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Fig. 1: Segmentation results of UCP-Net with only two user clicks on the object contour. The model is trained on SBD [1]
but is able to perform well for unseen classes such as ground-markings (right).

Abstract— The goal of interactive segmentation is to assist
users in producing segmentation masks as fast and as accurately
as possible. Interactions have to be simple and intuitive and
the number of interactions required to produce a satisfactory
segmentation mask should be as low as possible. In this paper,
we propose a novel approach to interactive segmentation based
on unconstrained contour clicks for initial segmentation and
segmentation refinement. Our method is class-agnostic and
produces accurate segmentation masks (IoU > 85%) for a
lower number of user interactions than state-of-the-art methods
on popular segmentation datasets (COCO MVal, SBD and
Berkeley).

I. INTRODUCTION

As deep learning gains popularity, the need for large
amounts of annotated images has never been greater. An-
notating images is a tedious and time consuming task,
especially in the field of image segmentation where human
annotators have to draw complex polygons around all sorts
of objects. Interactive image segmentation aims to reduce
the workload required to extract objects or regions from
images. It relies on sparse user interactions such as clicks
or scribbles to produce dense binary masks that precisely
encompass the desired regions. It is often an iterative process,
where users interact with the algorithm both to initialize and
adjust the generated segmentation masks. To be considered
effective, an interactive segmentation algorithm must comply
with three main requirements: i) meet high-quality standards,
i.e. 80-90% intersection over union (IoU); ii) be less time-
consuming than manual segmentation; and iii) be robust to
variation in user interactions. It is also usually expected to
be robust to domain or category shift.

Although most approaches rely on positive and negative
clicks [2], [3], [4], [5], recent studies have shown that
extreme clicks [6], [7] can be effectively used to give
scale information and indicate precisely points that belong
to the object thus removing ambiguities. In particular, the
scale information allows the crop of the original image and

therefore a higher resolution which significantly increases
the performance compared with the full image [7]. However,
such an interaction requires users to click at exact object
locations, a time-consuming task which is prone to user inat-
tention mistakes, and to click 4 times regardless of the object
complexity, which can either be insufficient at times and
dispensable at others. Our method aims to extend extreme
clicking toward generic contour clicking by removing its two
main constraints: the fixed number of clicks and the need for
specific click location. The key contributions of our work can
be summarized as follows:
• We design a novel interactive segmentation pipeline

suitable for consuming unconstrained contour clicks,
hence relaxing the strong cognitive load of extreme
points while maintaining the benefits of enclosure-
based interactions such as a higher resolution and scale-
information.

• We show how such a pipeline can be trained to perform
satisfactory segmentation from unstructured contour
points as few as two.

• We conduct an extensive study of main enclosure based
interaction types with human annotators.

The resulting model is able to perform segmentation in
real-time directly in a web browser (53 ms for 128 x 128
instances through WebGL) with no need for a dedicated
GPU. We believed that it will constitute a more realistic
solution in comparison with the standard deep learning
frameworks that require standalone graphics cards.

II. RELATED WORK

a) User interaction types: Early approaches to inter-
active segmentation rely on low-level image features such
as pixel color to infer boundaries, thus requiring samples
of the foreground and background pixels [8], [9]. This
often translates into scribble interactions on both foreground
(positive) and background (negative) pixels or rough drawing

ar
X

iv
:2

10
9.

07
59

2v
1 

 [
cs

.C
V

] 
 1

5 
Se

p 
20

21



CNN

Corrective clicks

Output maskROI

Prob
ab

ility
 he

atm
ap

25
6×

25
6

25
6×

25
6×

4

Inp
ut 

im
ag

e

Fig. 2: Method overview. Unconstrained user clicks (green dots) are used to crop a Region of Interest, calculated to ensure
the object enclosure by solving the smallest-circle problem on SBD train set [1]. Like interactive segmentation methods
relying on extreme clicks, the crop is then fed as a fourth image channel to a CNN, illustrated here by U-Net which was
used in our experiments. Through a unified approach, UCP-Net supports additional corrective clicks (orange dot) which can
be used to refine the predicted segmentation mask.

around the target. This information is then fed to a heuristic
algorithm to produce a segmentation. The arrival of deep
neural networks able to extract higher-level features enabled
for sparser interactions such as simple clicks. While most
approaches use positive and negative clicks [2], [3], [4], [5],
recent studies have shown that extreme clicks [6], [7] can
be effectively used to give scale information and indicate
precisely points that belong to the object thus delivering
valuable information. As users must click on the left-most,
right-most, top and bottom points of the object they want to
segment, the interaction is also more consistent and reliably
reproducible. Unlike positive and negative clicks, extreme
points have not been extended to an iterative refinement
training scheme.

