
HAL Id: cea-04321177
https://cea.hal.science/cea-04321177

Submitted on 4 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight FHE-based protocols achieving results
consistency for data encrypted under different keys

Marina Checri, Jean-Paul Bultel, Renaud Sirdey, Aymen Boudguiga

To cite this version:
Marina Checri, Jean-Paul Bultel, Renaud Sirdey, Aymen Boudguiga. Lightweight FHE-based pro-
tocols achieving results consistency for data encrypted under different keys. SECRYPT 2023
- 20th International Conference on Security and Cryptography, Jul 2023, Rome, Italy. 2023,
�10.5220/0012085200003555�. �cea-04321177�

https://cea.hal.science/cea-04321177
https://hal.archives-ouvertes.fr


Lightweight FHE-based Protocols
Achieving Results Consistency for Data Encrypted Under Different Keys

Marina Checri1, Jean-Paul Bultel1 and Renaud Sirdey1, Aymen Boudguiga1

1Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
{marina.checri, jean-paul.bultel, renaud.sirdey, aymen.boudguiga}@cea.fr

Keywords: Homomorphic encryption, Multi-key frameworks, Cloud computing, Data consistency

Abstract: Over the last few years, the improved performances of FHE has paved the way for new multi-user approaches which
go beyond performing encrypted-domain calculation for a single user. In this context, this paper proposes several
simplified multi-user setups resulting in new FHE-based building blocks and protocols. By simplified multi-user setting
we mean that, in order to process a user request, the FHE server is able to select only data encrypted under the proper
key in an oblivious way. In doing so, information like the distribution of data per user remains private without losing
the consistency of the obtained homomorphic results. We conclude the paper with experiments illustrating that these
simplified setups, although not universally applicable, can lead to practical performances for moderate-size databases.

1 INTRODUCTION

Homomorphic encryption (HE) allows blind computing
on encrypted data, thus providing data confidentiality-by-
design, not only during storage or transfer but also during
processing. In many situations, institutions hold pieces
of knowledge which gain value when put together. For
example, machine learning models are generally more
robust when trained over the union of several training data
sets than over a single one. Still, for ethical, commercial or
regulatory reasons (to name a few), such data or knowledge
are often very difficult to share, at least when sharing
implies their disclosure to other entities. In this context,
FHE and especially multi-key or multi-user FHE can serve
as a building block to design protocols where participants
can encrypt their data under their own keys and calcula-
tions are then performed blindly by a server on several
contributions. The calculation results are only disclosed
to a set of authorized entities after either collective or
single-point decryption, depending on the concrete setup.

This paper proposes a simplified multi-user homomor-
phic encryption setting that allows calculations to be per-
formed by a server on data encrypted by several contrib-
utors under different keys. It guarantees data and results
confidentiality, results’ consistency and untraceability be-
tween a contributor’s data and the user authorized to use
that data (encrypted under that user’s key). By simplified
multi-user setting, we mean that only one user at a time (the
requester) can request other users (the contributors) to en-
crypt their data under his own public key and send it to the
server, then instruct the server to perform calculations on
the relevant information stored in its database (that is, con-
tributors’ messages encrypted under the requester’s key).

The paper investigates four setups or scenarios of in-
creasing practical relevance and usefulness. The first setup
defines a baseline toy scenario in which the requester can
detect whether or not a result has been produced by means
of only data encrypted under his key. Intuitively, this setup
corresponds to the case where the requester wishes to de-
tect situations in which some data not encrypted under his
key have been wrongly taken into account to produce the
result. The three other setups allow to produce correct re-
sults even in presence of computations in between data not
encrypted under the same key with different trade-offs in
terms of communication and storage (two of them analyze
a trade-off between transmission and storage of evaluation
keys while the last one provides results’ compactness). In
these latter cases, the server cannot trace the keys under
which each data has been encrypted which is a desirable
property in some cases. Hence, the server cannot link the
contributors’ data to the requesters for which they are in-
tended. This prevents statistical or frequency analysis of the
data usable by the server for treating the requester query.

