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Abstract

In the framework of risk assessment, computer codes are increasingly used to understand, model
and predict physical phenomena. As these codes can be very time-consuming to run, which severely
limit the number of possible simulations, a widely accepted approach consists in approximating
the CPU-time expensive computer model by a so-called “surrogate model”. In this context, the
Gaussian Process regression (also called kriging) is one of the most popular technique. It offers
the advantage of providing a predictive distribution for all new evaluation points. An uncertainty
associated with any quantity of interest (e.g. a probability of failure in reliability studies) to
be estimated can thus be deduced and adaptive strategies for choosing new points to run with
respect to this quantity can be developed. This paper focuses on the estimation of the Gaussian
process covariance parameters by reviewing recent works on the analysis of the advantages and
disadvantages of usual estimation methods, the most relevant validation criteria (for detecting
poor estimation) and recent robust and corrective methods.
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1. Introduction

In the framework of risk assessment, computer codes (or numerical simulators) are developed
and increasingly used to understand, model and predict physical, engineering or biological phe-
nomena [1]. They usually take a large number of input parameters driving the phenomenon of
interest or related to its physical and numerical modeling. However, the available information
about some of these parameters is often limited or uncertain. The uncertainties come mainly from
the lack of knowledge about the underlying physics, the characterization of the input parameters
of the model (e.g. due to the lack of experimental data) or to the choice of scenario parameters.
Therefore, it is essential to take the uncertainties tainting the results of computer simulations into
account in order to perform “Uncertainty Quantification” [2].

A probabilistic framework where the input uncertainties are modeled by fully or partially known
probability distributions, based on available data, expert opinions or bibliographic databases is
usually considered [3]. The uncertainty quantification process therefore relies on Monte Carlo
techniques: a sample of code simulations is performed, where the inputs are drawn according to
their probabilistic distributions. Estimators of the target statistical quantities, also called sta-
tistical quantities of interest (e.g. the variance, a probability of exceeding a threshold, or some
quantiles) are then computed from the sample of code outputs. Depending on the nature of the
quantities to be estimated and the expected confidence in the estimators, a very large number of



simulations of the code can be necessary: from a few hundred to several tens of thousands for
example. This number can also depends on the dimension of the inputs, when performing sensitiv-
ity analysis for instance [4]. There are numerous examples of sensitivity analysis and uncertainty
quantification based on probabilistic approaches, particularly in the case of risk assessment using
environmental models (see, e.g., the motivating examples in the textbooks [3, 2, 4]).

In this context, one key issue is that the numerical model under study can be very time-
consuming to run, which can drastically limit the number of possible simulations. To solve this cost
issue, a widely accepted approach consists in approximating the CPU-time expensive computer
model by a CPU-time inexpensive mathematical function called “surrogate model” (or “meta-
model”, term that is used in the following). These metamodels can be based on polynomials,
splines, random forests, neural networks, etc. [5, 6], in fact on any machine learning techniques
[7]. Built from a set of computer code simulations, they must be as representative as possible
of the code outputs in the domain of variation of the uncertain parameters while having good
prediction capabilities. Nowadays, metamodels are extensively used in several engineering fields
to solve industrial issues as it provides a multi-purpose tool [8]: once fitted, the metamodel can
be used, possibly in conjunction with the costly computer code, to perform sensitivity analysis,
as well as uncertainty propagation, optimization, or calibration studies. Such techniques have
been extensively developed for instance in nuclear engineering (see, e.g., [9, 10]). However, to be
confident with this approximation-based approach in support of the different uncertainty quantifi-
cation tasks, it is crucial to develop accurate and reliable metamodels to approximate the computer
model.

Among the metamodels classically used for numerical experiments, the Gaussian Process (GP)
regression, also called kriging model, is a popular tool for non-parametric function estimation.
Historically introduced in the context of geostatistics for spatial interpolation (see, e.g., [11]), GP
regression has been extended to interpolation of numerical simulation outputs (see, e.g., [12]) and
machine learning approximation (see, e.g., [13]). Its intuitive idea is to start from a prior over
random functions (a GP is characterized by its mean and covariance functions), then the GP
regression yields a posterior over functions given the observed data. On one hand, this makes it
a very flexible non-parametric regression tool, suitable for modeling of numerical simulators and
whose effectiveness has been illustrated in many applications [8]. On the other hand, it also offers
a probabilistic framework: the GP metamodel yields a predictive distribution for the code output
at each prediction point, with a simple analytic formulation. From this, a prediction but also an
uncertainty via prediction intervals can be analytically derived.

Figure 1 illustrates this principle of using a (probabilistic) metamodel, by the way of the GP,
to emulate computer code from a set of code simulations. The main idea is that, in addition
to a predicted value for the quantity of interest, the stochastic information provided by the GP
metamodel allows to obtain confidence bands on this quantity. In many engineering problems, and
especially those related to safety, it is essential to have access to prediction intervals in addition
to the predictions of machine learning algorithms, in order to understand and assess the degree
of confidence in the algorithm’s prediction. This is part of the more general framework called
”Trustworthy Machine Learning” [14]. This major advantage, intrinsic to GP, is therefore highly
appealing for risk and safety assessment applications. Its value has been illustrated, in simulation-
based nuclear engineering and safety analyses, for estimating probabilities of failure [15], sensitivity
indices [16], excursion sets [17], functional risk curves [18], maximal values [19] and high-order
quantiles [20].

Moreover, the GP-associated prediction intervals allow to develop so-called adaptive (also called
“active learning” or “goal-oriented”) strategies: the idea is to sequentially find, from the current set
of simulations, a new set of points to run in the input space in order to most efficiently estimate a
statistical quantity of interest (see, e.g., [8]). This approach has been shown to drastically increase
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convergence with respect to standard Monte Carlo or quasi-Monte Carlo algorithms (see Fuhg
et al. [21], Moustapha et al. [22] for overviews and benchmarks of GP-based adaptive algorithms).
Among the numerous algorithms that have been recently developed, one can distinguish those
based on pointwise criteria, which use uniquely the conditional mean and variance of the GP at a
given point (see, e.g., [23]) and those based on integral criteria, which integrate functions of the
conditional mean and variance of the GP over the whole input domain (see, e.g., [24]). Among the
different topics that use such algorithms, all recently published in the Reliability Engineering and
System Safety journal, one can cite prediction-forecast [25], calibration [26], structural reliability
[27, 6], reliability-based design optimization [28] and robust optimization [29].

Figure 1: Metamodel and probabilistic metamodel principles, illustrated with GP mean (GP metamodel predictor)
and GP 90%-prediction intervals (quantiles of GP predictive distribution).

The main aim of this paper is to focus strong attention on a key point, often omitted in
the above mentioned studies, in the practical building and use of GP. Indeed, when fitting a
GP metamodel on a given dataset, the specification of the covariance structure of the process is
particularly sensitive. The power of the GP lies to a large extent in the wise choice of a covariance
model and a good estimate of its parameters (often called the hyperparameters). A poorly specified
covariance affects the predictivity of the GP, but above all, and to a greater extent, the correctness
of its confidence intervals. Although the confidence intervals’ issue is at the core of this work, the
validation metrics that will be presented and discussed attempt to validate GP predictivity and
confidence intervals.

Concerning the choice of mean and covariance functions, they are usually chosen within para-
metric families (for instance, class of Matérn covariance functions). The estimation of GP then
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consists only in the estimation of hyperparameters. For this, different methods exist based on
either likelihood maximization, cross-validation technique or Bayesian approach. From a theo-
retical point of view and under the hypothesis of a well-specified covariance model, some results
exist concerning the consistency of the different types of estimators [30, 31, 32]. From a practical
standpoint, some studies [33, 34, 35] have proposed comparisons on analytical functions, but no
consensus really emerges: the estimation of hyperparameters is often unstable regardless of the
method. Moreover, most of the time, the authors only focus on the accuracy of GP predictor
to assess the impact of hyperparameter estimates. The reliability of prediction intervals is rarely
considered (except in Petit et al. [36]), while it is often affected by misspecification of GP covari-
ance and poor estimation of hyperparameters (as highlighted by Demay et al. [19]). To mitigate
this problem, other authors such as Acharki et al. [37] propose to correct the hyperparameter esti-
mates to obtain more robust and accurate prediction intervals (that are called reliable prediction
intervals in the following). Whatever the estimation method or correction considered, this calls
for validation indicators to control the performance and robustness of GP regression.

In this scope, this paper reviews recent works dealing with the difficulties inherent in esti-
mating GP hyperparameters. The objectives are to analyze the advantages and disadvantages of
estimation methods, to list and propose relevant validation criteria (to detect poor hyperparameter
estimation), and to study some recently proposed robust and corrective methods. The rest of the
document is organized as follows. Reminders on GP regression, parameterization and estimation
of parameters are given in Section 2. Section 3 reviews the different hyperparameter estimation
algorithms. Section 4 lists important criteria for GP validation. Section 5 then proposes a review
of very recent papers dealing with the robust estimation of GP hyperparameters and allows to
explain the orientation chosen for our research work, w.r.t. the application context. In particular,
validation criteria to control the performance and robustness of GP regression are detailed. The
last section gives some conclusions and prospects of this work. From this extensive review, a com-
panion paper [38] proposes a new algorithm that solves some of the identified drawbacks of the
previous ones.