b) Interaction simulation: In addition to the interaction
effectiveness, the mechanism behind the automatic simu-
lation of extreme clicks is a confounding factor for both
training and evaluation. Maninis et al. [7] observe in the
case of extreme clicks a decrease of up to 5% of the mean
IoU between the simulated and real clicks evaluation. We
briefly present commonly used simulation strategies to mimic
human behavior. Foreground clicks are usually constrained
to cover the central area by using a margin from the object
boundary or by applying k-medoids [10], whereas negative
clicks are either peripheral to the object or on negative ob-
jects [2], [11], [12], [3], [13], [5]. Stricter interaction policies
such as bounding boxes and extreme points simply include
noise by perturbing the corners of the perfect coordinates up
to a certain pixel amount [7], [14], [15] or scale percentage
[16].

c) Embedding User Interactions: User interactions be-
ing sparse, they require an effective pre-processing so as
to be fully perceived and exploited by the segmentation
network. A popular pre-processing consists in encoding the
interactions into a 2d-image that can be fed to the convo-
lutional network. Clicks are usually turned into Euclidean

[2], [11], [17], [3], [10] or Gaussian [12], [3], [7], [4],
[18] distance maps. The authors of [12], [4], [7], [14]
observed that Gaussians yield better results than distance
transforms. Three other transforms led to an improvement
over Gaussians: binary disks [14], superpixels [5] and multi-
focal ellipses [15], but no comparison between them was
provided.

In 2016, Xu et al. [2] proposed the first interactive seg-
mentation pipeline relying on a Fully Convolutional Network
(FCN) encoder-decoder taking the concatenation between the
RGB image and the embedded user interaction as input.
Most modern approaches to interactive segmentation follow
this lead [4], [12], [7], [14], [5], [11], [13], [15]. While
the majority use the whole image as input [4], [12], [5],
[11], [13], [18], [10], recent architectures based on object
enclosure [7], [16], [15], [14], [19], [20] feed image crops to
the FCN to achieve speed-up and preserve object details. The
approach proposed by [20] takes the whole image as input
and exploits the predicted mask boundaries to obtain a crop
of the image, which is subsequently fed into a refinement
model. Instead of using image patches, Liew et al. [11]
crop the feature maps around the input clicks to infer local
predictions which are reassembled afterwards.

In order to learn deep features for images and interaction
maps individually, the authors of [17], [18] use two separate
encoder streams: one for the image and another one for the
interactions, leading however to a heavier model.

In comparison with negative and positive clicks, extreme
clicks have the advantage of being less ambiguous and enable
to reduce the search space by extracting an RoI around the
object. However, such methods require users to click at exact
object locations which is more constraining than positive and
negative clicks. Moreover, they require users to click at least
4 times regardless of the object complexity. To solve these
two main limitations, we propose a novel interactive segmen-
tation approach that exploits unconstrained contour clicks



Fig. 3: User pair clicks distance distribution for N = 5 an-
notators on the Berkeley dataset [21] (top). Visual examples
of clicks pairs corresponding to 0.95 and 1 distance ratios
with respect to the maximum distance (bottom).

ranging from 2 to n. This increased flexibility enables the
unified approach to generate masks with different precision
levels. We demonstrate that our method is able to deliver
high-quality results with a lower number of clicks than the
current state of the art of interactive segmentation.

III. METHOD

Our network is built upon both approaches based on
extreme clicks and those based on positive negative clicks.
Exploiting the contour clicks representing the target object
enables us to crop the original image and benefit from a
higher resolution. Similar to [7], the crop is concatenated
with its corresponding click heatmap and then fed to a binary
segmentation network (Figure 2). However, unlike extreme
clicks methods and similar to positive-negative methods, we
choose to investigate a much broader range of number of
clicks with unconstrained locations in an iterative fashion.
This flexibility speeds up the interaction process even further
and adapts well to both coarse and fine objects. Indeed,
we observed that, in most cases two unconstrained user
clicks provide enough information for a model to predict
an accurate segmentation mask (Table I). In some cases,
complex objects or situations can lead to the two clicks
being insufficient for the model to correctly segment the
object (Figure 6). In regard of this observation, we propose
an iterative approach where correction clicks are added until
a satisfactory segmentation mask is predicted by the model.
Therefore, the number of clicks fits the complexity of the
setup, thus speeding up the annotation process.

