
HAL Id: cea-04320711
https://cea.hal.science/cea-04320711

Preprint submitted on 4 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New insights into the feature maps of Sobolev kernels:
application in global sensitivity analysis

Gabriel Sarazin, Amandine Marrel, Sebastien da Veiga, Vincent Chabridon

To cite this version:
Gabriel Sarazin, Amandine Marrel, Sebastien da Veiga, Vincent Chabridon. New insights into the
feature maps of Sobolev kernels: application in global sensitivity analysis. 2023. �cea-04320711�

https://cea.hal.science/cea-04320711
https://hal.archives-ouvertes.fr


ESAIM: Probability and Statistics Will be set by the publisher
URL: http://www.emath.fr/ps/

NEW INSIGHTS INTO THE FEATURE MAPS OF SOBOLEV KERNELS:
APPLICATION IN GLOBAL SENSITIVITY ANALYSIS

Gabriel Sarazin1, Amandine Marrel2, 3, Sebastien Da Veiga4 and Vincent
Chabridon5

Abstract. As part of the study of an input-output numerical simulator, performing a sensitivity
analysis allows to identify the input parameters having the greatest influence on the output variability.
Since the variance-based approach (also known as the ANOVA framework) is too expensive, and the
kernel-based approach (leading to HSIC indices) lacks interpretability, the HSIC-ANOVA framework
has recently emerged to marry the advantages of both. A major particularity of this new methodology
is the need to use the unanchored Sobolev kernels. This paper investigates how sensitivity is measured
according to the chosen Sobolev kernel. To achieve this, at least one explicit feature map is extracted
from each Sobolev kernel and this helps identify the dependence patterns captured by HSIC-ANOVA
indices. For the Sobolev kernel of order r = 1, three different proof techniques are proposed to disclose
its Mercer feature map. For higher-order Sobolev kernels (r ≥ 2), it is proved that the Mercer feature
map does not have a closed-form expression. In response, a slightly relaxed feature map is obtained
after considering a sub-kernel decomposition. This latter feature map allows to justify why the Sobolev
kernels of order r ≥ 2 should not be used to estimate HSIC-ANOVA indices.

Résumé. Lors de l’étude d’un modèle numérique, la réalisation d’une analyse de sensibilité permet
d’identifier les paramètres d’entrée les plus influents sur la sortie. Comme les méthodes basées sur le
partage de la variance (approche ANOVA) sont trop coûteuses, et que les méthodes à noyaux (approche
HSIC) sont difficiles à interpréter, la méthode HSIC-ANOVA a récemment vu le jour pour combiner
leurs avantages respectifs. Une particularité majeure de cette méthode HSIC-ANOVA est l’utilisation
d’une famille très spécifique de noyaux de Sobolev. Ce papier s’intéresse à la manière dont la sensibilité
est mesurée selon le choix du noyau de Sobolev. Pour cela, on extrait de chacun des noyaux de Sobolev
au moins une feature map car la connaissance des features aide ensuite à comprendre les motifs de
dépendance qui sont capturés par les indices HSIC-ANOVA. Pour le noyau de Sobolev d’ordre r = 1,
on propose trois techniques de preuve pour retrouver la feature map de Mercer de ce noyau. Pour
les noyaux de Sobolev d’ordre supérieur (r ≥ 2), on démontre que la feature map de Mercer n’a
pas d’expression explicite. Une feature map d’un autre type est alors obtenue en considérant une
décomposition des noyaux de Sobolev en plusieurs sous-noyaux. Cette feature map révèle notamment
qu’il ne faut pas estimer les indices HSIC-ANOVA avec un noyau de Sobolev d’ordre r ≥ 2.
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1. Introduction

1.1. Kernel methods
Kernels, to be understood here as symmetric and positive definite functions of two arguments, are essential

tools in probability and statistics. In probability, they are rather called covariance functions and they are
used in stochastic calculus to characterize the properties of random fields and processes [63]. In statistics,
they are the backbone of numerous non-linear methods designed to carry out machine learning tasks, whether
supervised (e.g. Gaussian process regression [116], support vector classification [25], denoising with smoothing
splines [112, 113]) or unsupervised (e.g. spectral clustering [7], kernel k-means [34], kernel PCA [90]). Kernels
have also enabled the development of advanced methods in areas such as novelty detection [22, 23], Bayesian
quadrature [6,20], independent component analysis [8], hypothesis testing (especially independence testing [53]
or two-sample testing [51]), optimal experimental design [75], optimal quantization [107] and many others. The
ubiquity of kernels in statistical applications is mainly explained by their ability to introduce non-linearity where
standard methods are only able to handle linearity. From a mathematical viewpoint, a kernel can be described
in two different but equivalent ways.

First, in virtue of the Moore-Aronszajn theorem [5], every kernel is related to a unique reproducing kernel
Hilbert space (RKHS) which is generated from the only knowledge of the kernel and inherits most of its properties
(separability, measurability, boundedness, continuity, differentiability) [12, 25]. In particular, the link between
a kernel and its RKHS is summarized by a reproducing property, which often leads to speak of reproducing
kernels (instead of kernels). The RKHS offers a sound theoretical framework where some challenging problems
find easy solutions. A classic example is provided by kernel ridge regression [86] where a penalized least-square
score has to be minimized over a high-dimensional class of candidate functions [56,112]. If an RKHS is chosen,
the representer theorem [88] indicates that any minimizer can be expressed as a weighted linear combination of
functions picked from the RKHS.

Then, beyond the abstract existence of the RKHS, there is always a transformation (called feature map) that
allows to rewrite the kernel as the inner product in a specific Hilbert space (called feature space) between the
representatives (called feature functions) of the two initial arguments [25]. The role played by a kernel within
an algorithm is sometimes easier to understand by adopting the feature viewpoint. A typical example is the
case of binary classification with support vector machines [57]. In presence of non-separable data (i.e. when
linear boundaries fail to separate the two classes), the idea is to use a kernel in order to transport the data into
a feature space where they become linearly separable. The knowledge of the kernel feature map then allows to
clearly identify the transformations applied to the data to make them separable.