As a bonus contribution, we specify a conditional key
switching operator (required to do operations between
two ciphertexts in the multi-user setting) for the TFHE
cryptosystem [Chillotti et al., 2020], which takes a cipher-
text as input and either returns another ciphertext of the
same message if encrypted under a given key or otherwise
returns a random message encrypted under this same key.

The paper is organized as follows. Sec. 2 presents
some preliminaries for FHE and FHE-based multi-user
schemes. Sec. 3 then presents illustrative motivating
use-cases. Details on our approach and description of the
scenarios are in Sec. 4. The above-mentioned conditional
key switching operator for TFHE is presented in Sec. 5.



Experimental results are then provided and discussed in
Sec. 6. We conclude the paper with Sec. 7.

2 PRELIMINARIES ON FHE

In this paper, we consider two homomorphic cryptosys-
tems: BFV and TFHE. BFV [Brakerski, 2012, Fan and
Vercauteren, 2012] is based on the RLWE problem and
supports batching, i.e., a technique for leveraging SIMD
operations by encoding multiple messages in different slots
of a plaintext. The TFHE encryption scheme was proposed
in 2016 and updated in [Chillotti et al., 2020]. It relies on
the TLWE problem, an adaptation of the LWE problem to
the real torus T=R/Z. TFHE provides the most efficient
bootstrapping operation for binary plaintexts running in
tens of millisecond. BFV and TFHE rely on 3 keys: a
public key for encryption, a secret key for decryption, and
an evaluation key for re-linearization with BFV, and for
bootstrapping with TFHE.

Multi-user approaches for implementing FHE schemes
refer to Threshold Homomorphic Encryption (ThHE) and
Multi-Key Homomorphic Encryption (MKHE). They
involve multiple keys during the decryption of ciphertexts
and ensure that no single entity holds the decryption key
(i.e. the private key). ThHE schemes were introduced
in [Asharov et al., 2012, Boneh et al., 2018, Chowdhury
et al., 2022]. ThHE has a static setup and needs to remove
and re-encrypt all the data each time a user is removed. In
contrast, MKHE schemes (described in [López-Alt et al.,
2013, Doröz et al., 2016, Kim et al., 2022]) remove the
need for a key setup by allowing the evaluation server to
dynamically extend ciphertexts from encryption under indi-
vidual keys to ones under the concatenation of several users
keys. Then, all the private key owners have to collaborate
for decryption. However, the increase of ciphertext size
in the number of users results in a huge increase in homo-
morphic operators’ computational costs. Recently, hybrid
approaches have been proposed [Aloufi and Hu, 2019]
to combine the advantages of both ThHE and MKHE.

3 MOTIVATING USE-CASES

3.1 Communication Between Hospitals

Assume hospital H0 is the national referral hospital for an
orphan disease, and wishes to confirm a new hypothesis by
comparing correlations found from its own data with those
observed in other hospitals. The other hospitals accept to
send the requested indicators to H0 under two conditions:
H0 must not have access to individual patients’ data, cov-
ered by medical secrecy, hence data will be encrypted and
sent to an external server for homomorphic calculations;
moreover, neither H0 nor the server should identify the con-
tributing hospital, because the few patients it treats for this

rare disease might be identified. Thus, in the protocol, hos-
pital Hn encrypts its indicator In under H0’s public key and
sends it to the server. The latter homomorphically aggre-
gates contributions and sends the result to H0. Eventually,
only H0 can decrypt the statistic with its private key.

This paper proposes approaches ensuring that neither
H0 nor the server learn anything about the users’ private
data, nor may identify the contributors themselves. As the
referral hospitals for different orphan diseases may not
be the same, each hospital may play the role of H0: thus,
the server’s database contains data intended for different
hospitals without knowing the associated encryption key,
hence the referral hospital and the disease data relates to.

3.2 Biometric Templates

Suppose now that an organization maintains a database of
biometric data (e.g. fingerprint, facial recognition,...) that
regulates accesses to a number of secured rooms according
to users’ accreditations. Accesses are physically controlled
by connected doors D having each a key pair (skD,pkD).
Upon accreditation to a room controlled by door D, the
new user’s biometric data is encrypted under public key
pkD and sent in the server. The server does not know the
sending door, nor a fortiori the public key used, and only
stores the encrypted data.