From a user’s perspective, our interactive segmentation
pipeline can be summarized as follows: first the user clicks
on two locations of the object contour, then they can add
additional contour clicks to correct or refine the mask (Figure
2).

a) Simulating user interactions: Simulating user
interactions is a challenge in the field of interactive
segmentation. We propose a novel online iterative training

(a) Geometric strategy (b) Corrective strategy

Fig. 4: Visual example of two strategies for contour clicks
simulation. Geometrical simulation (a) aims to gradually
refine salient regions of the target (white line). Corrective
strategy (b) simulates an iterative user-like behavior where
the user clicks on the contour further (red dots) from the
previous prediction (yellow line).

scheme, during which our model is trained with a
combination of three strategies to simulate human contour
clicks. When asking 5 annotators to draw a few clicks on
object contours on the Berkeley data set (100 instances),
we observe that they instinctively distribute them to best
represent the targeted object breadth. In particular for n = 2
contour clicks, we measure that the distance ratio between
clicked pair points and the furthest ground truth pair points
is approximately distributed as a normal random variable
with mean 1 and standard deviation 0.03 (Figure 3). The
interaction can therefore be simulated by selecting pairs
producing a distance following this distribution, both during
training and testing.

We describe here the other two simulation strategies for
n > 2 as illustrated in Figure 4. Let Cgt be the set of ground
truth contour pixels.
• Geometric strategy: gradually refines salient regions of

the target. We denote Cgeo the contour pixels resulting
from the conversion of the n−1 points set into polygon
boundaries. The nth click is then obtained sequentially
as the furthest ground truth pixel from Cgeo so as to
mold the clicks to the shape of the target:

pn = arg max
p∈Cgt

(
min

q∈Cgeo
‖p− q‖

)
, n > 2 (1)

• Corrective strategy: relies upon the prediction of the
interactive segmentation network from n−1 clicks. We
note Cpred its corresponding contour pixels. The nth

click is defined as the furthest ground truth pixel from
the prediction:

pn = arg max
p∈Cgt

(
min

q∈Cpred
‖p− q‖

)
, n > 2 (2)



Fig. 5: Mean IoU between ground truth mask and itself
when cropped using the smallest-circle method enlarged with
expansion ratios ranging from 1 to 1.9. The n = 2 clicks are
simulated using max-distance ratio of 0.95. We choose the
cut-off value ropt = 1.4.

Batch of ∆n new clicks can be added at once by par-
titioning the erroneous areas and applying the strategy
to each blob.

The first aims to best represent the targeted object by
gradually refining salient regions. The second aims to sim-
ulate human correction to the network errors by selecting
contour clicks furthest from the prediction contours. The
corrective strategy applies natively to multi-region objects or
objects with holes as it is based on euclidean distance from
contours regardless of the contours hierarchy. The extension
of the geometrical strategy to multi-regions is defined using
a coarse-to-fine policy by prioritizing exterior hull coverage
and subsequently interior regions as shown in Figure 4.

b) Region of interest: Similarly to [4], we feed the
network with a crop of the original image to benefit from
a higher resolution. While extracting a region of interest
is straight-forward in the case where provided clicks give
a good approximation of the shape of the targeted object,
it can be more difficult in the case of very sparse contour
clicks (under four). As described previously, we conducted a
human experiment that showed an innate distribution of the
clicks to best represent the breadth of the targeted object.
To ensure full enclosure of the targeted object, we therefore
extract the RoI by solving the smallest-circle problem. To do
so, we rely on Welzl’s algorithm [22]. It corresponds to the
diagonal’s circle and the circumscribed circle for two and
three points respectively (Figure 2). In order to reckon the
users’ interaction fluctuation, guarantee object enclosure and
have context information, we expand the circle’s diagonal by
1.4 (Figure 5). The crop generated by this cut-off expansion
ratio ensures a negligible mean loss (<1%) on more than
20K instances in the SBD train set [1] using simulated pair
clicks of 0.95 fraction.

c) An iterative training scheme: The training first con-
sists of a warm-up phase with two contour clicks as input.
These clicks are simulated geometrically as described in
the previous section. During a second stage, we aim to
cover a wider range of click numbers and randomly pick
nadd additional geometric contour clicks to each sample.

Fig. 6: Two example cases where a corrective click is added:
target ambiguity (top) and model failure (bottom).

Experimentally, we observe that a range nadd ∈ [0, 8] allows
for precise segmentation masks (Figure 7).