2. Reminders on Gaussian process regression

Throughout the rest of this paper, the numerical model (computer code or simulator) is repre-
sented by the following input-output relationship:

M :
∣∣∣∣∣ X −→ Y

X 7−→ Y = M(X) (1)

where the uncertain output variable Y and the d input parameters X = (X1, . . . , Xd)⊤ belong
to some measurable spaces respectively denoted by Y and X ⊂ Rd. As part of the probabilistic
approach, the inputs are considered as random variables with probability distributions denoted by
PX on X [2]. It is therefore assumed that we have a n-size sample of inputs and associated outputs
denoted by (Xs,Y(Xs)) where Xs = {x(1), . . . ,x(n)}, with x(i) =

(
x

(i)
1 , . . . , x

(i)
d

)
, denotes the matrix

of n-size sample locations (also called the “experimental design”), and Ys = {y1, . . . , yn} denotes
the corresponding outputs observations with yi = M(x(i)). (Xs,Ys) constitutes the learning
sample.

2.1. GP metamodel conditioned by the learning sample
In the GP regression framework [13, 8], the data are modeled as discrete observations of a

GP sample path. The prior knowledge on observations is modeled by a GP completely specified
by its mean function m(x) = E[Y (x)] and its covariance function k(x, x̃) = COV(Y (x), Y (x̃)) =
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E[(Y (x) − m(x))(Y (x̃) − m(x̃))]. k(·, ·) is also called the covariance kernel and is assumed to be
a positive definite kernel. The predictive GP distribution is therefore naturally given by the GP
conditioned by the known observations Ys, denoted [Y (x)|Y(Xs) = Ys]. Its distribution can be
obtained analytically from the following joint distribution:(

Y (x)
Y(Xs)

)
∼ N

((
m(x)

m(Xs)

)
,

(
k(x,x) k(x,Xs)T

k(x,Xs) K

))
, (2)

where:

• Y(Xs) = (Y (x(i)))1≤i≤n ∈ Rn is the vector of output value at sample locations,

• m(Xs) = (m(x(i)))1≤i≤n ∈ Rn is the vector of mean function evaluated at sample locations,

• K = (k(x(i),x(j)))1≤i,j≤n ∈ Rn×n is the covariance matrix at sample locations,

• k(x,Xs) = (k(x,x(i)))1≤i≤n ∈ Rn is the covariance vector between x and sample locations.

By applying the conditioning theorem of Gaussian vectors to the joint distribution, the condi-
tional field Y (x)|Y(Xs) = Ys is still a GP whose mean is given by:

ŷ (x) = E[Y (x)|Y(Xs) = Ys] = m(x) + k(x,Xs)T K−1
(
Ys − m(Xs)

)
, (3)

and its covariance function:

ĉ(x, x̃) = COV[Y (x), Y (x̃)|Y(Xs) = Ys] = k(x, x̃) − k(x,Xs)T K−1k(x̃,Xs). (4)

In the following, the conditioning notation [•|Y(Xs) = Ys] will be reduced to [•|Ys] for the sake
of brevity. Therefore, the predictive distribution for a new (unobserved) point x is the Gaussian
distribution N (ŷ(x), ŝ2(x)) where ŝ2(x) = ĉ(x,x).

The conditional expectation ŷ(x) is used as the predictor of the GP regression model and
its mean-square error is given by the conditional variance ŝ2(x), while the Gaussian predictive
distribution can be used to build predictive intervals of any level α ∈]0, 1[. More generally, con-
ditional simulations (i.e. simulation of conditional GP trajectories) can be used to estimate, with
a confidence interval, any statistical quantity of interest derived from the output (probability of
exceeding a threshold, quantiles, etc.). The predictive distribution of some quantities of interest
can also be defined analytically: this is obviously the case for a vector of prediction points, but also
for derivatives or excursion sets. This possibility offered by GP regression is of particular interest
in uncertainty quantification studies or for developing optimization strategies.

2.2. Covariance function, hyperparameters and nugget effect
The prior knowledge in GP regression consists in specifying the mean m(x) and the covariance

function k(x, x̃) which is certainly the most important ingredient of a GP regression as it describes
the dependence structure and controls the smoothness of the approximation.

2.2.1. Usual covariance functions and consideration on a priori choice
In the GP regression of computer experiments, the most popular choice is undoubtedly the

class of stationary ν-Matérn functions defined in one dimension (x ∈ R) by:

kσ,ν,θ(x, x̃) = σ2 21−ν

Γ(ν)

(√
2νh
θ

)ν

Kν

(√
2νh
θ

)
, (5)
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where h = |x− x̃|, σ2 and θ ∈ R+ are respectively the variance parameter and the correlation
hyperparameter (also called correlation length or length-scale). Kν is a modified Bessel function of
second kind with parameter ν ∈ R+, and Γ is the Euler Gamma function. The parameter ν controls
the smoothness of the GP: Y (x) is at least k-time mean-square differentiable if and only if ν > k.
ν = 1/2 corresponds to the exponential covariance with continuous but not differentiable GP
trajectories, while the limiting case ν → ∞ yields the Gaussian covariance function with infinitely
differentiable trajectories. Between these two extreme cases, two popular ν-Matérn covariances in
the statistical learning community are the ones for ν = 3/2 and ν = 5/2, which respectively yield
to GP trajectories once and twice differentiable (see Table 1).

v = 1
2 v = 3

2 v = 5
2 v = +∞

Usual name exponential 3/2-Matérn 5/2-Matérn Gaussian
kσ,ν,θ(x, x̃) σ2e− h

θ σ2(1 +
√

3h
θ
)e−

√
3 h

θ σ2
(

1 +
√

5h
θ

+ 5
3

(
h
θ

)2
)
e−

√
5 h

θ σ2e− 1
2(h

θ )2

Differentiability C0 C1 C2 C∞
of GP trajectories

Table 1: Usual covariance functions and properties of associated GP trajectories.

Hence, choosing a correlation function most often consists in assuming a prior regularity for
the model to be emulated since it directly defines the space of the possible trajectories in which
the “real” function (or model) is supposed to belong. The success of the GP metamodel is condi-
tioned to an adapted covariance model [39]. To ensure a relevant choice, one solution might be to
consider the family of ν-Matérn functions and to integrate the regularity parameter ν in the set of
hyperparameters to be estimated from the dataset. But, as pointed out among others by Gu et al.
[40], this is not a very relevant idea in practice notably for the emulation of computer experiments
in high dimension. First, most often a space-filling design [5] is used to generate Xs in order to
have simulation points with good input space covering. Although this type of design optimizes in
practice the predictivity of the GP metamodel, the absence of points’ aggregates prevents from
properly characterizing and therefore estimating the ν parameter. Indeed, the covariance functions
mainly differ at the origin (i.e. for a distance between points tending towards 0) and in particular
by the decay rate at this point. Furthermore, it turns out that jointly estimate ν with (σ2, θ)
may cause in practice computational and inferential difficulties in the estimation processes. It is
therefore preferable (and commonly adopted) to estimate (σ2, θ), conditionally to a specified value
of ν.

Hence, as suggested by Petit [41] and in the direct line of Demay et al. [19], an interesting
compromise (that we also recommend from our experience) is to consider a finite collection of
covariance functions (those of Table 1), then estimate the hyperparameters (σ2, θ) for each of them,
and finally use a validation criterion (different from criterion used for the estimation) to select the
best covariance. It is also reasonable to consider the 5/2-Matérn covariance as the default practical
choice because, as highlighted by Gu et al. [40], it has very interesting behavior of the 5/2-Matérn
covariance w.r.t. to the distance between two input points. On the one hand, when distance tends
towards zero, 5/2-Matérn covariance behaves like Gaussian covariance, maintaining the smoothness
for nearby inputs while ensuring better conditioning number of the covariance matrix. On the other
hand, when distance tends to infinity, it behaves like the exponential covariance, preventing from
decreasing quickly with distance (as does the Gaussian correlation). This can be useful for sparse
data (as is often the case in numerical simulator emulation) or for non-influential inputs for which
it is logical that the correlation is quasi-constant with distance.

Finally, let us mention another approach that goes beyond the usual covariance kernels and
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consists in building a mixed covariance function in a single GP model. A new kernel function
is constructed by mixing several usual kernels (such as those in Table 1) through operators such
as addition and multiplication [13]. However, such an approach complicates the hyperparameter
estimation step as this might increase the total number of hyperparameters and add some weighting
parameters which must also be estimated. It might be impractical for high-dimensional test cases
and in case of insufficient number of data. Problems of hyperparameter identifiability might also be
increased in practice. Nevertheless, a tractable process for learning composite kernels has recently
been proposed in Palar et al. [42]. The method is currently reserved for combinations of kernels
sharing the same hyperparameter vector. However, from an applications point of view, it would be
more valuable with different hyperparameters for each of the kernels in order to capture phenomena
occurring at different scales. Unfortunately, this extension is not recommended by Palar et al. [42],
at least not with their algorithm, as it presents poorer results. More generally, even though this
composite kernel approach doesn’t seem to be widely used in practical studies, it clearly stands as
a future avenue of research and improvement for GP metamodeling.

2.2.2. Extension to multivariate case
In order to extend to multi-dimensional inputs x ∈ Rd, a widely used approach consists in

considering a tensorized covariance defined as a product of univariate covariances:

kσ,ν,θ(x, x̃) = σ2
d∏

i=1
k1,ν,θi

(xi − x̃i). (6)

The d 1-D covariance functions can be of different natures (with different smoothness parameters νi

for instance). But in practice, given the large number of inputs and without any prior knowledge,
the usual practice is to use the same function for all variables.