When an individual i requests access to this room,
door D acquires i’s biometric data, encrypts it under public
key pkD and sends it to the server. The server then seeks
a match with biometric identification data stored in its
database: recall that data is encrypted hence search must be
performed, say through a homomorphic Hamming distance.
The server then issues to the door an encrypted boolean
value, depending on whether the match was found or not.

In a non-homomorphic scheme, biometric data would
still be stored as an encrypted vector, but the database
would be indexed in clear by the doors’ identifier, enabling
the server to trace it. Our protocol prevents this situation.
In addition, the server may be used by several companies:
each may be identified through its proxy (IP address), but
in no way the rooms that were accessed in it. Thus, the
server cannot determine which room has very restricted
access nor which one is open to almost everyone. The
price to pay is that the entire stored data, encrypted under
several keys, must be scanned to seek a match before
authorizing or denying such access.

4 ACHIEVING RESULTS CONSIS-
TENCY UNDER DIFFERENT KEYS

We present four protocols that correspond to successive
scenarios of increasing usability. We denote by “requester”
the user who initiates the request and “contributors” the
other participants to the protocols.



4.1 System Setting

The protocols defined in this section manage interacting
multi-user data, which are encrypted with different keys.
During setup, each user Un can ask the other users to send
their contribution, encrypted under his own public key pkn,
to the server. The server does not know under which key a
contributor sent his (encrypted) data. When receiving a re-
quest, the server only performs homomorphic calculations
using an evaluation key either provided by the requester
or stored with each record (depending on the scenario).
It then produces results encrypted by construction under
the private/public key pair associated to the evaluation key
used for the calculations. As such, every user is responsible
for identifying those results that were produced under its
own key (as those that he, and he alone, can decrypt).

The setup is a semi-honest model. More precisely, the
server is assumed to perform correctly what it is expected
to do, but observes all behaviours and data exposed to it,
trying to extract as much information as possible from
its observations. The other participants are assumed to
send valid information. The setup assumes that the server
and the requester are not colluding. Otherwise they could
determine and decrypt all the data under the requester’s key.

Needless to emphasize that this semi-honest threat
model is too weak for real-world deployment scenarios
and in such context, relying on homomorphic encryption
alone is unreasonable. Homomorphic encryption should
only be considered as what it is: a countermeasure to
confidentiality threats from the server. In real-world
deployment scenarios, it must therefore be embedded
in higher-level protocols resorting to additional (often
off-the-shelf) techniques, such as strong authentication of
all parties or confidentiality and integrity on all exchanges.

4.2 Detecting Key Inconsistencies

This setup (namely scenario 0) deals with the basic
requirement that a single user (the requester) should only
be able to detect whether or not a result has been produced
by mean only of data encrypted under his key. The server
however assumes that all data have been encrypted under
the requester key and, hence, that it generates consistent
FHE results but also performs redundant FHE calculation
results which allow the requester to check this. In reply
to its request, the requester must therefore decrypt the
result getting a valid value if all data involved in the
FHE calculation were encrypted under his own key and
a random result (noted $) otherwise.

A simple approach to sort valid results out of random
ones is to require each contributor to concatenate his data
with a padding of zeroes before encrypting it under the re-
quester’s key. The server then performs two homomorphic
calculations with these ciphertexts. It computes both the
payload function and the sum of the padding encryptions,
which will serve as a verification ciphertext because a
homomorphic sum of paddings of zeroes should remain a

padding of zeroes. The requester then only needs to check
that the decrypted padding (of the verification ciphertext)
is indeed all zeroes to assert that the result is consistent and
to ensure that it has not been “polluted” by contributions
encrypted under a wrong key. For a uniform distribution
of encrypted paddings of ℓ zeroes in Fq, false positives
occurs with a probability of 1/qℓ.