IV. EXPERIMENTS

A. Datasets

We evaluate our model across five publicly available
segmentation datasets. To compare our model with other
segmentation methods, we use the mean number of clicks
necessary to reach the typically used 85-90% IoU threshold,
known as the Number of Clicks metric (NoC @x%). Forte
et al. [18] argue this widely used metric fails to characterize
the ability of models to progress over a wider range of
clicks, particularly useful for applications with high-quality
requirements such as image editing. They recommend the
additional use of accuracy score across a range of clicks.
We use the SBD dataset [1] to train the proposed model.
It includes 8,498 training images and 2,857 test images,
corresponding respectively to 20,164 and 6,671 instances.

To simulate user clicks during evaluation, we first generate
2 clicks on the target object and then apply the corrective
strategy to refine the prediction. To compute the NoC@x%
metric, the refinement is limited to the targeted IoU thresh-
old. To compute the mIoU for progressive n clicks, the
refinement is limited to n clicks.

B. Comparison of user interactions

To compare contour clicks with traditional enclosure in-
teractions, we conducted an experiment with five human
annotators. Annotators had to label the 100 images of the
Berkeley dataset [21] using bounding boxes, extreme clicks,
as well as three free contour clicks and two free contour
clicks.

The user guidelines for each interaction types are shown
in Figure 10. To both designate the object of interest in the
image and prevent the users from anticipating their cursor



Method Train
Set

SBD
@85%

GrabCut
@90%

Berkeley
@90%

COCO MVal
@85%

VOS-Wild* [12] (2017) SBD Full - 3.8 - -
DEXTR* [7] (2018) SBD Full - 4.00 4+ (89.4%) 4+ (80.1%)
CAMLGIIS [5] (2019) SBD Full - 3.58 5.60 -
ITIS [4] (2018) SBD Train + VOC12 - 5.60 - -
IIS-LD [3] (2018) SBD Train 7.41 4.79 - 7.86
BRS [10] (2019) SBD Train 6.59 3.60 5.08 -
f-BRS-101 [20] (2020) SBD Train 4.81 2.72 4.57 -
GAIS [18] (2020) SBD Train + synt. 3.90 2.54 3.53 -
iFCN [2] (2016) VOC12 9.22 6.08 8.65 9.07
RIS-Net [11] (2017) VOC12 - 5.00 6.03 -
FCTSFN [17] (2019) VOC12 - 3.76 6.49 9.62
MultiSeg** [13] (2019) SBD+VOC - 2.30 4.00 -
FAIRS [15] (2020) VOC12 4.0 3.0 4.0 -
UCP-Net* (Ours) SBD Train 2.73 2.76 2.70 2.00

TABLE I: Comparison table. mIoU is specified for methods which did not reach the @x%. *Methods relying on contour
clicks. **Using different types of interactions, the authors gave a NoC equivalent of their result.

Fig. 7: Curves of mean IoU scores after n clicks for Grabcut [23] (a), Berkeley [21] (b) and SBD [1] (c) test sets. Note that
we excluded the out-performing method [18] on Grabcut which uses additional synthetic data during training.

Interaction type NoC Average time (s) Median time (s)
Extreme clicks 4 9.13 8.51
Bounding boxes 2 6.37 6.18
Free contour clicks 3 5.51 5.42
Free contour clicks 2 3.78 4.36

TABLE II: Interaction time for extreme clicks, bounding
boxes and unconstrained contours clicks on the 100 Berkeley
images [21] (N = 5 annotators).

Interaction type NoC Simulated clicks Real user clicks
Extreme clicks [7]* 4 89.1 87.7
Free contour clicks 2 87.0 86.3

TABLE III: mIoU comparison between extreme clicks
(DEXTR [7]) and unconstrained contours clicks using either
simulated clicks or real clicks on the 100 Berkeley images
[21]. * Re-implemented using a EfficientNet-B6 backbone,
so that only the user interaction varies.

position, a miniature of the image with the ground truth mask
of the targeted object is briefly displayed during two seconds.
Then the miniature is replaced with the full resolution image
on which the user can draw a box or click on contour points.
Figure 11 gives an overview of the annotation interface.
While click precision was not mentioned in the guidelines,
we calculated the accuracy with respect to the ground-
truth box to ensure fairness in time comparison between

Fig. 8: Location noise during training allows for a robustness
to user variation.

extreme points and bounding boxes and found no significant
difference in standard deviation (3.2% vs 3.6%).

Results are shown in Table II. Two user-clicks proved
to be almost three times faster than extreme clicks, while
also being significantly faster than simple bounding boxes.
Note that this finding is contradictory with the results of
Papadopoulos et al. [6] who observed that extreme points
(7.2s) were significantly faster than bounding boxes (34.5s).