Global sensitivity analysis [31, 84] is another area where kernel methods overcome the limitations of the
standard methodology and where the feature maps allow to understand how kernels perform the expected task.

1.2. Global sensitivity analysis
In many industrial fields, reliability and risk assessment is based on the joint use of computer simulation

and uncertainty management. For highly sophisticated systems, the physical phenomena involved in accidental
scenarios are modeled by numerical simulators which compute one (or several) output(s) of interest from a large
number of uncertain input parameters. The generic Monte Carlo approach for uncertainty propagation relies
on input-output evaluations of the simulator. As a complement, global sensitivity analysis (GSA) ambitions
to quantify the influence of input uncertainties on the output uncertainty [16, 83]. When computer-based
experiments are time-consuming, the maximum feasible number of runs may be very limited. The main challenge
of GSA is then to deliver accurate sensitivity estimates from the few available simulation data.
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The most prevailing approach to perform GSA is to apportion the output variance between all subsets of
input variables [96]. Variance allocation is notably guided by the ANOVA1 decomposition of the multivariate
function representing the simulator [61]. The resulting Sobol’ indices [96, 97] are very popular because their
definition (as percentages of the output variance) is very intuitive. However, the computational burden required
to accurately estimate them is often prohibitive. To bypass this problem, it is often preferred to adopt a
pairwise approach based on the estimation and comparison of dependence measures [15, 17, 18]. This can be
achieved in many different ways, but kernel methods are certainly the most attractive option, as they notably
allow to define the Hilbert Schmidt Independence Criterion (HSIC) [52]. Computing the HSIC between two
random variables (each previously assigned an appropriate kernel) amounts to using a dissimilarity measure
to compare their joint distribution and their hypothetical distribution under independence (within an RKHS
built from the two selected kernels). Interestingly, and unlike the numerator of high-order Sobol’ indices, the
HSIC can be estimated accurately, even from a limited number of samples. Hence, to meet the needs of GSA
when simulation data are expensive, the HSIC can be applied to all input-output pairs [29], and the resulting
sensitivity measures are called HSIC indices. Among their many advantages, HSIC indices are often praised for
their ability to characterize independence because, assuming that all kernels are characteristic, an HSIC index
is equal to zero if and only if the output variable is independent from the input variable.

Despite all this, HSIC indices suffer from a lack of interpretability, and this hinders their dissemination to a
wider audience. There are actually two problems. Firstly, as HSIC indices do not arise from an ANOVA-like
decomposition, their sum is not equal to one, and they cannot be universally upper bounded (i.e. any bound
can be questioned with exotic choices of kernels and/or distributions). Secondly, the nature of the information
captured by HSIC indices is not directly accessible, unless adopting the cross-covariance viewpoint [9, 109]. A
prerequisite to understand finely the way HSIC indices measure sensitivity is the prior knowledge of the feature
maps nested in the kernels chosen for the input and output variables. Many long-established results may be
found in the dedicated literature [12,25,66,76], especially for Gaussian and Matérn kernels. However, for a given
kernel, there is no guarantee that a fully analytical feature map can be easily found. This must be discussed on
a case-by-case basis, which makes the interpretation of HSIC indices very dependent on the selected kernels.

1.3. New generation of HSIC indices based on Sobolev kernels
In response to the first interpretation problem, an ANOVA-like decomposition has been recently set up

for HSIC indices [30]. This HSIC-ANOVA decomposition allows to define the sensitivity indices of the same
name. A contribution (defined in the HSIC style) can be assigned to each subset of inputs, and the sum of
all contributions is then equal to one. This is very similar to Sobol’ indices, except that all HSIC-ANOVA
contributions can be estimated from a small amount of input-output data.

Unfortunately, the HSIC-ANOVA decomposition is obtained at the cost of strong restrictions on the input
variables (assumed independent) and the input kernels (subject to additional orthogonality constraints). The
input and output kernels must also be characteristic in order to preserve the ability to detect independence.
Finding kernels that satisfy all these constraints is a major obstacle to the implementation of the HSIC-ANOVA
methodology. The solution promoted in [30] is to apply a preliminary transformation to the input variables so
that they all follow the standard uniform distribution2, and then to assign them some specific Sobolev kernels
(namely the unanchored Sobolev kernels).

Sobolev kernels have already proved to be efficient for spline regression [28, 56, 112]. They are also of great
theoretical use to demonstrate the (strong) tractability of some quasi-Monte Carlo techniques in very high
dimension [38, 77, 94]. Still from a theoretical perspective, they may be used to construct Hilbert spaces of
multivariate functions in which the ANOVA components can be computed with simplified formulas [70, 114].
However, in the context of GSA, the use of Sobolev kernels raises a dilemma. On the one hand, Sobolev kernels
are necessary to compute HSIC-ANOVA indices (which may be seen as a more interpretable collection of HSIC

1ANOVA means ANalysis Of VAriance. This acronym is encountered in many different areas of statistics [4, 49, 56,87,104].
2In this work, the standard uniform distribution refers to the uniform distribution on [0 , 1]. For convenience, this distribution

will sometimes be denoted by U([0 , 1]) in equations.
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indices). On the other hand, this gain in interpretability is counterbalanced by a loss of transparency regarding
the way sensitivity is measured. Therefore, the main objective of this paper is to investigate the mathematical
properties of Sobolev kernels, especially those which have immediate consequences in GSA. For this, several
points deserve to be clarified.

(Q1) We need to identify at least one orthonormal basis (ONB) for each Sobolev RKHS. The knowledge of
the basis functions is indeed the key to understanding the preliminary transformations applied to the
input variables when HSIC-ANOVA indices are computed with Sobolev kernels.