4.3 Masking Key Inconsistencies

Scenario 1: From now on, we assume that each of the
contributors sends its data multiple times to the server, en-
crypted under the keys of some of the requesters. That
is, the contributors explicitly grant the requesters of their
choice access to by-products of their encrypted data through
FHE calculations on the server. Besides its ignorance of the
requester and contributors, the server now deals with data
encrypted under several keys, without being able to deter-
mine on its own which data should be used in which calcu-
lations. Scenario 1 therefore assumes that every contributor
sends his encrypted data, together with a padding of zeroes
encrypted under the same key, as well as an associated
evaluation key (evaluation keys have to be rerandomized1

to avoid leaking which data are encrypted under the same
key to the server). The server stores each record with these
three fields in its database. When the server receives a
query from a requester, it performs calculations for each
record, using the record’s evaluation key then concatenates
the associated encrypted padding of zeroes to the encrypted
result before sending it. For each result, if the key used was
the requester’s, the padding decryption is a padding of ze-
roes, otherwise, it is a random padding. The requester can
thus quickly determine which is the correct result (the one
with a padding of ℓ zeroes). The drawback is that, in reply
to a single request, the requester must then decrypt one
result per database entry. Then, he uses the padding to iden-
tify those results derived from database entries intended for
him. In addition, this scenario requires every contributor to
send a (usually large) key per database record it is creating.

Scenario 2: Scenario 2 is a variant of the previous one,
aiming to avoid transmissions of evaluation keys by the
contributors, as well as their storage on the server. To
do so, the requester sends his evaluation key along with
his request, and the server performs FHE computations
under this key to produce the encrypted results. As the
calculations are homomorphic, only results obtained from
data encrypted under the same key will be meaningfully de-
cryptable by the requester (thanks to the padding approach,
as previously described). Scenarios 1 and 2 are similar,
but the former imposes on the server to keep K evaluation
keys (which may be costly in terms of storage capacity),
while the latter only requires the requester’s key to be sent

1FHE evaluation keys usually are encryptions of a secret
key and can be rerandomized by homomorphically adding
encryptions of 0.



(which may have some limitations in terms of bandwidth:
typically, for TFHE [Chillotti et al., 2020], bootstrapping
key used as an evaluation key is about 113Mb in size
with default parameters). In other words, scenario 1 and
2 achieve different communication trade-offs: scenario 2
replaces offline communications and storage (in scenario 1)
by online (per-request) communications. Which of the two
is the most appropriate depends on the concrete use-case.

Scenario 3: In this last approach, we achieve result com-
pactness and remove the need for post-decryption padding
verification on the requester’s side. That is, the server only
had to produce one result per request, that the requester
and only he can decrypt. The idea is to rely on the server to
obliviously determine in the encrypted domain whether data
are part of a calculation, depending on whether the asso-
ciated padding of zeroes is encrypted under the appropriate
key. First, the server performs a homomorphic equality test
to zero on the encrypted padding, resulting in an encrypted
boolean value [b]. In this section, the boolean function chk
denotes a homomorphic equality test to zero: it returns
an encryption of 1 if the padding of zeroes is encrypted
under a given key and 0 otherwise. Then, depending on
whether the equality test succeeds or fails (i.e., [b]=[1] or
[0]), the server combines [b] with both the FHE calculation
result [m] and a default application-dependant value [α]
(think of a neutral element or a ’not-an-answer’ value) as:
[m]·[b]+(1−[b])·[α]. As such, the equality test and the
selection are homomorphic. Still, since the server does not
know which ciphertext to consider, it must perform these
calculations on the whole database without knowing if the
data of the record is effectively used in the computation.

To summarize, this section presents four new multi-user
protocols that achieve consistent results. Scenario 0 allows
a single requester to detect whether a result has been
produced only through data encrypted under the unique
requester’s key. The three others allow a requester at a
time to request the server to produce consistent results
derived only from data encrypted under this requester’s
public key. Scenarios 1 and 2 are similar scenarios
investigating a trade-off between the transmission (scenario
1) and the storage (scenario 2) of evaluation keys. The last
scenario has the same context as scenario 2 but ensures the
result’s compactness by returning only one result per query
rather than one result per database record for each query.
Scenario 3 achieves the result’s compactness through an
oblivious test to zero from the server.