C. Implementation details

a) Architecture and hyper-parameters: Like many pre-
vious interactive segmentation methods [24], we use a U-



Fig. 9: Examples of predictions on the Berkeley dataset [21] with their corresponding input clicks.

Net [25] architecture. We replace the VGG backbone with
an EfficientNet-B6 [26] which has become the backbone of
choice for many deep learning tasks and is at the top of the
ImageNet classification leader-boards. After a pre-training on
ImageNet, we train on SBD train (20,172 instance images;
8,498 images) and use the SBD val for validation (6,671
instance images). Simulated user clicks are represented as
Gaussian distance functions and fed to the model as a fourth
image channel. Unless specified otherwise, the results given
in this report were obtained while evaluating on SBD val.
We use the dice coefficient as our loss function as our
experiments demonstrated that it enables a slightly higher
mean IoU than binary cross entropy alone and binary cross
entropy and the dice coefficient combined. We use a learning
rate of 1e-5, that is reduced to 1e-6 when the loss has not
been improving for the last 15 epochs. Training stops after
7 epochs without improvement of the loss function. We use
a batch size of 12 as it gave better results than batch sizes
of 8 and 16. We resize images to 256*256 as it enables to
obtain a better IoU than resizing the images to 128*128 or
512*512. We set dropout to 0.5.

b) Data augmentation: As genericity is a critical com-
ponent in annotation assistance systems, we apply a substan-
tial variety of image augmentations to our images during
the training phase. We rely on the ImgAug [27] library
to apply noise (drop out, coarse drop out, Gaussian noise,
weather changes...), color changes (gama contrast, tempera-
ture...) and geometric transformations (perspective, vertical
and horizontal flips...) with default parameters. In terms of
user interaction, we add Gaussian noise to the simulated
clicks as shown in Figure 3.

D. Evaluation

Table I provides a comparison of UCP-Net against pre-
vious interactive segmentation methods. We reach standard

benchmark IoUs with lower numbers of clicks on SBD and
Berkeley while getting close to state of the art on GrabCut.
Moreover, we conducted an ablation study to evaluate the
accuracy gain between extreme and unconstrained contour
points. Following DEXTR’s training protocol [7] with 4
extreme points using our architecture, we observe that two
unconstrained contour clicks allow for a similar accuracy (-
1.4%) while being more than twice as fast (Table II, III). We
also observe experimentally a robustness to click location
variation (Figure 8), which further validates unconstrained
clicks as a flexible and cognitively easy option for interactive
segmentation. Qualitatively, our approach seems robust to
object shape variation, occlusion and dense scenes (Figure
9).

Figure 7 gives a comparison of the ability of our model
to improve segmentation masks with an increase number
of user clicks with other methods. Our pipeline is able to
continuously improve IoU with an increasing number of
clicks. We observe a larger gap against other methods on
SBD [1] which may be due to bias as its train and test
set are most resembling. Note that we do not include the
GAIS method in the curve comparison as they use a synthetic
dataset for training.

When compared against other contour based methods,
UCP-Net enables for a significant drop in the number of
needed user clicks to achieve a satisfactory segmentation on
SBD, GrabCut and COCO MVal.

V. CONCLUSION

With our generic contour based approach we have shown
that unconstrained contour clicks enable for faster and more
accurate segmentation thanks to fewer user clicks. We set a
new state of the art of interactive segmentation on SBD,
Berkeley, and COCO MVal. Our method is suitable for
annotation purposes, enabling to label datasets requiring



Fig. 10: Annotation visual guidelines given during the time
comparison experiment for (a) bounding box, (b) extreme
points, (c,d) free contour clicks.

Fig. 11: Experiment interface. The target object is shown
briefly during 2s (left), with a reduced image size to prevent
the user from anticipating the cursor position. Afterwards,
the image is displayed at full resolution (right).

only a handful of user interaction. Moreover, it is also per-
fectly suitable for image editing applications as our iterative
scheme makes it possible to reach a very high accuracy.
In future work, investigating the contour clicks’ embedding
might prove relevant to best exploit this interaction as it
was found for extreme clicks [16]. Moreover, the usage
of the previously predicted segmentation yields significant
improvement in iterative positive and negative interaction
approaches [12], [18] and may be equally applicable for
unconstrained clicks. Given the nature of contour clicks, they
could also be further exploited to simultaneously segment
or correct objects which are close to one another or which
overlap as they share common boundaries.
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