(Q2) We need to extract at least one easily interpretable feature map for each Sobolev kernel. Of all possible
feature maps, those arriving in ℓ2-spaces are particularly attractive because they often lead to an ONB
of the RKHS.

(Q3) We need to know if Sobolev kernels are characteristic. This will determine the ability of HSIC-ANOVA
indices to characterize independence.

1.4. Organization of the document
This paper is divided into seven sections which can be split into two parts. The first part, consisting of

Sections 2 to 4, introduces all useful concepts before explaining why the acquisition of new knowledge about
Sobolev kernels gives even more credit to the HSIC-ANOVA approach.

• Section 2 provides the essential ideas of the theory of reproducing kernels. The notion of feature map
is introduced and its importance in the understanding of kernel action is emphasized. In particular,
Section 2.4 presents two different strategies that can be used to identify an ONB of the RKHS associated
to a given kernel. The first one (based on Mercer features) is well-known whereas the second one (based
on ℓ2-linearly independent features) is a first contribution of this work.

• Section 3 says a few words about Sobolev kernels. Their links with Sobolev spaces are detailed and
their most relevant properties are presented. The question (Q3) is addressed at this step because it
is ultimately quite simple after introducing all the necessary concepts. In addition, the unanchored
Sobolev kernels are introduced as a specific family of Sobolev kernels built upon Bernoulli polynomials
and parameterized by an integer r ≥ 1 (accounting for the order of smoothness in the associated Sobolev
space). Since the unanchored Sobolev spaces are among the few kernels fulfilling all the requirements
of the HSIC-ANOVA approach, the study will be restricted to them.

• Section 4 is then focused on kernel-based GSA. The advantages of HSIC indices (over Sobol’ indices)
are highlighted. The added value of the newly-developed HSIC-ANOVA framework is justified and
the problems caused by the use of Sobolev kernels are clearly stated. In this section, the information
captured by HSIC-based sensitivity measures is thoroughly examined from the perspective of kernel
feature maps. It is notably explained how basic manipulations on kernels sometimes allow to rewrite
HSIC indices as series of explicit covariance terms.

In the second part of this work, Sections 5 to 8 strive to answer the questions (Q1) and (Q2). These four
sections are therefore the core contribution of this work.

• In Section 5, a simulation-based method is applied to Sobolev kernels in order to get a first idea of the
feature map arising from Mercer’s theorem.

• In Section 6, the eigenvalue problem (solved numerically in Section 5) is transformed into a boundary
value problem. In particular, it is shown that this equivalent version of the original problem can be
solved analytically only for r = 1.

• In Section 7, a sub-kernel decomposition of Sobolev kernels is used to disclose a feature map of a different
type which is a little less informative than Mercer’s but holds whatever is r ≥ 2.

• Section 8 deals with the limit Sobolev kernel, obtained in the hypothetical situation where r = ∞.
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Section 9 provides some concluding remarks. The key findings are summarized and they are reformulated in
terms of the original questions. Throughout this work, the proofs which are sufficiently short are inserted in
the body of the text. On the contrary, the long and more technical ones are reported to Appendix F.

2. Basic reminders on kernels
In this first section, the objective is to introduce briefly the few elements from the theory of reproducing

kernels that will be used in this work. Section 2.1 is dedicated to recall some basic definitions. Then, Section 2.2
deals with the particular links between kernels and probability distributions, in particular through the notions
of orthogonal kernels and kernel mean embeddings. In Section 2.3, the fundamental concept of feature map
is put forward and some examples are provided. The specific case of Mercer kernels is carefully examined in
Section 2.4 as it will be of great importance in the forthcoming developments.

2.1. Kernels and their reproducing kernel Hilbert spaces
In this work, for the sake of simplicity, X will always denote an interval in R but most definitions and results

can be extended to locally compact spaces in Rd (with d ∈ N∗) or to even more general spaces. In the following,
RX denotes the space of all real-valued functions defined on X .

Definition 2.1. A function K : X × X → R is said to be a kernel if it is symmetric and positive definite.

• Symmetry: ∀x, x′ ∈ X , K(x, x′) = K(x′, x) ,

• Positive definiteness: ∀n ≥ 1, ∀x1, . . . , xn ∈ X , ∀ c1, . . . , cn ∈ R,
n∑

i=1

n∑
j=1

ci cj K(xi, xj) ≥ 0 .

After adopting a matrix viewpoint, the positive definiteness property may be rewritten as follows:

cT Kn c ≥ 0 with Kn := [K(xi, xj)]1≤i,j≤n and c := [ci]1≤i≤n
.

The n-by-n matrix Kn is called the Gram matrix (or more simply the kernel matrix).

Definition 2.2. Let H be a Hilbert space3 (of functions h : X → R) with inner product ⟨·, ·⟩H. For any x ∈ X ,
the evaluation functional at x is the linear form defined by Lx : h ∈ H 7→ h(x) ∈ R. Then, H is said to be an
RKHS if all evaluation functionals are continuous:

∀x ∈ X , ∃Cx > 0 such that ∀h ∈ H, |h(x)| ≤ Cx ∥h∥H .

Definition 2.3. Let K : X × X → R be a kernel and let H be an RKHS (of functions h : X → R). K is said
to be a reproducing kernel of H if the two following conditions are verified:

• Embedding property: ∀x ∈ X , K(·, x) ∈ H ,

• Reproducing property: ∀x ∈ X , ∀h ∈ H, h(x) = ⟨h,K(·, x)⟩H .

Remark 2.4. In Definition 2.3, the two points are crucial. Together, they notably lead to the fundamental
property verified by K:

∀x, x′ ∈ X , K(x, x′) = ⟨K(·, x) ,K(·, x′)⟩H . (2.1)
3Strictly speaking, a Hilbert space is an ordered pair (H, ⟨·, ·⟩H) where H is a space and ⟨·, ·⟩H is an inner product on H.