2.2.3. Additional variance modeled by nugget effect
An additional nugget effect can also be considered in the covariance: it assumes an additive

white noise effect, whose variance denoted σ2
ϵ constitutes the nugget parameter. Most often, σ2

ϵ is
assumed to be constant, independent from the inputs (homoscedastic hypothesis). The covariance
matrix then becomes K′ = K + σ2

ϵ In where In is the identity matrix. From a purely parametric
point of view, the variance of the nugget effect is often considered and parameterized relatively
to the variance of the GP with λ =

(
σϵ

σ

)2
∈ R+. Even for noiseless data as in the case of a

deterministic simulator, the nugget effect is often used in GP metamodeling because its practical
interest is twofold: both to relax the interpolation property of the GP regression and to improve the
conditioning number of the covariance matrix (also referred to as GP regularization). Conceptually,
it means that the model function M (numerical simulator in computer experiments) is supposed to
be a slightly noised version of a smoother and deterministic simulator. This regularity aspect can
also be considered in presence of sparse problems, characterized by a weak density of observations
in the input parameter space.

2.2.4. Considerations around the GP trend
Finally, let us say now a brief word about the GP mean (or trend) m(x). A constant m(x) = β0

or a one-degree polynomial trend m(x) = β0 +∑
i βixi is usually considered in practice. But any

linear regression model on a set of known basis functions could be used instead. For simplicity, it
is assumed, in the rest of the section, that the prior mean is a constant and more exactly equals
to zero (assuming that data are centered, for instance). This assumption is only made to simplify
some equations (e.g. reminders on maximum likelihood estimation).
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2.3. Positioning of the GP regression model w.r.t. other metamodels
As mentioned in the introduction, the GP metamodel offers many advantages over other meta-

models with regard to the applications considered in our work. On this point, let’s recall that
we’re interested in the emulation of computer experiments from learning bases of a few dozen to
a thousand data, with a few dozen explanatory variables as input. Moreover, in the framework
of risk and safety assessment applications, it is crucial to have an uncertainty associated with the
metamodel predictions in order to take into account the metamodeling error in risk calculations.
This is also necessary in adaptive strategies, where the metamodel is used to enrich the learning
sample. This is of course what is offered by the GP metamodel which, in addition to its high
flexibility and generalization capability, encloses an intrinsic measure of uncertainty.

There are, of course, other metamodels commonly used for emulating computational code
output (see, e.g., [5, 7, 2]). The literature is abundant on all of them and a comparative analysis
is beyond the scope of this paper. For a more complete analysis, we can refer to Teixeira et al.
[43] and Kianifar and Campean [44], which also list other previous papers proposing comparative
studies. Essentially, we can point out some key elements:

1. Few of metamodels, as the GP does, naturally provide a predictive output distribution,
without using bootstrap or bagging techniques which can be costly depending on the type
of metamodel to be estimated, and unreliable if the sample size is small;

2. Polynomial regression-based metamodels have the advantage of simplicity but cannot repre-
sent complex relationships, while regression based on splines, more flexible, is limited to low
dimensions;

3. Radial basis functions-based regression presents obvious connections with GP regression [45]
but does not naturally enclose prediction uncertainty like the GP;

4. This drawback is the same for polynomial chaos expansion metamodels (ans their sparse
versions) which have nevertheless many other useful properties for computer experiments
applications;

5. Random forests metamodels are particularly robust to the curse of dimensionality, but pro-
duce predictors that are often irregular for small learning sample sizes;

6. Support vector regressors can handle non-linearity and high-dimensional inputs thanks to
the kernel trick, but require a particularly delicate tuning step of several hyperparameters
(kernel parameter, regularization parameter, margin of tolerance);

7. Neural networks are capable of representing very complex phenomena, but at the cost of a
large number of data. Even if regularization techniques (e.g. early stopping, regularization,
dropout) are used to avoid overfitting, most of application experiences with limited sample
sizes (100 to 1000) and several tens of inputs show that the predictivity of a neural network
is unsatisfactory.

Furthermore, to obtain a predictive law at the output of a neural network, more complex
approaches such as Bayesian neural networks (BNN) have to be considered. BNN has been studied
for computer code emulation in Staber and Da Veiga [46]. This study concludes that fine-tuning
hyperparameters to produce reliable confidence intervals and predictivity remains a challenge, and
that only few approximation method for BNN achieve good accuracy (namely stochastic gradient
Monte Carlo Markov Chain and deep ensembles). Moreover, the reliability of BNN for higher-
dimensional problem remains to be studied. Finally, let us mention the promising approach of
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conformal predictions, that provide prediction intervals with strong theoretical guarantees. They
should be developed in the context of computer code emulation (see, e.g., a first step towards this
objective in Jaber et al. [47]).

3. Estimation of Gaussian process hyperparameters

The type of covariance function is generally fixed among the usual choices of Table 1. It then
remains to estimate the covariance parameters (σ2,θ) (and eventually λ if a nugget effect is consid-
ered). The main estimation procedures are based either on minimization of the squared prediction
error calculated by cross-validation (CV), or on maximization of likelihood (denoted MLE for
maximum likelihood estimation). Note that Petit et al. [36] propose a review and comparison of a
larger panel of criteria to be optimized to estimate hyperparameters. In particular, they suggest a
generalization of the likelihood criterion called the Fasshauer’s Hölderized likelihood and which is
based on the orthogonal decomposition of the covariance matrix. In parallel to MLE and CV, a
Bayesian estimation approach also exists: a prior distribution is assumed for the hyperparameters
and combined with MLE to obtain a posterior distribution of the hyperparameters which is then
propagated into the GP predictive distribution. The following subsections detail these different
approaches and summarize recent works on the theoretical analysis and empirical comparison of
these methods.

3.1. Cross-validation-based approach
A first estimation approach relies on the mean squared error (MSE) in prediction computed

by cross-validation (CV) [7]. More precisely, in the case of leave-one-out (LOO) method, the GP
hyperparameters are computed by minimizing the LOO-MSE:

LOO-MSE
(
σ2,θ

)
:= 1

n

n∑
i=1

(ŷ−i − yi)2 ,

where ŷ−i denotes the GP predictor (mean of predictive distribution) in x(i) when (x(i), yi) is
removed from the set of observations (this comes down to consider the GP conditioned by Ys,−i).

Using the CV formulas of Dubrule [48], the predictive mean ŷ−i and variance ŝ2
−i are given by

ŷ−i − yi =
(K

σ2,θ y)i

(K
σ2,θ)i,i

, (7)

and
ŝ2

−i = 1
(K

σ2,θ)i,i

. (8)

The LOO-based estimators of GP hyperparameters are thus given by(
σ̂2

MSE, θ̂MSE

)
= arg min

σ2,θ
y⊤K

σ2,θ Diag(K
σ2,θ)−2K

σ2,θ y. (9)

In practice, there are no closed-form expressions for
(
σ̂2

MSE, θ̂MSE

)
, and the quantity to be

optimized is not convex and may have several local optima. The optimization has to be done
numerically. Note that under the hypothesis of a well-specified covariance model, some theoretical
results exist concerning the consistency of LOO (and more generally CV) estimators [32].
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3.2. Maximum likelihood-based approach
The most widely used approach is the MLE which consists in identifying the values of θ which

minimizes the negative log-likelihood of the dataset:

ℓ(Ys) = 1
2

(
n log(2π) + log

∣∣∣K
σ2,θ

∣∣∣+ Ys
T K−1

σ2,θYs

)
with |A| denoting the determinant of matrixA. Provided that θ is known and writing K

σ2,θ = σ2Rθ,
the MLE estimator of the variance parameter is given by:

σ̂2
MLE = 1

n
Ys

T R−1
θ Ys. (10)

Plugging back σ̂2
MLE into ℓ(Ys) to get a concentrated (or profile) log likelihood involving just θ,

MLE results in the following minimization problem for θ:

θ̂MLE = arg min
θ

σ̂2
MLE

∣∣∣Rθ

∣∣∣ 1
n . (11)

Even if calculating the derivative of the above expression is analytic, solving it is not, and no
closed form solution can be obtained. As for LOO-MSE approach, numerical methods are thus
required to estimate θ̂MLE. The interested reader can refer to Santner et al. [12] for the MLE
equations in the case where a regression model is considered for the trend m(x). In addition,
Zhang [30] and Bachoc [31] provide theoretical results on the consistency of MLE (still under the
hypothesis of a well-specified covariance model).

As an alternative approach for MLE, Li and Sudjianto [49] propose to optimize a penalized
likelihood function: a penalty term (function of the hyperparameters and depending on a regular-
ization parameter) is added to the standard likelihood. This amounts to maximizing the likelihood
function subject to a constraint on the hyperparameters. This can also be interpreted as a Bayesian
approach where the penalty term corresponds to a prior on the hyperparameters. Zhang et al.
[50] have recently extended this approach by simultaneously improve the trend and covariance
parameter estimation via regularization techniques. However, the problem of such an approach is
its cost, as it requires an additional cross-validation loop to estimate the penalization parameters.
This is why it does not seem to be very used in practice.

3.3. Maximum likelihood estimation in Gaussian process framework may be ill-posed
In their recent papers, Karvonen and Oates [39] and Gu et al. [40] discuss how the MLE is well-

or conversely ill-posed and how this notion can be defined in the framework of GP hyperparameter
estimation, and in the non-asymptotic setting. Note that the scalar notation will be used in what
follows for θ without loss of generality for an extension to the case of a vector θ.

3.3.1. Infinite θ and lack of continuity with respect to the training dataset
Under the assumption of a well-specified prior (mean and covariance), the predictive perfor-

mance of the GP is well understood in an asymptotic setting [32, 51]. But, there is not much in
the literature about the non-asymptotic setting when the hyperparameters θ are estimated from
the learning sample, and in a deterministic interpolation framework (interpolating GP to emulate
a deterministic function).