5 A CONDITIONAL KEY
SWITCH OPERATOR FOR TFHE

As we shall see in Sec. 6, scenario 3 (described in Sec. 4.3)
can be naturally implemented by means of the TFHE cryp-
tosystem. However, with that cryptosystem, allowing homo-

morphic interactions of data encrypted under different keys
requires an additional manipulation which we now specify.

TFHE uses the bootstrapping key as the evaluation
key. More precisely, the bootstrapping key is a TRGSW
encryption of the private key under an appropriate distinct
key (refer to [Chillotti et al., 2020], for more details). The
bootstrapping is performed in several steps, including a
blind rotation whose index is precisely the bootstrapping
key. In other words, the operation multiplies the input by
X(∑n

i=0ai·si)−b, where si is a TRGSW ciphertext of the ith
component of the secret key sk. If the encryption key used
does not match the bootstrapping key, the indices kept
during the blind rotation will not match. This is precisely
what occurs in a multi-user context when an operation is
performed on an argument encrypted with a wrong key
pkWK that is not matching the bootstrapping key bkRK (the
right key).

To compute on a message encrypted under a wrong
key pkWK, one needs to force an evaluation under the right
key. Recall that messages not encrypted under the right key
can be recognized because they give a random result when
decrypted under this key. Hence it is sufficient to ensure
that the result of the bootstrapping operation performed on
a “random” argument remains random and otherwise can
be correctly decrypted. Forcing the evaluations to be done
with the right key bkRK can be achieved by multiplying the
argument by the constant 1 encrypted under the right key
pkRK. This amounts to implementing a new conditional
key-switching operator JFK (Just Force Key) that takes
a ciphertext as input and either returns another ciphertext
of the same message, if it was encrypted under pkRK, or,
otherwise, a random message encrypted under pkRK. For
the evaluation of an operator (or a function) ✧bkRK to apply
at two ciphertexts [a] and [b], using the right bootstrapping
key, JFK works as follows:

JFK(✧bkRK ,[a]pkRK ,[b]pkRK)

= [a]pkRK ✧bkRK ([1]pkRK &bkRK [b]pkRK)︸ ︷︷ ︸
= [a]pkRK ✧bkRK [b]pkRK

= [a✧b]pkRK

as well as,

JFK(✧bkRK ,[a]pkRK ,[b]pkWK)

= [a]pkRK ✧bkRK ([1]pkRK &bkRK [b]pkWK)︸ ︷︷ ︸
= [a]pkRK ✧bkRK [$]pkRK

= [$]pkRK

In a nutshell, this conditional key switching may be
described as “key switching data encrypted under another
key into garbage under the right key.”



6 EXPERIMENTAL RESULTS

The results presented in this section have been obtained in
a DELL LATITUDE E7450 computer running on Ubuntu
20.04.5 LTS x86 64 with the CPU Intel i5-5200U (4) @
2.700GHz and only one core activated.

For the BFV cryptosystem [Fan and Vercauteren,
2012], using the SEAL library, we chose a polynomial
modulus degree of size 4096, a coefficient modulus size
of 109 (36+36+37) bits, and a plain modulus of 1032193.
For the TFHE cryptosystem [Chillotti et al., 2020], using
the Cingulata compiler [Carpov et al., 2015], we used the
default parameters of the TFHE library.

6.1 Homomorphic Hamming Distance

16b 32b 64b 1024b
TFHE/Cingulata 00,27 00,28 00,33 01,51
BFV/SEAL 00,59 00,62 00,66 00,83

Table 1: Average runtime for the computation of a Hamming
distance in seconds, according to the cryptosystem and the size
of vectors to be compared (size in bits)

As a “Hello world” functionnality we chose to work
with Hamming distance calculations (note that such simple
distances are even sometimes used in practice e.g. in
biometric recognition systems [Zuber et al., 2020]). This
distance, which is simple to calculate, is often used as
an indicator, according to which a result is acceptable if
the number of components that differ between the two
vectors is less than a certain bound. The use-case in Sec.
3.2 illustrates this usage.