However, a commonly accepted abuse of notation is to write H instead of (H, ⟨·, ·⟩H). Remember that an inner product space
(H, ⟨·, ·⟩H) is a Hilbert space if and only if the normed space (H, ∥·∥H) built from the induced norm ∥·∥H is complete. Otherwise,
the mathematical structure (H, ⟨·, ·⟩H) is merely a pre-Hilbert space.
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In fact, any RKHS admits a reproducing kernel and any kernel is reproducing for an RKHS. More precisely,
there is a one-to-one mapping between kernels and RKHSs. For a given RKHS, the Riesz-Fréchet representation
theorem [19] (see Theorem 5.5, p. 135) applied to all evaluation functionals allows to construct a reproducing
kernel and it is the only one for this RKHS. Conversely, for a given kernel K, the linear span of the functions
K(·, x) is a pre-Hilbert which can be completed into a Hilbert space. By uniqueness of the completion, this
Hilbert space is the only RKHS having K as reproducing kernel [5].

Theorem 2.5 (Moore-Aronszajn). For any kernel K : X × X → R, there is a unique Hilbert space for which
K is a reproducing kernel.

A detailed proof is provided in [12] (see Theorem 3, p. 19).

Remark 2.6. If K1 and K2 are two kernels on X , it is straightforward to see that K1 + K2 is also a kernel
on X . The RKHS induced by K1 + K2 is not so simple to characterize [12] (see Theorem 5, p. 24). In the
particular case where H1 ∩ H2 = {0}, it is exactly the direct sum H1 ⊕ H2. If K1 and K2 are defined on two
(different) intervals X1 and X2, it can be proved4 that the tensor product K1 ⊗K2 is a kernel on X1 × X2. The
related RKHS (denoted by H1 ⊗ H2) is obtained after completing the linear span of all the functions h1 ⊗ h2
where h1 ∈ H1 and h2 ∈ H2 [12] (see Theorem 13, p. 31).

2.2. Links between kernels and distributions
For any interval X ⊆ R, the space of all Borel5 probability measures on X is denoted by M+

1 (X ).

2.2.1. Orthogonal kernels
Definition 2.7. A kernel k : X × X → R is said to be orthogonal6 with respect to ν ∈ M+

1 (X ) if one has:

∀x ∈ X ,
∫

X
k(ξ, x) dν(ξ) = 0 . (2.2)

For fixed ν ∈ M+
1 (X ), let k be an orthogonal kernel and let F be the associated RKHS. By definition,

all the functions k(·, x) with x ∈ X have zero mean. Due to the denseness of the pre-Hilbert space Fpre :=
Span({k(·, x) with x ∈ X }) in F , the zero-mean property can actually be extended to any function f ∈ F . As
a result, F does not contain any non-zero constant function, which may be written as R ∩ F = {0}. In this
context, R does not represent the real line but the space of all constant functions on X . This space is an RKHS,
and more precisely the RKHS induced by the constant kernel (x, x′) 7→ 1.

Definition 2.8. A kernel K : X × X → R is said to be ANOVA (with respect to ν) if K = 1 + k where
k : X × X → R is an orthogonal kernel (with respect to ν).

Let K = 1 + k be an ANOVA kernel. As it is known that R ∩ F = {0}, one can write H = R ⊕ F .

For most widespread parametric families of distributions, no ANOVA kernel can be found in the literature.
The only exception is the standard uniform distribution. In this particular case, some Sobolev kernels naturally
satisfy the orthogonality constraint. This point will be further discussed in Section 3.

4This directly follows from the Schur product theorem [105] (see Theorem 3.1, p. 221) which guarantees that the Hadamard
product of two Gram matrices is indeed a symmetric positive semi-definite matrix.

5Let B(X ) be the Borel σ-algebra of X , i.e. the σ-algebra generated by the open sets of X . Any probability measure ν defined
on B(X ) is called a Borel probability measure on X .

6In order to establish a clear distinction with other kernels, the letters k and F will be used (instead of K and H) for denoting
orthogonal kernels and their RKHSs.
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2.2.2. Embedding in Lp-spaces
Let K : X × X → R be a kernel and let ν ∈ M+

1 (X ). If the random variable K(X,X) with X ∼ ν verifies
some finite-moment assumptions, it can easily be shown that H ⊂ RX is contained in an Lp-space related to ν:

∀ p ≥ 1, Eν

[
K(X,X)p/2

]
< ∞ =⇒ H ⊂ Lp(X , ν) . (2.3)

Thus, it is enough to assume that Eν [K(X,X)] < ∞ for H to be part of L2(X , ν). In particular, if K is a
bounded kernel, H is contained in any space Lp(X , ν) with p ≥ 1 and ν ∈ M+

1 (X ).

2.2.3. Kernel embedding of probability distributions

Under the only assumption that Eν

[√
K(X,X)

]
< ∞, the kernel mean embedding µν ∈ H of the probability

distribution ν can be defined as:

∀x ∈ X , µν(x) = Eν [K(X,x)] =
∫

X
K(ξ, x) dν(ξ) . (2.4)

The embedding mechanism allows to define a dissimilarity measure on M+
1 (X ) which is called the maximum

mean discrepancy (MMD) since [50]:

∀ ν1, ν2 ∈ M+
1 (X ), MMD(ν1, ν2) := ∥µν1 − µν2∥H .

For two given probability measures ν1 and ν2, the MMD must be understood as the distance between their
images µν1 and µν2 in a function space where the two images are well-defined and the distance can be easily
computed (or at least approximated from sample data). After reverting to the initial definition of the norm
∥·∥H in terms of the inner product ⟨·, ·⟩H, an alternative formula of the MMD can be derived:

∀ ν1, ν2 ∈ M+
1 (X ), MMD2(ν1, ν2) = Eν1⊗ν1 [K(X,X ′)] + Eν2⊗ν2 [K(X,X ′)] − 2Eν1⊗ν2 [K(X,X ′)] . (2.5)

In the first (resp. second) term, X and X ′ are two independent copies of ν1 (resp. ν2). By way of comparison,
in the third term, X and X ′ are still independent but they are, this time, distributed according to ν1 and ν2.