First, Karvonen and Oates [39] defines the MLE ill-posedness as the occurrence of θ̂MLE = ∞,
which yields k(x, x̃) = 1 ∀ (x, x̃) ∈ R × R and estimated correlation matrix R

θ̂MLE
= 1n1T

n . The
GP predictive distribution is degenerated for each point of prediction (predictive variance is zero
and all the probability is assigned to a single value). Having infinite precision from a finite dataset
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is undesirable and the GP metamodel loses its interest as a tool for uncertainty quantification.
It is therefore important to have validation criteria that take into account the whole predictive
distribution and thus enable this situation to be detected, such as those presented in section 4.3.

From this definition of ill-posedness, Karvonen and Oates [39, Theorem 2.3] demonstrate that
if the data are m-constant, i.e. shifted from the mean function m(x) by a constant c ∈ R:

yi = m
(
x(i)

)
+ c for i = 1, . . . , n, with n ≥ 2,

and if the covariance function has a polynomial decaying Fourier transform (like the Matérn func-
tions with smoothness ν > 0), then θ̂MLE = ∞. On the contrary, if the data are not m-constant,
then θ̂MLE < ∞ so that the predictive distributions are non-degenerate.

Then, the authors propose to consider the classical definition of well-posedness of Hadamard
for an inference or estimation problem. More precisely, it is well-posed if (i) a solution exists, (ii)
the solution is unique, and (iii) the solution depends continuously on the data. If these conditions
are not met, the problem is ill-posed. The (iii) condition about the sensitivity of the GP estimate
to the training dataset is particularly relevant for sensitive applications such as nuclear safety
applications. From this definition, and under the same assumptions of regularity of the covariance
function (polynomial decaying Fourier transform), Karvonen and Oates [39] demonstrate that if
θ̂ = ∞, the GP regression problem is ill-posed by violation of (iii), in the sense that the resulting
predictive distributions are not locally Lipschitz in the data w.r.t. the Hellinger distance, which
means that predictive inference can be sensitive to small perturbations of the dataset.

In order to find solutions to this problem, the authors examine several alternative modelling
and estimation methods and show that:

• the LOO-CV estimator of θ shares the same undesirable property of MLE when the data are
m-constant, which is not surprising given the close connection between MLE and CV (Fong
and Holmes [52]);

• the addition of a parametric prior mean function m(x), also estimated from the data (i.e.,
as in universal kriging), does not help;

• simultaneous MLE of σ and θ does not prevent ill-posedness (as usually done in GP regression,
see Eqs. (10,11));

• the addition of a nugget effect does not prevent from having θ̂MLE = ∞ when the data are
m-constant but prevents the GP predictive distribution from being degenerate. Moreover,
when the data are not m-constant but close to it, θ̂MLE → ∞ and the condition number of the
correlation matrix R

θ̂MLE
increases with a rate related to the smoothness of the covariance.

This results in a numerical issue in the MLE process (likelihood for large value of θ cannot
be computed). The introduction of a λ > 0 allows to mitigate this issue (by upper bounding
the condition number). The price to pay is therefore to relax the interpolation constraint.

In conclusion, the practical recommendations to be retained from Karvonen and Oates [39] are:

▶ the addition of a nugget effect λ > 0, also estimated by MLE, is recommended as a regu-
larization parameter, taking care to limit its value by a reasonable upper bound. Another
solution can be to bound the parameter θ and find the MLE estimate in (0, θmax] (constrained
MLE). However, it implies the arbitrary choice of a θmax which turn out to be the estimated
value of θ̂MLE if the data are m-constant.
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▶ Finally, reasoning in a rather rudimentary way, this would argue for not assuming a too
complex model for the GP trend m(x) so that the observed data are not m(x)-constant. In
practice, m(x) is assumed to be a constant or a one-degree polynomial (universal kriging),
with parameters also estimated by MLE. Another practical recommendation could be to
check if the data are m-constant (or close to be) in order to detect problematic datasets
which cause GP regression to be ill-posed. However, it is reasonable to expect that in our
industrial applications, the probability of having strictly m(x)-constant data (without any
deviation from m(x) or noise) is relatively low due to the complexity of the considered models
(or codes), the large input dimension and the sparsity of the data (low sample size).

3.3.2. Lack of robustness
Previously to Karvonen and Oates [39], Gu et al. [40] had already proposed to define the ill-

posed MLE problem, which the authors prefer to refer to as a lack of robustness. Their starting
point is that the likelihood (Eq. (11)) is sometimes very flat in the tails. This is clearly illustrated
on our analytical example of Figure 4 in Section 4.4. Then, Gu et al. [40, Definition 3.1 and
Lemma 3.2] propose to define the lack of robustness of GP hyperparameters by the occurrence of
two cases:

– case (1), as in Karvonen and Oates [39]: θ̂ = ∞ and consequently R
θ̂

= 1n1T
n . In multidi-

mensional case (i.e. d > 1), this case corresponds to θ̂i = ∞ for all 1 ≤ i ≤ d;
– case (2): θ̂ = 0 and consequently R

θ̂
= In. For d > 1, this is encountered when ∃i, 1 ≤ i ≤ d,

for which θ̂i = 0.

Case (2) is not more desirable than case (1) because it means that R
θ̂MLE

is near In and the GP
predictor is an impulse function interpolating the observations, while following the GP mean m(x)
elsewhere. The authors state and numerically show that even if “such degeneracies are somewhat
unusual in one-dimension, they are not particularly unusual with higher dimensional inputs” (large
dimension d).

The authors also mention that MLE instability can often be “overcome by adding a nugget
effect, but studies have found that the features of the emulator can significantly change when a
nugget is added [53].” So, to circumvent the problem of robustness, Gu et al. [40] prefer to
focus on Bayesian approaches and demonstrate that certain prior and parameterizations for the
GP parameters result in a more robust estimation than others (see Section 5.2 dedicated to the
so-called RobustGaSP Bayesian approach).

3.4. Bayesian approach
A third approach is to consider a full-Bayesian approach where a prior is assumed on the GP

hyperparameters. The marginal posterior distribution is then inferred by Bayes’ rule from marginal
likelihood of data, and with regard to the prior. The resulting posterior uncertainty is then inte-
grated in the GP predictive distribution. More precisely, assuming a prior on the hyperparameters
(σ2,θ) ∼ π (σ2,θ), their posterior distribution writes π (σ2,θ | Ys) ∝ π (Ys | σ2,θ)π (σ2,θ). The
probability density function of the GP predictive distribution of Y (x) is then given by:

p (y(x)|Ys) =
∫∫

p
(
y(x) | Ys, σ

2,θ
)
π
(
σ2,θ | Ys

)
dσ2 dθ. (12)

Full Bayesian approach thus allows to take into account the uncertainty on the estimation of the GP
hyperparameters and to propagate it in the GP predictive law. It has been illustrated in dimension
two by Wieskotten et al. [54] showing that it is relevant and can outperform the ordinary GP in
terms of both predictivity and accuracy of predictive intervals. This is especially true when the
sample size is small, the benefit decreasing as the size increases, as one might expect.

12



However, the tractability of the full Bayesian approach in higher dimension remains a major
obstacle to its use. Indeed, in practice, the computation of π (σ2,θ | Ys) and p (y(x)|Ys) requires
the use of Markov chain Monte Carlo (MCMC) methods like Metropolis-Hastings algorithm [55]
or Hamiltonian Methods [56]. The calculation cost of the predictive distribution with MCMC
techniques becomes expensive in large dimension. To circumvent this limitation, some plug-in
approaches can be considered as in Gu et al. [40]: p (y(x)|Ys) is computed with the GP hyperpa-
rameters fixed at the maximum a posteriori probability (MAP) estimate (that equals the mode of
the posterior distribution π (σ2,θ | Ys)). In this case, the Bayesian framework is only used to com-
pute this posterior distribution and is then discarded to calculate the predictive law p (y(x)|Ys).
Basically, this means replacing π (σ2,θ | Ys) with a Dirac distribution whose mass is concentrated
on the MAP value. This somewhat brutal solution facilitates the intensive use of the predictive
distribution. Only the problem of the estimation of π (σ2,θ | Ys) remains. Finally, the Bayesian
approach (whether full or plug-in) also requires to define the prior distribution for the hyperpa-
rameters, choice which can be of prime importance as detailed in the work of Gu et al. [40] (See
Section 5.2).

3.5. Discussion on the relative practical performance of the different approaches
Discussions on the choice of a method between MLE and CV (or LOO) methods are not new,

but recent work and especially intensive benchmarks are shedding new light. Let us try to make
a brief synthesis.

As shown by Bachoc [35], the MLE method is optimal when the covariance function is well-
specified, i.e. when the “true” covariance function belongs to the assumed parametric set of
covariance functions. If this is not the case (misspecification case), there is no more guarantee
that the MLE method would perform correctly and optimally. Bachoc [35] illustrated that MLE
may not be very robust in this case, especially if the number of data is small, while the CV-based
approach performs better. On the other side, the availability of gradients in the MLE case (without
significant additional computational cost) is an advantage in the implementation of numerical
optimization algorithms required for hyperparameter estimation. However, this advantage must
be qualified by the recent works on the computational complexity of cross-validation schemes and
more precisely the fast computation of gradients of LOO criteria [36, 41]. Still in Petit [41],
an intensive benchmark on analytic functions of different dimensions shows that MLE is often
preferable to its competitors (not only in well specified cases but also in case of overestimated
regularity), and that the choice of regularity (ν in Matérn class) might be often more important
than the estimation of GP hyperparameters. To conclude the comparison between MLE and
LOO, let us mention the remark of Zhang and Wang [57] concerning the flatness of both MLE or
LOO-based criteria around their optimal value. The authors argue that the flatness of LOO-based
criteria is less damaging since it indicates that the predictive distribution is less sensitive to the
hyperparameter value in the flatness region.

