Θ) =
d∑

i=1
aif

ui (xi) +
d2∑

i=1
bif

uVi,1
(
xVi,1

)
fuVi,2

(
xVi,2

)

+
d3∑

i=1
cif

uWi,1
(
xWi,1

)
fuWi,2

(
xWi,2

)
fuWi,3

(
xWi,3

)
,

where Θ = {a, b, c} are weighting coefficients applied to the main effect, second and third-order
interaction terms respectively. One basis function is therefore specified for each input variable
as its main effect. The interaction terms are generated as mixtures of these main effect terms.
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(a) 3/2-Matérn covariance

(b) 5/2-Matérn covariance

(c) Gaussian covariance

Figure C.13: MIshig-d3 Function – Evolution of validation criteria, according to sample size n, for different hyper-
parameter estimation methods (GP with different covariances and without nugget effect).

Note that this restriction on the construction of the interaction terms is done to avoid additional
parameters, but it could be set otherwise.

To cover a large spectrum of models encountered in physical applications, random functions are
then generated from the definition of MBecker by sampling the parameters of {u, V, W, Θ} from
an appropriate distribution. More precisely, as suggested by Becker [33], u and V are sampled
independently from uniform discrete distributions on J1, dK. Each parameter of Θ is sampled
independently from a mixture of two zero-mean Gaussian distributions: one with a low variance
equals to 0.5, and another with a high variance equals to 5. The mixture parameters are set at 0.7
and 0.3, respectively for the two distributions. Note that for our numerical benchmark, we only
considered functions with interaction effects of second order at most (i.e., we have imposed that
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ci = 0 ∀ i). Results obtained for the Becker function in dimension d = 9 without nugget effect
are illustrated by figure C.14.

(a) 3/2-Matérn covariance

(b) 5/2-Matérn covariance

Figure C.14: MBecker-d9 Function – Evolution of validation criteria, according to sample size n, for different
hyperparameter estimation methods (GP with different covariances and without nugget effect).

Appendix D. Benchmark of Section 5: results with other design choices

Similar benchmarks to those performed in Section 5 have been performed with Monte Carlo
designs (instead of LHS space-filling designs), without and with an additional estimated nugget
effect in covariance function. Similar results to those in Section 5 were obtained for all test
functions, with even more significant outperformance for the algorithm C-NSGA-II-BestC1 when
Monte Carlo designs are used. An illustration of these results is given below by Figure D.15 for
the Friedman function (d = 5) with an estimated nugget effect.
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(a) Exponential covariance

(b) 3/2-Matérn covariance

(c) 5/2-Matérn covariance

Figure D.15: MFried-d5 Function – Evolution of validation criteria, according to sample size n, for different estimation
methods and from Monte Carlo learning samples (different covariances, all with an estimated nugget effect).
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