Definition 2.9. Let K : X × X → R be a kernel with RKHS denoted by H. The kernel K is said to be
characteristic to M+

1 (X ) if the map ν ∈ M+
1 (X ) 7→ µν ∈ H is injective.

Most of the time, it is quite difficult to determine whether a given kernel is characteristic or not. A necessary
condition for a kernel to be characteristic is to generate an infinite-dimensional RKHS. For some specific types of
kernels, there also exist sufficient conditions (no longer involving the notion of kernel mean embedding) [101–103].
A recent overview of existing results is also provided in [92].

Remark 2.10. Let K1 : X1×X1 → R and K2 : X2×X2 → R be two kernels which are respectively characteristic
to M+

1 (X1) and M+
1 (X2). Then, the tensor product kernel K1 ⊗K2 is characteristic to M+

1 (X1 × X2). Against
all odds, the generalization of this result to more than two kernels is not so simple. Indeed, it is true for
translation-invariant kernels [101] (see Proposition 8, p. 777) but false in general [106] (see Example 2, p. 9).

2.3. Kernels and their feature maps
Definition 2.11. For a given kernel K : X × X → R, let us assume that there exists a Hilbert space G and a
map ψ : X → G such that:

∀x, x′ ∈ X , K(x, x′) = ⟨ψ(x), ψ(x′)⟩G . (2.6)
ψ is called a feature map, G a feature space and any object ψ(x) a feature function (or simply a feature).
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Having access to a feature map ψ : X → G provides a different overview of the kernel K. In particular, if
ψ is sufficiently explicit, the kernel behavior (in other words, the mathematical operations performed on the
provided data when K is evaluated) may be understood at a deeper level. Given two points x and x′ in X ,
computing the value K(x, x′) amounts to:

• creating two feature functions ψ(x) and ψ(x′) living in a possibly very sophisticated feature space G,

• comparing these two feature functions with the metric existing in G.
When G is infinite-dimensional (for instance when G is a sequence space or a function space), the metric in G
is expected to capture a much richer and more subtle information than the initial metric in X . On the one
side, from a mathematical viewpoint, computing K(x, x′) amounts to applying preliminary transformations to
x and x′ before comparing their respective images ψ(x) and ψ(x′) in a higher-dimensional feature space. On the
other side, from a numerical viewpoint, everything remains tractable because the value K(x, x′) is computed
with a simple analytical formula. Thus, the feature space (hidden within the kernel structure) can be leveraged
without even knowing the feature map ψ and the inner product ⟨·, ·⟩G . Kernel evaluations are indeed sufficient
to virtually create pairs of feature functions and measure their similarity in the feature space. This property,
known as the kernel trick, explains in large part the great popularity of kernel methods [62,110].

Mathematically speaking, there always exists a feature map. Indeed, for any given kernel K, the fundamental
property stated in Eq. (2.1) always holds and therefore always offers a naive way of satisfying Eq. (2.6):

∀x, x′ ∈ X , K(x, x′) = ⟨θ(x), θ(x′)⟩H with θ(x) := K(·, x) ∈ H .

θ : X → H is called the canonical feature map7 because the feature space is exactly the RKHS induced by K.
Unfortunately, this feature map is not very informative in most cases. In fact, it is often difficult to understand
intuitively the true mathematical nature of the operations that allow to transform a point x ∈ X into the
function K(·, x) = [θ(x)](·) ∈ H ⊂ RX , especially when H is unknown or partly implicit.

Thankfully, the canonical feature map is not the only existing feature map. Depending on the kernel,
there may exist many other feature maps and the associated feature spaces may have very different natures.
Sometimes, the use of basic tools in mathematical analysis is sufficient to extract a feature map from the
analytical expression of the kernel under study, as illustrated in the example below.

Example 2.12. The Gaussian kernel KG : R2 → R (with bandwidth parameter γ > 0) is defined by:

∀x, x′ ∈ R, KG(x, x′) = exp
[

−1
2

(
x− x′

γ

)2
]
. (2.7)

Remember that the Taylor series expansion of exp(·) holds everywhere on R because the associated radius of
convergence is infinite. Hence, the initial expression of KG can thus be rewritten as follows:

KG(x, x′) = exp
[

−1
2

(
x

γ

)2
]

exp
[

−1
2

(
x′

γ

)2
]

exp
(
xx′

γ2

)
with exp

(
xx′

γ2

)
=

∞∑
k=0

1
k!

(
x

γ

)k (
x

γ

)k

.

This points the way towards a feature map ψG from R to the Hilbert space ℓ2(N) of all square-summable
sequences indexed by N:

KG(x, x′) = ⟨ψG(x), ψG(x′)⟩ℓ2(N) where ψG(x) = [ψk(x) ]k≥0 ∈ ℓ2(N)

with ψk(x) := 1√
k!

exp
[

−1
2

(
x

γ

)2
] (

x

γ

)k

.
(2.8)

7In the rest of the paper, the Greek letter θ will be exclusively reserved for denoting the canonical feature maps.
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As the feature space is now ℓ2(N), ψG can be interpreted as a catalogue of reference transformations applied to
the data. Here, the catalogue consists of an infinite number of damped polynomial features.

Beyond mathematical tricks, for certain types of kernels, there also exists a well-adapted framework to address
feature extraction. The case of Mercer kernels is covered in the next section.

2.4. Focus on Mercer kernels
2.4.1. Mercer expansions and their L2-orthogonal feature maps

From now on, the space of all continuous functions on X is denoted by C(X ).

Definition 2.13. A kernel K : X × X → R is said to be a Mercer kernel if X is compact and K is continuous.