Faced with this lack of consensus between MLE and LOO, the full-Bayesian approach could
appear as a relevant solution as it may yield more robust predictions (see, e.g., [58]). But, this
approach strongly depends on the prior distribution of the hyperparameters, as highlighted by
Muré [59], and has a much higher computational cost, especially if the number of hyperparameters
is high. Besides, to the best of our knowledge, there are no applications using this approach to
emulate numerical simulators in large dimension (d ≥ 10 for instance). Only the RobustGaSP
Bayesian method proposed by Gu et al. [40] and detailed in Section 5.2 with its specific priors and
approximations, could overcome these limitations.

However, another solution would also be relevant: both the MLE and CV criteria would be
integrated into the estimation of the hyperparameters. A multi-objective procedure could be
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developed where the MLE criterion would remain the main reference objective and another LOO-
based criterion could be considered as a complementary criterion. This is the purpose of the work
proposed in the companion paper [38] of the present article. More generally, we also think that a
nugget effect has to be considered and estimated jointly with the other hyperparameters as it allows
to enrich the family of covariance functions (this having not been considered in the benchmark
of Petit et al. [36]). It also facilitates the MLE by regularizing the likelihood function, improving
the conditioning of the correlation matrix and numerical convergence of algorithms. However,
this nugget effect can be double-edged into a Bayesian approach as it may increase identifiability
problems. Its use should be restricted to simple MLE.

As a synthesis of this section, including more recent methods presented in Section 5, Table 2
provides a summary of the key elements relating to GP estimation methods, to provide a clearer
synthetic overview encompassing advantages and practical refinements, disadvantages and limita-
tions, and other relevant details.

4. Quantitative criteria for Gaussian process validation

Once the GP metamodel has been estimated, its predictive capabilities need to be checked to
ensure confidence in its use (as a substitute for the simulator). Thus, validation criteria must be
defined to assess the accuracy of the GP predictor, but also of its prediction variance, its covariance
and more generally of the whole GP conditional distribution. Checking the reliability of the entire
predictive law thus enables simultaneous validation of both the chosen covariance model and the
estimated hyperparameters. These criteria can also be used in practice to choose between several
covariance models. For example, Demay et al. [19] have illustrated the significant impact of an
unsuitable choice of covariance. Hence, different quantitative criteria have been proposed (see, e.g.,
[57, 19, 36]) and are listed in the following. A new criterion, the IAEα criterion, is also proposed.
Note that we are focusing on the validation criteria that can be applied to a real test case, in
the sense that they can be estimated on a single learning sample using cross-validation or LOO
techniques. They are therefore formulated in the following in their LOO version. Of course, they
can be defined (and computed) in a similar way on a test sample, different and independent from
the learning sample. Similar expressions can also be obtained with K-fold cross-validation [7].

4.1. Criteria to assess the accuracy of the Gaussian process predictor ŷ (x)
Classically, the root mean squared error (RMSE) writes

RMSE =
{

1
n

n∑
i=1

(
y
(
x(i)

)
− ŷ−i

(
x(i)

))2
}1/2

(13)

and its counterpart expressed in terms of the proportion of the variance explained, namely the
predictivity coefficient Q2 (see, e.g., [60]):

Q2 = 1 − RMSE2

1
n

∑n
i=1

(
yi − 1

n

∑n
i=1 yi

)2 . (14)

The closer to one the Q2, the better the accuracy of the metamodel predictor. On the contrary,
a zero Q2 indicates very poor predictive abilities, i.e. equivalent to what would be obtained with
the empirical mean of the observations. Note that both RMSE and Q2 correspond to averaged
indicators and should be complemented with a plot of observed data versus predicted values for
more detailed analysis.
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Table 2: Synthesis of main estimation methods and recent corrective approaches.
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4.2. Criterion to evaluate if the conditional Gaussian process variance is of the right order of
magnitude

Other important indicators propose to deal with the model variance [61]. We focus here on the
predictive variance adequacy (PVA) factor (see, e.g., [35, 19]):

PVA =
∣∣∣∣∣log

( 1
n

n∑
i=1

(yi − ŷ−i)2

ŝ2
−i

)∣∣∣∣∣ . (15)

In order to get reliable prediction intervals from the model, the prediction variances should be of
the same order of the prediction errors so that the PVA should be close to zero. In summary, the
smaller the PVA, the more reliable the prediction intervals. On the contrary, too low prediction
variances w.r.t. the prediction errors (i.e. an “overconfident” predictive model) or too large
prediction variances (“underconfident” or too uncertain predictive model) yield poor PVA. A more
detailed analysis and interpretation of its values is available in Demay et al. [19].

4.3. Criteria to assess the accuracy of the whole Gaussian process predictive distribution
The logarithmic score [62] is defined as the negative logarithm of the predictive density evalu-

ated on the observations:

LogS = n

2 log(2π) +
n∑

i=1

(
log ŝ−i + 1

2
(yi − ŷ−i)2

ŝ2
−i

)
. (16)

Some similarities exist between LogS and PVA, both depending on the standardized residuals.
But Demay et al. [19] point out that PVA is preferable for GP validation since it will mitigate the
effect of extreme values and it will similarly penalize models with too large or too small predictive
variances. In contrast, the weighting of the two terms in LogS will less penalize the too large
predictive variances.

Then, we have all the class of criterion based on the reliability of predictive intervals. As recalled
by Zhang and Wang [57], from the Brier score defined for the predictive cumulative distribution
F−i by

BS(y) = 1
n

n∑
i=1

(
F−i(y) − 1

{
Y
(
x(i)

)
≤ y

})2
,

with 1{A} the indicator function of A, the continuous ranked probability score (CRPS, [63]) is
defined as the integration of BS:

CRPS = 1
n

n∑
i=1

∫ ∞

−∞

(
F−i(y) − 1

{
Y
(
x(i)

)
≤ y

})2
dy =

∫ ∞

−∞
BS(y)dy. (17)

For a GP metamodel, it can be demonstrated that:

CRPS = 1
n

n∑
i=1

ŝ−i

(
(yi − ŷ−i)

ŝ−i

(
2Φ

(
(yi − ŷ−i)

ŝ−i

)
− 1

)
+ 2ϕ

(
(yi − ŷ−i)

ŝ−i

)
− 1√

π

)
(18)

with ϕ and Φ respectively denoting the probability and cumulative functions of the standard Gaus-
sian distribution. CRPS is more robust than LogS, but it will tend to favour models with small
predictive variance, subject to similar calibration performance. This is not desirable for GP vali-
dation since the objective is to have the most reliable predictive distribution, more than the most
concentrated, especially in a safety study framework. Moreover, as illustrated by Demay et al. [19]
on their application, the CRPS-based criterion does not allow to identify an inaccurate covariance
model when this mismodeling only affects the predictive variance (and not the predictor), unlike
the PVA or other criteria based on the predictive interval and presented immediately afterwards.
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By focusing on the validation of GP prediction intervals (PI), the level α ∈]0, 1[ of any PI
can be compared to the proportion of observations that actually lie within this interval. This
proportion also called empirical coverage function [64] is defined as:

∆̂(α) = 1
n

n∑
i=1

1
{
yi ∈ PIα,−i

(
x(i)

)}
, (19)

where PIα,−i is the α-level prediction interval for the point x(i) built from the Gaussian distribution
N (ŷ−i, ŝ

2
−i). ∆̂(α) corresponds to the empirical LOO estimator of what is called the prediction

interval coverage probability in the deep learning literature.
From this, a graphical tool referred to as α-PI plot can be built by plotting ∆̂(α) against α (see,

e.g., [20, 19]). By definition, the more the points should be located around the y = x line, the more
reliable the GP predictive intervals are. In order to have a quantitative indicator summarizing the
quality of the α-PI plot, we naturally propose to consider the following IAEα criterion:

IAEα =
∫ 1

0

∣∣∣∆̂(α) − α
∣∣∣ dα. (20)

This criterion denoted IAEα for integrated absolute error on α corresponds to the area between
the alpha plot and the reference line. IAEα lies in [0, 1] and the closer to zero the IAEα, better
the PI in average. Note that this criterion is very close to the so-called “mean squared error α”
of Wieskotten et al. [54], defined with L2 norm instead of L1 norm. As in Wieskotten et al. [54],
IAEα will be computed in practice with a regular discretization of α over ]0, 1[. The L1 norm is
preferred here to give a homogeneous weight whatever α, avoiding to give too much weight to the
strongest deviations and having a direct interpretation w.r.t. the α-PI plot.

More generally, validation metrics based on coverage probability of the predictive distribution,
such as ∆(α) and IAEα, go beyond simple validation of the predictive variance. They are therefore
better adapted to assessing the validity of confidence intervals, regardless of the nature of the
predictive laws, whether Gaussian or non-Gaussian.

Remark 1. Practical recommendation. The last group of criteria composed of ∆̂(α) and
those derived from it, namely the α-PI plot and IAEα, are perfectly adapted to the control of the
reliability of prediction intervals. However, they should not be used alone but in addition to a prior
control of predictivity with Q2 (or RMSE). To better understand this recommendation, let us take
for example the extreme case with the following metamodel: a constant predictor corresponding to
the empirical mean of the data, a constant prediction variance, equal to the empirical variance of
the data, and a Gaussian predictive distribution. Finally, let us assume that the sample of observed
data follows a distribution with a Gaussian shape. We would then obtain for the predictive law a
Q2 equal to 0 but a ∆̂(α) very close to the right level for each α. Consequently, ∆̂(α) is only of
interest and should only be used if and only if the predictivity of the metamodel has already been
checked and controlled (via RMSE or Q2 for instance).