On F2, the Hamming distance between two vectors
(x1, ... , xn) and (y1, ... , yn) can be (homomorphically)
computed by ∑

n
i=1(xi ·(1−yi))+(yi ·(1−xi)). We have

implemented this distance under three cryptosystems:
BFV [Fan and Vercauteren, 2012], TFHE [Chillotti et al.,
2020], and extended Paillier as presented in [Catalano and
Fiore, 2015]. However, the extended Paillier cryptosystem
was more than five hundred time slower than the other two
for 1024-bit vectors, so we did not investigate it further.

For BFV, the library used was Microsoft SEAL. The
BFV implementation uses the batching technique to
parallelize the computations. A vector of n slots encodes
a binary vector of size n. The formula is applied once
for all slots, and then the sum of these bits is computed
using rotations in logarithmic complexity. In TFHE, we
used the Cingulata compiler, providing the CiBit class,
which represents an encrypted bit. This representation is
particularly adapted to compute on F2.

Table 1 presents the unitary performances according
to the size n of the vectors and the cryptosystem used.

6.2 Performance Result

Scenarios 1 and 2: The first two scenarios are implemented
under the BFV cryptosystem using the Microsoft SEAL
library and batched ciphertexts (we did not test this sce-
narios with TFHE since the unitary results in Table 1 show
BFV is the most efficient option, when no such things as
zero testing are required). The function to compute for the
requester (noted f in sec. 4) is a homomorphic Hamming
distance between two binary vectors of size 1024.

Scenario 1 Evaluations Decryption
5 records 00:04,049 00:00,126

10 records 00:08,103 00:00,253
50 records 00:40,571 00:01,267

100 records 01:21,101 00:02,530

Table 2: Scenario 1-Average runtime according to the number
of database records (min:sec,ms)

Scenario 2 Evaluations Decryption
5 records 00:04,060 00:00,126

10 records 00:08,253 00:00,264
50 records 00:40,579 00:01,260

100 records 01:21,199 00:02,521

Table 3: Scenario 2-Average runtime according to the number
of database records (min:sec,ms)

Tables 2 and 3 illustrate that, in these scenarios, one
can scale (assuming a latency threshold of less than one
minute) up to 50 users, which may be usable for some
applications (albeit resorting to parallelism to help either
downing the latency or increasing the database size by an
order of magnitude). Nevertheless, as many results as there
are records in the database are returned to the requester.
The requester must then decrypt all these results by himself
and extract those intended for him. However, according
to tables 2 and 3, the decryption time for all these results
stays acceptable (about one second for 50 results) and so
is the volume of data exchanged (≈110 ko per ciphertexts
so around ≈5.5 Mo for a 50 records database).

These tests also allow us to observe that the scenario
takes only slightly less time when the evaluation keys are
stored (i.e. in scenario 1), and that scenario 2 works just as
well, despite the transmission of the evaluation key of the
calculation requester (the requester). The elapsed time for
a hundred records remains acceptable for homomorphic
computations (less than a minute and a half).
Scenario 3: The third scenario needs a homomorphic test
to zero, a capability which is more difficult to provide
with certain cryptosystems (BFV, BGV,...) than with others
(TFHE). For that case, we chose to use TFHE using the
Cingulata compiler for this scenario, as the time tests of
the Hamming distance of table 1 do not differ much from
those of BFV, and it implements a homomorphic zero test,



as it work at the boolean circuit level. As previously, the
function to compute for the requester is a Hamming dis-
tance between two binary vectors of size 1024. As already
emphasized in section 5, the multi-user context requires
a new conditional key switching operator for TFHE to do
operations between two ciphertexts (possibly over different
keys): we force the use of the right key on these two
ciphertexts before operating. This adaptation adds exactly
one bootstrapping for each record in the database.