Generally speaking, the RKHS associated to any bounded and continuous kernel K is composed of bounded
and continuous functions [25] (see Lemma 4.28, p. 128), meaning that H ⊂ C(X ).

Definition 2.14. A Mercer kernel K : X × X → R is said to be universal if H is uniformly dense in C(X ):

∀ f ∈ C(X ), ∀ ϵ > 0, ∃hϵ ∈ H such that ∥f − hϵ∥∞ := sup
x∈X

|f(x) − hϵ(x)| < ϵ .

Remark 2.15. Several variants of Definition 2.14 may be found in the literature [92, 101]. In particular, a
continuous kernel K defined on R is said to be c0-universal if H is uniformly dense in the space C0(R) of all
continuous functions vanishing at infinity.

Remark 2.16. For a Mercer kernel, being universal is a sufficient condition to be characteristic to M+
1 (X ) [101]

(see Theorem 13, p. 778).

Let K : X × X → R be a Mercer kernel and let ν be a probability measure (with support X ). K and ν are
the only two elements needed to define the following integral transform:

TK : L2(X , ν) −→ L2(X , ν)

f 7−→ TK f
with [TK f](x) := Eν[K(x,X) f(X)] =

∫
X
K(x, ξ) f(ξ) dν(ξ) . (2.9)

The linear operator TK is called the kernel integral operator. Changing either K or ν gives rise to another
operator with possibly very different properties. The integral operators built from Mercer kernels and Borel
probability measures have many remarkable properties. Only those which are directly useful for the rest of this
work are recalled hereafter.
TK is a Hilbert-Schmidt operator (i.e. the Hilbert-Schmidt norm of TK is finite). In particular, one has:

∥TK∥2
HS :=

∑
i≥1

∑
j≥1

|⟨TK ei , ej⟩L2 |2 =
∑
i≥1

∑
j≥1

|⟨K, ei ⊗ ej⟩L2 |2 = ∥K∥2
L2 < ∞ , (2.10)

where (ei)i≥1 denotes any possible ONB of L2(X , ν). The first equality is obtained by combining Eq. (2.9)
and Fubini’s theorem in L2(X 2, ν⊗2). The second one follows from Parseval’s identity after noting that the
tensorized system (ϕi ⊗ ϕj)i,j≥1 is an ONB of L2(X 2, ν⊗2). In addition, ∥K∥L2 is always a finite norm because
K is a Mercer kernel (and is therefore bounded on X ).

Remark 2.17. In light of Eq. (2.9) and (2.10), it is enough to assume that K ∈ L2(X 2, ν⊗2) for TK to be
both well-defined and Hilbert-Schmidt. However, only the case of Mercer kernels is considered here because it
provides a nice framework where all relevant results can be stated without restriction.

In addition to being Hilbert-Schmidt, TK is positive, compact and self-adjoint. These properties come from
the fact that TK is built from a Mercer kernel. At this point, the spectral theory of linear operators allows to
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go a step further. In fact, the spectral theorem for compact self-adjoint operators [25] (see Theorem A.5.13,
p. 505) provides an eigendecomposition of TK which is the cornerstone to demonstrate Mercer’s theorem [67]
(see Theorem 3.a.1, p. 145).
Theorem 2.18 (Mercer). Let K : X × X → R be a Mercer kernel and let ν be a probability measure with
support X . Let TK : L2(X , ν) → L2(X , ν) denote the resulting kernel integral operator. Then, there exists an
ONB of L2(X , ν) denoted by (ϕi)i≥1 which is only composed of eigenfunctions of TK . The associated eigenvalues
(λi)i≥1 are all non-negative and the eigenfunctions corresponding to positive eigenvalues are continuous on X .
In addition, K can be decomposed as follows:

∀x, x′ ∈ X , K(x, x′) =
∞∑

i=1
λi ϕi(x)ϕi(x′) where λ1 ≥ λ2 ≥ . . . ≥ 0 , (2.11)

and the convergence of the series is absolute and uniform.
Eq. (2.11) is called the Mercer decomposition (or the Mercer expansion, or the Mercer representation) of K

with respect to ν. The rank of K is defined as the number of positive eigenvalues (counted with multiplicity)
in the eigenspectrum λ(TK) := (λi)i≥1. If K only has a finite number of positive eigenvalues, it is said to be a
degenerate kernel (or a finite-rank kernel).
Remark 2.19. Using the ONB of eigenfunctions (ϕi)i≥1 in Eq. (2.10) leads to ∥TK∥2

HS =
∑

i≥1 λ
2
i < ∞. For

a Mercer kernel, a little more is known about the decay speed of the eigenvalues. In fact, TK is actually a
trace-class operator [21], which implies that Tr(TK) =

∑
i≥1 λi < ∞. Hence, one has (λi)i≥1 ∈ ℓ1(N∗).

Remark 2.20. For a fixed probability measure ν, the Mercer decomposition established in Eq. (2.11) is not
uniquely defined. To be more precise, the eigenspectrum and the eigenspaces of TK are invariant, but there
may be many different ways to pick the eigenfunctions from the eigenspaces, especially if some eigenspaces have
dimension greater than or equal to 2.

Theorem 2.18 may be useful for feature extraction because it provides a feature map φ from X to ℓ2(N∗):

K(x, x′) = ⟨φ(x), φ(x′)⟩ℓ2(N∗) where φ(x) :=
(√

λi ϕi(x)
)

i≥1
. (2.12)

φ is called the Mercer feature map8 of K (with respect to ν). Let us insist on the fact that φ strongly depends
on ν (either for the decay speed of the eigenvalues or for the shapes of the eigenfunctions). If ν is replaced by
another probability measure, a completely different collection of Mercer features could emerge from TK .

Theorem 2.18 must not be seen as a miracle solution because the features revealed in Eq. (2.12) are only
defined implicitly. In fact, the ability to extract a Mercer feature map φ relies on the ability to solve the
infinite-dimensional eigenvalue problem defined by:

TK ϕ = λϕ with ϕ ∈ L2(X , ν) and λ > 0 . (2.13)

For common characteristic kernels and probability distributions, this eigenvalue problem seldom has a closed-
form solution. A list of the few rares examples where this happens is given in Appendix B.