As a synthesis of this section, Table A.3 in Appendix A, complementary of the one previously
proposed by Demay et al. [19], gives a synthetic overview of the various validation criteria listed
above.

4.4. Illustration of validation criteria
To illustrate the interest of considering several criteria in the validation process, let us consider

the example of the “re-scaled” Branin function [65]. It is defined for two independent uniform
inputs X1 and X2 on [0, 1] by:

MBranin(X1, X2) = 1
51.95

(
a(V2 − bV 2

1 + cV1 − r)2 + s(1 − t) cos(V1) + s− 44.81
)
, (21)
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with V1 = 15X1 − 5, V2 = 15X2, a = 1, b = 5.1
(4π2) , c = 5

π
, r = 6, s = 10 and t = 1

8π
. This function

is illustrated in Figure 2.

Figure 2: Re-scaled Branin function on [0, 1]2 (surface plot on the left and contour plot with isolines on the right).

Consider a GP metamodel with a 2-D tensorized Gaussian covariance and conditioned by a
fixed random learning sample of n = 30 points (red points on Figure 2). A random test sample
of 1000 points is used to compute the validation criteria. Considering three different sets of
hyperparameters [θ1, θ2], Figure 3 illustrates that they can lead to metamodels with a very similar
Q2 (Q2 ∼ 0.9) but significantly different IAEα (namely 0.2 and 0.05), and, on the contrary, a
similar IAEα ( IAEα ∼ 0.05) and very different Q2 (namely 0.9 and 0.62). Moreover, considering
the two first sets of hyperparameters, it also illustrates the resulting major difference in the level
of the GP prediction intervals compared to the desired level. An increase of 0.15 in IAEα results
here in much more conservative and less realistic intervals. For instance, prediction intervals of
level α = 0.7 actually include on average nearly 95% of the data. Evaluating only Q2 (or RMSE),
as is often done, does not make it possible to dissociate the two metamodels, whereas one of the
two offers a much better assessment of prediction uncertainty.

This simple example illustrates that the criteria should be used in a complementary way. It is
also a good opportunity to illustrate the difficulty of finding an optimum for MLE estimation, as
shown by Figure 4, in the middle column. It clearly shows the flatness of the objective function
derived from the MLE (Eq. (11)) in the most interesting regions (in blue). Remember that the
aim is to minimize this function. A red square indicates the global minimum of the function on
[0, 2]2 and a green square shows the MLE estimate found by a standard optimization algorithm,
probably stuck in a local minimum. A logarithmic scale (base 10) is also proposed in the bottom
middle graph to highlight the level lines in the low-value areas. However, not having found the
global optimum of the log-likelihood is not detrimental to the GP model’s performance here, since
its predictivity is almost perfect (Q2 ∼ 0.99), as well as its confidence intervals (see bottom and
top left graphs). Note that the results obtained with another estimation method, the Bayesian
RobustGaSP approach, are also shown in Figure 4: they are discussed in Section 5.2.2 dedicated
to this approach. By way of illustration, over the range of variation [0, 2]2, 22% (resp. 15%) of
θ values lead to a poor IAEα ≥ 0.2 with a Q2 ≥ 0.8 (resp. Q2 ≥ 0.9). At least a Q2 ≥ 0.95 is
required to reduce to 5% this number of poor IAEα cases.

More generally, for a more in-depth study of the links and connections between estimation
and validation criteria, we refer the interested reader to our companion paper [38] in which other
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Figure 3: M̃Branin Function – Impact of hyperparameters values on graphical and quantitative validation criteria
for a GP with a tensorized Gaussian covariance and conditioned by a fixed random sample of n = 30 simulations.
Each column corresponds to a specific set of hyperparameters (specified in the colored frame at the top). The
first line plots the predicted values of the metamodel against the true values of M̃Branin (on a test sample of 1000
points). The second line shows the α-plot of prediction intervals (also computed on the test sample).

analytical examples are proposed, particularly in higher dimensions (from 3 to dimension 20). Fur-
thermore, for various testcases, the boxplots of Q2, PVA and IAEα values are plotted according to
the size n of the training sample, for various covariance functions and for different hyperparameter
optimization methods. This notably allows to appreciate the range of variation of IAEα w.r.t. the
one of Q2, for values found as optimal for the MLE (values found by the optimization algorithms).

5. Recent developments for more reliable Gaussian process predictions

In the case of emulation of deterministic functions from a numerical simulator, there is no
guarantee that the function to be emulated is part of the set of possible trajectories generated
by the assumed GP model (case of model misspecifications). As a result, there is no guarantee
either that the MLE (or any other estimation approach) will work, or that the estimated prediction
variance will control the metamodel error. More generally, the GP predictive distribution may not
accurately cover unobserved data. Based on this statement, Acharki et al. [37] were interested in
correcting the GP estimated hyperparameters to adjust the GP prediction intervals and ensure
better coverage probabilities of the GP predictive distribution. In the following, we outline this
approach, which is further detailed in Appendix B, before explaining the limits of the method in
our application context.

5.1. A corrective approach to directly modify the bounds of Gaussian process prediction intervals
First of all, Acharki et al. [37] assume that he has a first set of estimated GP hyperparameters

obtained by MLE or CV method and denoted (σ̂2
0, θ̂0). Then, for a given level α of prediction

intervals, they consider what they refer to as “Leave-One-Out Coverage Probability” and which
corresponds to the ∆̂(α) given by Eq. (19). ∆̂(α) can be rewritten as a function of the quantiles
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Figure 4: M̃Branin Function – Validation criteria obtained with MLE (left column) and RobustGaSP (right column)
estimation with the same GP parameterization and training sample than results of Figure 3. The objective function
given by Eq. (11) derived from likelihood objective function is plotted in the middle (surface plot above and contour
plot with isolines below). Global optimal values, and MLE and RobustGaSP estimates, are plotted with squared.

of the GP predictive distribution, quantiles of level (1 − α)/2 and (1 + α)/2. So, to ensure a good
value of ∆̂(α) (i.e. close to α), the authors propose to find two new sets of hyperparameters,
respectively denoted

(
σ̄2,θ

)
and (σ2,θ) which guarantee that the GP quantiles respectively of

level (1 − α)/2 and (1 + α)/2 will yield ∆̂(α) = α. In addition to satisfying this condition, these
two sets of hyperparameters are found to be as close as possible to the initial values (σ̂2

0, θ̂0), in
the sense of a similarity measure (see Appendix B for more details). Hence, the initial set (σ̂2

0, θ̂0)
is only used to build the GP predictor.

(
σ̄2,θ

)
and (σ2,θ) (which can be viewed as corrections of

the initial set) then yields two other GP metamodels which are used to compute the two bounds
(i.e. the lower and upper GP quantiles) corresponding to the α-prediction interval. The resulting
method is called Robust Prediction Intervals Estimation (RPIE) by the authors.

The numerical tests proposed by the authors show that when the GP metamodel is well specified
(good coverage probability of intervals obtained with initial MLE or CV-estimates θ̂0), the RPIE
method does not bring any added value. In the opposite case, the RPIE method is relevant and
corrects efficiently the prediction intervals.

To the best of our knowledge, the RPIE method is the first to focus on a correction of the
hyperparameters to control the quality of prediction intervals but, it seems perfectible on several
points:

▶ First of all, the new sets of hyperparameter strongly depend on the set of initial values
(estimated by MLE or CV), since the searched solutions are expressed as an isotropic shift
of θ̂0. In multidimensional case, the ratio between the different

(
θ̂0,i

)
i=1...d

will thus be
preserved, even if it was initially badly estimated. The method thus assumes that the initial
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estimation has been carried out correctly, under the assumption of a well-specified covariance.
▶ Secondly, the procedure proposed must be performed for the two bounds of any desired in-

terval of level α, yielding two sets of corrected hyperparameters. RPIE does not look for a
single hyperparameter correction that would provide a single GP that would both adjust the
data well and provide reliable prediction intervals. Not having a single GP metamodel is not
satisfactory in the perspective of using the GP metamodel as a multi-objective tool, i.e. to
predict a quantile or a probability [10], estimate sensitivity indices [16], perform an optimiza-
tion [8], or more generally to implement a SUR (Stepwise Uncertainty Reduction) approach
[17]. These studies cannot be implemented directly from Acharki et al. [37]’s approach. We
argue that it is simpler and preferable to have a single GP and to address the misspecifica-
tion problem apart from the hyperparameter estimation, by testing and comparing different
covariances.

▶ More fundamentally, it is not a correction of the GP predictive law but only of its quantiles
(high and low) for a given level of prediction interval α It seems more interesting to us to
correct the predictive law to simultaneously control ∆̂(α) whatever α.

▶ Finally, the numerical benchmark carried out by the authors is not exhaustive enough. Only
3 numerical examples are considered, all in dimension d = 10 and with a relatively large
sample size n = 600. Moreover, only one Monte Carlo sample is drawn. More thorough tests
appear necessary to evaluate the robustness of RPIE method to a poor estimation of the
initial hyperparameters, to sampling variability, and to a smaller sample size (especially for
the correction of high or very low quantiles).

5.2. A more efficient Bayesian approach
As mentioned in Section 3.4, the Bayesian approach used to estimate the GP hyperparameters

relies on two key ingredients: first, the choice of a prior distribution π (σ2,θ) and second, the
estimation of the posterior distribution and its propagation in the GP metamodel (see Eq.(12)).

5.2.1. Discussion on the choice of prior and focus on reference and Jeffreys priors
As highlighted by Muré [59], prior knowledge about the GP hyperparameters is often lacking.