Scenario 3 16 bits 32 bits 64 bits
5 records 00:21,93 00:25,34 00:35,23
10 records 00:44,37 00:52,88 01:13,23
50 records 03:47,27 04:28,43 06:01,55
100 records 07:38,88 08:50,99 12:07,74

Table 4: Scenario 3-Average runtime according to the number of
database records, ranging from 16 bits of padding (low reliability)
to 64 bits of padding (strong reliability) (min:sec,ms)

The running times shown in table 4 illustrate that this
case is significantly more computationally costly (more
than 12 minutes for a hundred records and 2−64 false
positive probability) than the previous ones, and scales
only to about ten records (about one minute for 2−64 false
positive probability). Furthermore, according to tables 1
and 4, for 10 records and 2−64 false positive probability,
we have 73s of computations, of which 15s are devoted
to calculating the Hamming distance, which leaves 58s
of computation time for the ten tests to zero. Similarly,
for 50 records and 2−64 false positive probability, 76s
stands for the Hamming distance and 286s of runtime for
the homomorphic tests to zero. This is the price to pay
for results compactness, thus for a lower communication
cost. Indeed, scenario 3 results in a O(1) size for the reply,
when scenarios 1 and 2 lead to an O(r) reply size, where
r is the number of records in the database.

7 CONCLUSION

This paper investigated multi-user setups, the first two
setups show two similar protocols allowing each user
to recognize the messages that are intended for him and
guaranteeing result consistency under multiple keys. In
terms of latency, these scenarios can be practically relevant
(about one minute of execution time) at a scale of 50 to
100 records in the database for sequentially performed cal-
culations. However, these protocols have a natural potential
for parallelization, allowing to compute on a few thousands
records per minute. Indeed, these scenarios return one
response per record in the database, and the homomorphic
calculations on the records can be performed in parallel. So
for a server with 50 cores (a standard scale on the NUMA
machine market), the execution time would be almost
divided by 50. Our third setup allows users to request the

result of a calculation on the data addressed to them and
returns only one response. This is interesting for many use
cases but results in a smaller scaling potential since it can
only handle about ten records in one minute, sequentially.

ACKNOWLEDGEMENTS

This work was supported by the France 2030 ANR Project
ANR-22-PECY-003 SecureCompute.

REFERENCES

Aloufi, A. and Hu, P. (2019). Collaborative Homomorphic
Computation on Data Encrypted under Multiple Keys. The
International Workshop on Privacy Engineering (IWPE’19)
co-located with S&P’19.

Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan,
V., and Wichs, D. (2012). Multiparty Computation with
Low Communication, Computation and Interaction via
Threshold FHE. In EUROCRYPT 2012, volume 7237,
pages 483–501. Springer Berlin Heidelberg.

Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S.,
Rasmussen, P. M. R., and Sahai, A. (2018). Threshold Cryp-
tosystems from Threshold Fully Homomorphic Encryption.

Brakerski, Z. (2012). Fully homomorphic encryption without
modulus switching from classical gapsvp. In CRYPTO
2012, pages 868–886.

Carpov, S., Dubrulle, P., and Sirdey, R. (2015). Armadillo: a
compilation chain for privacy preserving applications. In
Proceedings of the 3rd International Workshop on Security
in Cloud Computing, pages 13–19.

Catalano, D. and Fiore, D. (2015). Using Linearly-Homomorphic
Encryption to Evaluate Degree-2 Functions on Encrypted
Data. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M. (2020).
TFHE: Fast Fully Homomorphic Encryption Over the
Torus. Journal of Cryptology, pages 34–91.

Chowdhury, S., Sinha, S., Singh, A., Mishra, S., Chaudhary,
C., Patranabis, S., Mukherjee, P., Chatterjee, A., and
Mukhopadhyay, D. (2022). Efficient threshold FHE with
application to real-time systems. IACR ePrint, page 1625.

Doröz, Y., Hu, Y., and Sunar, B. (2016). Homomorphic AES
evaluation using the modified LTV scheme. Designs,
Codes and Cryptography, 80(2):333–358.

Fan, J. and Vercauteren, F. (2012). Somewhat practical fully
homomorphic encryption. IACR ePrint.

Kim, T., Kwak, H., Lee, D., Seo, J., and Song, Y. (2022). Asymp-
totically faster multi-key homomorphic encryption from ho-
momorphic gadget decomposition. IACR ePrint, page 347.

López-Alt, A., Tromer, E., and Vaikuntanathan, V. (2013). On-
the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption. IACR ePrint, page 94.

Zuber, M., Carpov, S., and Sirdey, R. (2020). Towards real-time
hidden speaker recognition by means of fully homomorphic
encryption. In Information and Communications Security,
pages 403–421.