For a given Mercer kernel K, the knowledge of an explicit Mercer decomposition allows to characterize the
related RKHS thanks to the eigenvalues and eigenfunctions of TK .
Theorem 2.21. In regard of the Mercer expansion stated in Eq. (2.11), the RKHS induced by K is:

H =
{
h ∈ RX

∣∣∣∣∣ h(·) =
∞∑

i=1
ai

√
λi ϕi(·) with (ai)i≥1 ∈ ℓ2(N∗)

}
, (2.14)

8In the rest of the paper, the Greek letter φ will be exclusively reserved for denoting the Mercer feature maps.
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with inner product:

⟨·, ·⟩H : H × H −→ R(
h1(·) =

∞∑
i=1

ai

√
λi ϕi(·) , h2(·) =

∞∑
i=1

bi

√
λi ϕi(·)

)
7−→

∞∑
i=1

ai bi .
(2.15)

The system (
√
λi ϕi)i≥1 is therefore an ONB of H.

The reader is referred to [25] (see Theorem 4.51, pp. 150–151) for the detailed proof.

Remark 2.22. With Eq. (2.14), it can be seen that the size of the RKHS is directly linked to the decay rate of
the eigenvalues (λi)i≥1. The slower the decay rate, the larger the RKHS. Thus, for two kernels having the same
basis of eigenfunctions (ϕi)i≥1, the RKHS induced by the kernel having the fastest decay rate is contained in
the RKHS induced by the kernel having the slowest decay rate.

2.4.2. Kernel expansions leading to non-orthogonal feature maps
Theorem 2.21 is actually a specific case of a more general result which applies to any kernel (whether Mercer

or not) for which a series expansion is known. Indeed, if a kernel can be decomposed as a series of symmetric
and separable functions, a feature map can be directly identified and a feature-based characterization of the
associated RKHS follows from this decomposition. This result is stated in the theorem below.

Theorem 2.23. Let X ⊆ R be an interval and let K : X × X → R be a kernel. Let us assume that there exist
a countable set I and a system (gi)i∈I of ℓ2-linearly independent functions such that:

∀x, x′ ∈ X , K(x, x′) =
∑
i∈I

gi(x) gi(x′) . (2.16)

Then, the RKHS induced by K is:

H =
{
h ∈ RX

∣∣∣∣∣ h(·) =
∑
i∈I

ai gi(·) with (ai)i∈I ∈ ℓ2(I)
}
, (2.17)

with inner product:

⟨·, ·⟩H : H × H −→ R(
h1(·) =

∑
i∈I

ai gi(·) , h2(·) =
∑
i∈I

bi gi(·)
)

7−→
∑
i∈I

ai bi .
(2.18)

The system (gi)i∈I is therefore an ONB of H.

The reader is referred to Appendix F.1 for the detailed proof. It is much inspired from what is done in [25]
(see the proof of Theorem 4.51, pp. 150–151) but it is more general since no assumption is made on K.

Remark 2.24. An important point of Theorem 2.23 lies in the fact that the system (gi)i∈I has to be ℓ2-linearly
independent. As pointed out in [81], there exist several non-equivalent ways of defining linear independence in
an infinite-dimensional Hilbert space. Among them, ℓ2-linear independence means that the implication:∑

i∈I ai gi(·) = 0 =⇒ ∀ i ∈ I, ai = 0 (2.19)

holds for any square-summable sequence (ai)i∈I ∈ ℓ2(I) such that the series
∑

i∈I ai gi(·) converges everywhere
on X . By way of comparison, the system (gi)i∈I is said to be ω-independent if Eq. (2.19) is verified for any
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sequence leading to a convergent series. For this reason, the ℓ2-linear independence of the features (gi)i∈I is the
weakest assumption one can make for Eq. (2.18) to define an inner product in H. In particular, for any function
h(·) =

∑
i∈I ai gi(·) belonging to H, this assumption ensures that the sequence (ai)i∈I is unique in ℓ2(I). It also

guarantees that the series
∑

i∈I ai bi in Eq. (2.18) has always finite sum.

For a given kernel, Theorem 2.23 reveals that finding a decomposition in the same form as Eq. (2.16) is
enough to extract a feature map, characterize the RKHS and derive an ONB. Mercer’s theorem is nothing but a
particular case of this general result, where the prior choice of a probability measure allows to define an integral
operator (making L2-orthogonal features emerge). Hence, the search for a feature map can be done in two
different ways:

• One may try to write K as a sum (or series) of symmetric and separable functions using various
expansion methods.

• One may try to find a probability measure ν ∈ M+
1 (X ) for which the eigenvalue problem in Eq. (2.13)

can be solved analytically.
The first strategy seems simpler but requires the right intuition about how to transform the kernel formula. In
comparison, the framework laid by Mercer’s theorem, although not offering a miracle solution, clearly indicates
a class of eigenvalue problems whose solutions disclose features.

The next section is devoted to a particular family of Mercer kernels which is derived from Sobolev spaces.

3. Sobolev kernels
In this section, the main goal is to provide a quick overview of Sobolev kernels. First, Section 3.1 describes

the Hilbertian setting from which Sobolev kernels originate. In particular, it will be shown that they emerge
from the Sobolev spaces Hr([0, 1]) after using well-adapted inner products. For r ≥ 2, we will see in Section 3.2
that it not so simple to obtain a kernel with closed-form expression unless considering the unanchored Sobolev
spaces. Some general properties of Sobolev kernels will eventually be put forward in Section 3.3.

Throughout this section, when nothing is mentioned, the reference probability measure is the standard
uniform distribution. This remark mainly concerns orthogonality properties and Mercer expansions.