It then seems natural to use non-informative priors but these may fail to lead to a proper posterior
(i.e., a distribution that integrates to a finite mass), this condition being necessary in our context
of quantifying the uncertainty of GP parameters. Note that, for the 1-D or isotropic cases (i.e.
θ ∈ R), proving that the reference posterior is proper amounts to finding appropriate upper bounds
on the tail rates of π (θ | Ys) π(θ) as θ → 0 and as θ → +∞ (see Muré [59] for details).

With regard to this issue and still for the isotropic case, Berger et al. [53] first showed that
among several prior distributions the reference prior of Bernardo [66] is the most satisfying default
choice. Reference priors [67] aim to formalize the notion of “uninformative prior” and are defined
so as to maximize a measure of distance or divergence between the posterior and prior, as data are
observed (this choice allows the data to have maximum effect on the posterior estimates). Berger
et al. [53] demonstrated that reference priors yield proper posterior for isotropic rough correlations
that include the exponential correlation and the set of the Matérn family with smoothness param-
eter ν ⩾ 1. Their demonstration notably relies on the fact that the correlation kernel cannot then
be twice continuously differentiable at 0. Very recently, Muré [59] succeeds in extending this to a
large class of smooth kernels, which includes the Gaussian and the Matérn family with smoothness
parameter ν < 1 [59, Theorem 4.4]. But this extension remains in the only case where the dimen-
sion of θ is equal to one (isotropic covariance). In a nutshell, the key behind Berger et al. [53]
and Muré [59]’s demonstrations is that the reference prior should “compensate for the marginal
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likelihood” so that the integrated likelihood (i.e. posterior distribution) has the right decay rates
on the distribution tails.

The extension of previous results to the anisotropic case (θ ∈ Rd with d > 1) is obtained by
defining anisotropic correlations as products of one-dimensional rough correlations and a possible
additional nugget effect [40]. The demonstration relies on the use of Jeffreys prior (obtained as
the square root of the determinant of the Fisher information matrix) which is here a reference
prior since the authors consider a separable product correlation function. Note therefore that
this extension is not valid for anisotropic geometric covariances. Moreover, the one-dimensional
correlation functions considered to build the tensorized covariance are again assumed to be rough.
And, unfortunately, the proof used in Muré [59] to deal with smoother kernels cannot easily be
adjusted to the much more complex prior considered by Gu et al. [40].

In summary, and to the best of our knowledge, there are only two configurations in which
obtaining a proper posterior law π (θ | Ys) from a reference prior π(θ) could be established:

▶ isotropic covariance (θ ∈ R) with the works of Berger et al. [53] for rough covariances (e.g.
exponential, spherical or Matérn with ν < 1) and Muré [59] for smooth covariances (e.g.
Gaussian or Matérn with ν ⩾ 1),

▶ anisotropic covariance defined from a product of one-dimensional correlation functions [40].

5.2.2. Focus on RobustGaSP method
Despite the fact that the demonstration of obtaining a proper posterior is not theoretically

established for product of smooth covariances, the most relevant works in this context seem to be
those of Gu et al. [40] which is referred to as the RobustGaSP method. So, to build their approach,
the authors rely on the three following ingredients.

• A robust prior πR (β, σ2,θ) is assigned to the set of GP parameters (details in Appendix
C). From this, a marginal likelihood can be deduced as a function of θ alone. The marginal
posterior distribution of θ is then obtained.

• Sampling this marginal posterior distribution calls for the use of a Metropolis algorithm
(MCMC sampling). Because of the cost of each likelihood evaluation (in O (n3)) and the
associated computational error which can be very large especially when the correlation ma-
trix is close to the matrix 1n1T

n , Gu et al. [40] do not advocate this method. Instead, they
recommends to estimate (and consider) only the MAP (i.e. the mode) of the posterior distri-
bution π (θ | Ys). The Bayesian approach then stops at this step: the MAP is directly used
to compute the GP predictive distribution in a so-called “plug-in” approach. This avoids
a too much computationally prohibitive MCMC algorithm to estimate the posterior distri-
bution of Eq. (12). In a nutshell, the reference prior distribution acts only as a penalizing
factor on the likelihood and the Bayesian framework only ensures a robust estimation of the
hyperparameters, hence the name Robust GaSP method (GaSP is the acronym for Gaussian
Stochastic Process). Note that an alternative solution (not detailed here) is proposed by
Muré [68] to make the full-Bayesian procedure tractable: univariate conditional Jeffreys-rule
posterior distributions and pseudo-Gibbs sampler are notably used.

• Finally, Gu et al. [40] consider some specific choices of reparameterization. Even if MLE is
invariant under a reparameterization (injective transformation of GP hyperparameters), this
is not the case of the MAP of posterior distribution because of the presence of the Jacobian
for the prior. As a result, the authors consider other common ways of parameterizing the
hyperparameters θ, in particular the inverse and log-inverse transformations.
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From these elements, Gu et al. [40] establish two theorems related to the robustness of the
estimated MAP, one theorem with nugget effect and another without. More precisely, under the
assumption of the reference prior defined by the equation (C.2) with a = 1 and using the standard
parametrization or the log-inverse reparametrisation, the authors demonstrate that the estimation
of the MAP of the posterior distribution (Eq. (C.3)) is robust for the tensorized form of Matern,
spherical and exponential correlation functions [40, Theorem 3.1]. Recall that the robustness
defined by Gu et al. [40] refers to the two extreme cases described in Section 3.3 and leading to
R

θ̂
= 1n1T

n and R
θ̂

= In.
However, a serious drawback remains in RobustGaSP method: the computational cost required

to compute the reference prior and, even more, to compute the mode of the posterior distribution
π (θ | Ys). Even if in fine the MAP estimate is used instead of the posterior sampling, the use
of mode search algorithms, such as the quasi-Newton optimization method, typically relies on
the information of the derivatives. Computing the derivative requires more evaluations of the
likelihood and therefore more inversions of the correlation matrix. The total cost of the procedure
then becomes prohibitive. To overcome this limitation, Gu [69] introduces an approximation of the
reference prior πR (β0, σ

2,θ), which he calls the jointly robust prior. The author demonstrates that
this prior retains the robustness property while being computationally simpler than the reference
prior for the purpose of hyperparameter estimation. As an illustration, the RobustGaSP method
is applied to the analytical example of the Branin function proposed in Section 4.4, with the
approximated reference prior and the default parameter values of Gu et al. [40]’s algorithm (package
from [70]). The estimated hyperparameters are indicated on the middle plots of Figure 4 (by a
magenta square) and the performances of the GP metamodel obtained with these hyperparameters
are illustrated by the plots on the right. Note that we observe the poor quality of the prediction
intervals (bottom right plot). Indeed, even in this case of a quasi-perfect PG predictor (Q2 ∼ 0.99),
this issue can arise due to an improper estimation of σ (directly connected to a poor estimation
of θ).

The approach proposed by Gu et al. [40] combined with the approximation of the reference prior
πR (β0) of Gu [69] appears to be one of the existing approaches most in line with the idea of having
a more robust estimation of hyperparameters (rather than adopting an intractable full-Bayesian
approach)(and indeed tractable compared to a full Bayesian approach). Moreover, the proposed
approximation of the reference prior allows to consider the application of the method even in the
case of a large number of input variables. Finally, its availability in a dedicated software package
[70] makes it the most interesting existing method. For all these reasons, RobustGaSP method
will be compared with the new algorithm proposed in the companion paper [38].

The alternative corrective approaches detailed in this section are included in Table 2, which
enables them to be clearly positioned in relation to the standard approaches.

6. Conclusion

The value of GP regression for emulating costly computational codes in the context of un-
certainty management is well established, and explains why it is now widely used. Having a
probabilistic metamodel, in the sense that it provides a predictive distribution for each new eval-
uation point, is of great added value, particularly for safety, reliability or risk assessment studies.
It also enables the deployment of sophisticated GP-based approaches for active learning, robust
optimization, reliability assessment, etc. In this context, it is essential to guarantee confidence in
the GP predictive distribution, and not just in its mean value. This confidence requires, on the
one hand, a reliable estimation of the GP metamodel and in particular of its hyperparameters,
and, on the other hand, a rigorous validation of the entire GP predictive distribution.
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The present paper has reviewed recent works dealing with the estimation of GP hyperparam-
eters, from theoretical and practical points of view. It appears that the usual methods sometimes
lead to poor-quality and not very robust estimates. MLE, the most widely used method, often
leads to ill-posed problems. Although it leads in practice to good metamodel predictivity, the
associated uncertainties and prediction intervals can be of poor quality. It is therefore essential to
have validation indicators to detect this unreliability of the predictive distribution. Typically, it is
insufficient to check only the GP’s predictive capabilities: the accuracy of the entire GP predictive
distribution needs to be assessed. To this end, we have reviewed the most relevant indicators
and have proposed some derivatives. Emphasis has thus been put on GP validation that requires
careful and informed consideration.

Concerning the estimation process, recent alternatives to standard estimation approaches have
been explained. In particular, Bayesian approaches are theoretically very attractive, offering a kind
of regularization of likelihood. However their cost in terms of complexity and required expertise,
particularly in the definition of so-called robust priors and its tractability in large dimension (large
number of inputs), refrain their use. Others approaches rely on ad-hoc corrections of the quantiles
of the GP predictive distribution to ensure reliable prediction intervals for a given level, but
these approaches do not necessarily seem relevant to our application context of multi-objective
use of the metamodel. As an illustration, the RobustGaSP method is applied to the analytical
example of the Branin function proposed in Section 4.4, with the approximated reference prior
and the default parameter values of Gu et al. [40]’s algorithm (package from [70]). The estimated
hyperparameters are indicated on the middle plots of Figure 4 (by a magenta square) and the
performances of the GP metamodel obtained with these hyperparameters are illustrated by the
plots on the right. In the companion paper [38], a new technique of using MLE for estimation is
proposed, in particular by considering other criteria in the estimation procedure (criteria that until
now have been reserved for the validation procedure). It also includes an intensive benchmark to
test this new multi-objective optimization algorithm and compares its results with those obtained
with other more standard estimation algorithms. The method is then applied on a real test case
modeling an aquatic ecosystem, and used for environmental assessment.

More generally, beyond a more reliable estimation of hyperparameters, several challenges remain
to enable an even wider use of the GP metamodel. The first is its estimation for very high
dimensional problems (for example beyond 30 to 50 input variables), without using prior reduction
techniques (e.g. preliminary screening of input variables). To achieve it and bypass the problem
of MLE in such large dimension, Appriou et al. [71] propose to consider a weighted combination
of several GP regression sub-models with fixed hyperparameters. It will be interesting to further
evaluate the performance of this approach and compare it to a standard approach (combined with
a preliminary screening) on a benchmark of various test functions.

Extending the GP to inputs of a more complex nature is also an important prospect. For
example, in solid and fluid mechanics, many studies involve varying mesh of a 2D or 3D shape.
Handling such complex and very high-dimensional inputs in GP regression calls for the definition
of suitable covariance kernels. Ongoing work is focusing in particular on the use of graph kernels,
trying on the one hand to reduce the complexity of the usual graph kernels, which is extremely
penalizing in relation to the number of nodes, and on the other hand to adapt them to handle
inputs with different edges and even a different number of nodes (between two model evaluations
or simulations.

Finally, it often arises that simulated scenarios considered in industrial safety assessment are
affected by physical threshold phenomena, leading to the occurrence of phenomenological bifur-
cations or at least strong irregularities in the simulation outputs. Extensions of the GP, such
as non-stationary GP [72] or Treed GP [73], exist to deal with this type of non-stationarity, but
most have been implemented and applied in small dimensions (one or two input variables). The
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challenge would be to extend these methods to a larger dimension, more representative of real
cases.

Acknowledgments

This work was funded by the French ANR project SAMOURAI (ANR-20-CE46-0013). We
warmly thank the associate editor and three reviewers whose remarks have greatly helped to
improve the paper.

25



Appendix A. Synthesis on main validation criteria
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Table A.3: Summary of the main validation criteria with the purpose of the validation and details of interpretation.
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Appendix B. Details on RPIE method

From ∆̂(α) given by Eq. (19), the authors introduce what they call the “quasi-Gaussian
proportion” ψa to describe how close the a-quantile qa of the standardized predictive distribution
is to the level a (ideally, it should correspond to a). More precisely, ψa results from the rewriting
of ∆̂(α) for GP as

∆̂(α) = 1
n

n∑
i=1

h

(
q(1+α)/2 − yi − ŷ−i

ŝ2
−i

)
− 1
n

n∑
i=1

h

(
q(1−α)/2 − yi − ŷ−i

ŝ2
−i

)
,

where qa denotes the a−quantile of the standard normal distribution and h is the Heaviside step
function

h(x) = 1{x ≥ 0} =
1 if x ≥ 0

0 if x < 0.

Considering a nominal level of quantile a, ψa is then defined as a map from [0,+∞) × (0,+∞)d

to [0, 1]:

ψa

(
σ2,θ

)
= 1
n

n∑
i=1

h

(
qa − yi − ŷ−i

ŝ2
−i

)
.

The objective is then to find the two sets of hyperparameters (σ2,θ) such as to obtain the ideal
values of ψa for the two bounds of the α predictive interval. These two pairs denoted

(
σ̄2,θ

)
and

(σ2,θ) are respectively defined by ψ(1+α)/2
(
σ̄2,θ

)
= (1 + α)/2 and ψ(1−α)/2 (σ2,θ) = (1 − α)/2.

These GP parameters allow to get the optimal value ∆̂(α) = α. The authors modify the function
ψa into a new ψ(δ)

a (with δ > 0 to obtain one formulation for the optimization problem, whatever
the value of α, and define the set of solution Aa,δ w.r.t. ∆̂(α):

Aa,δ :=
{(
σ2,θ

)
∈ [0,+∞) × (0,+∞)d, ψ(δ)

a

(
σ2,θ

)
= a

}
.

Finally, as a correction of the initial estimated hyperparameters (σ̂2
0, θ̂0), the authors propose

to find the hyperparameters in Aa,δ which are the closest to (σ̂2
0, θ̂0) in the sense of a continuous

similarity measure dsim between the multivariate Gaussian distributions N (m(Xs),K) generated
with the two sets of parameters. This results in the following optimization problem:

argmin(σ2,θ)∈Aa,δ
d2

sim

((
σ2,θ

)
,
(
σ̂2

0, θ̂0
))
. (B.1)

This problem should then be solved for a = (1 + α)/2 and a = (1 − α)/2 to obtain estimates of(
σ̄2,θ

)
and (σ2,θ), respectively.

However, two problems arise. First, the resolution of the problem (B.1) may be too costly and
heavy to solve, especially as dimension d increases. Secondly, depending on the metric chosen,
there is no guarantee that the barycenters of the two prediction intervals (generated from the two
GP predictive distributions) are close. Similarly, there is no control over the sharpness of the
prediction intervals obtained with the optimal solutions of Problem (B.1). This could result in
a solution with a good coverage function but a poor Q2, cf. Remark 1. To mitigate the second
drawback, the authors first recommend the use of second Wasserstein distance W2 for dsim. Then,
to address the two drawbacks, the authors propose a relaxed problem denoted Pζ where the optimal
θ is defined as shifted values of θ̂0: ζθ̂0 with ζ > 0. Moreover, considering that σ2 should be as
small as possible to reduce the uncertainty of the GP predictions, the author define the optimal
value of σ2 w.r.t. λ as:

∀ζ ∈ (0,+∞) : σ2
opt(ζ) := min

{
σ2 ∈ [0,+∞), ψ(δ)

a

(
σ2, ζθ0

)
= a

}
. (B.2)
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The optimization problem is finally reformulated as a one-dimensional problem1 Pζ :

Pζ : argminζ∈(0,+∞) L(ζ) := d2
((
σ2

opt(ζ), ζθ̂0
)
,
(
σ̂2

0, θ̂0
))

(B.3)

with d2 ((σ2,θ) , (σ̂2
0,θ0)) = W 2

2 (N (m,K),N (m0,K0)). The purpose is to find the two solutions
ζ̄∗ and ζ∗ of Pζ , for a = (1 + α)/2 and a = (1 − α)/2 respectively. These two solutions yields two
GP metamodels which are used to build the two bounds of the predictive interval whose coverage
probability is demonstrated to be optimal. The resulting method is called Robust Prediction
Intervals Estimation (RPIE) by the authors. The numerical tests propsed by the authors show
that when the GP metamodel is well specified (good coverage probability of intervals obtained
with initial MLE or CV-estimates θ̂0), the RPIE method does not bring any added value. In the
opposite case, the RPIE method is relevant and corrects efficiently the prediction intervals.

Appendix C. Details on prior and marginal posterior for the RobustGaSP method

To simplify, we suppose a constant GP mean m(x) = β0. The formulas generalized to the case
of a q-dimensional vector of basis functions with parameter β ∈ Rq+1 for m(x) are available in Gu
et al. [40].

To define their “robust” prior, Gu et al. [40] first assign the objective prior for the regression
and variance parameters:

π
(
β0, σ

2
)

∝ 1
(σ2)a , (C.1)

with a > 0. a = 1 corresponds to the standard reference prior. Then, the authors consider the
Jeffrey’s prior which is a reference prior for their parametric model (separable product of 1-D
correlation functions as in Eq. (6)):

πR
(
β0, σ

2,θ
)

∝ |I(θ)|1/2

(σ2)a , (C.2)

where I(·) ∈ Rd×d is the expected Fisher information matrix as below,

I(θ) =



n− 1 tr (W1) tr (W2) . . . tr (Wd)
tr (W2

1) tr (W1W2) . . . tr (W1Wd)
tr (W2

2) . . . tr (W2Wd)
. . . ...

tr (W2
d)

 ,

where Wl =
δRθ
δθl

R−1
θ PRθ

with PRθ
= In − 1n

{
(1n)T R−1

θ 1n

}−1
(1n)T R−1

θ , for 1 ≤ l ≤ d. The
proofs of Eq. (C.2) and of the formula of I(·) are given in Paulo [74] (precisely in Proposition 2.1
and Appendix A.0.2).

The prior on mean and variance parameter (Eq. (C.1)) allows to marginalize out these param-
eters in the likelihood function to obtain the marginal likelihood according to θ: L (Ys | θ). The
marginal posterior of θ is then obtained by:

π (θ | Ys) ∝ L (Ys | θ) |I(θ)|1/2 (C.3)

where L (Ys | θ) ∝ |Rθ|− 1
2

∣∣∣(1n)T R−1
θ 1n

∣∣∣− 1
2 (S2)−(n−1

2 +a−1) and S2 = (Ys)T R−1
θ PRθ

Ys.

1Under some hypothesis on the GP trend, the authors demonstrate for all λ > 0, Hζ(λ) :={
σ2 ∈ [0,+∞), ψ(δ)

a

(
σ2, ζθ0

)
= a

}
is a non-empty and compact subset of R+. Assuming additional assumption

of regularity of Hζ(λ), they deduce that it provides the continuity of σ2
opt on (0,+∞) and that Pζ admits at least

one global minimizer ζ∗ in (0,+∞).
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