3.1. Sobolev spaces and their reproducing kernels
Before we start, let us take time to clarify some notations (although they are, admittedly, very standard in
mathematical analysis).

• C([0 , 1]) is the space of all continuous functions on [0 , 1].

• Ck([0 , 1]) is the space of all k-times continuously differentiable functions on [0 , 1].

• C∞([0 , 1]) is the space of all infinitely differentiable functions on [0 , 1].

• C∞
0 ([0 , 1]) is the space of all infinitely differentiable functions on [0 , 1] such that ϕ(0) = ϕ(1) = 0.

• For any k ≥ 1 and for any h ∈ Ck([0 , 1]), h[k] is the k-th (classic) derivative of f on [0 , 1]. The notations
h′ := h[1] and h′′ := h[2] will also be used in some situations that lend themselves well to this.

Now, let us consider h ∈ L1([0 , 1]). Remember that there exists a unique solution gh ∈ L1([0 , 1]) to the following
integral equation: ∫ 1

0
gh(x)ϕ(x) dx = −

∫ 1

0
h(x)ϕ′(x) dx with ϕ ∈ C∞

0 ([0 , 1]). (3.1)

This solution is called the weak derivative of h and is often denoted by D1h. Thus, the use of an appropriate set
of smooth test functions allows to define a generalized notion of derivative in L1([0 , 1]). Further technical details
on the mathematical foundations of weak derivatives may be found in [2] (see Sections 1.55–1.62, pp. 19–22).
In particular, if the bounded interval [0 , 1] is replaced by a possibly unbounded domain Ω ∈ Rn (for n ≥ 1),
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everything said above remains valid, provided you replace L1([0 , 1]) by the space L1
loc(Ω) of all locally integrable

functions on Ω.
Since D1h ∈ L1([0 , 1]) by construction, the process can be iterated to define D2h, then D3h, and finally any

weak derivative Dkh of order k ≥ 1. Knowing that L2([0 , 1]) ⊂ L1([0 , 1]), the weak differentiation mechanism
can therefore be applied infinitely many times in L2([0 , 1]) and all the resulting weak derivatives belong to
L1([0 , 1]). However, there is no guarantee that these functions also belong to L2([0 , 1]). For this reason, the
subspace of L2([0 , 1]) where the weak derivatives up to order r ≥ 1 remain in L2([0 , 1]) is a very specific subspace
of L2([0 , 1]) called the Sobolev space of order r (on [0 , 1] and for the L2-norm):

Hr([0 , 1]) :=
{
h ∈ R[0 ,1]

∣∣∣ ∀ 0 ≤ k ≤ r, Dkh ∈ L2([0 , 1])
}
. (3.2)

The integer parameter r directly controls the level of smoothness within Hr([0 , 1]). Indeed, even if not necessarily
intuitive, the integrability conditions imposed on the weak derivatives Dkh determine how many times h can be
differentiated (in the classic meaning of the word). This point is precisely the subject of the Sobolev embedding
theorem [2] (see Theorem 4.12, p. 85) which ensures that Hr([0 , 1]) is continuously embedded in Cr−1([0 , 1])
for any r ≥ 1. This notably shows that the functions contained in the Sobolev space Hr([0 , 1]) are at least
continuous. Hence, there is no need to consider the quotient space of Hr([0 , 1]) for the almost-everywhere
equality relation.

Now, let us see which inner products are suitable to get the most out of Sobolev spaces. Of course, a naive
attempt could be to equip Hr([0 , 1]) with the L2-inner product but this would unfortunately not produce an
RKHS. A more specific inner product must be used instead:

∀h1, h2 ∈ Hr([0 , 1]), ⟨h1, h2⟩Hr :=
r∑

k=0

(∫ 1

0
Dkh1(x)Dkh2(x) dx

)
. (3.3)

The inner product ⟨·, ·⟩Hr truly accounts for the entire specificity of the functions in Hr([0 , 1]). It is therefore
considered as the standard inner product. The resulting induced norm ∥·∥Hr involves the L2-norms of all the
weak derivatives (from h = D0h to Drh). If endowed with this norm, Hr([0 , 1]) becomes an RKHS [12] (see
Theorem 121, p. 276) with reproducing kernel denoted by Kr. This RKHS (resp. its kernel) is better known as
the standard Sobolev RKHS (resp. standard Sobolev kernel) of order r. For r = 1, it was demonstrated in [41]
(see Chapter IV) that K1 has a closed-form expression:

∀x, x′ ∈ [0 , 1], K1(x, x′) = 2e
e2 − 1 cosh [ min(x, x′)] cosh [1 − max(x, x′)] , (3.4)

where cosh(·) denotes the hyperbolic cosine function. Moreover, it was later shown in [108] (see Corollary 2,
p. 27) that K1 admits a Mercer decomposition based on sinusoidal eigenfunctions (more precisely cosine func-
tions with increasing frequencies) and eigenvalues decaying at a polynomial rate of 1/k2 (see Appendix B.3.3).
When r ≥ 2, unlike what happens for r = 1, there is no explicit formula for the reproducing kernel Kr of the
standard Sobolev RKHS. In the hope of obtaining a kernel with a closed-form expression even for r ≥ 2, a
well-known strategy is to replace ⟨·, ·⟩Hr by another inner product defined on Hr([0 , 1]). Let ⟨·, ·⟩H be one of
them. The associated induced norm ∥·∥H is said to be equivalent to ∥·∥Hr if:

∃ 0 < c1 < c2 < ∞ such that ∀h ∈ Hr([0 , 1]), c1 ∥h∥Hr ≤ ∥h∥H ≤ c2 ∥h∥Hr . (3.5)

By Definition 2.2, if an inner product ⟨·, ·⟩H indeed leads to an equivalent norm, Hr([0 , 1]) equipped with ⟨·, ·⟩H
remains an RKHS. This new RKHS is denoted by H in order to avoid any confusion with the standard Sobolev
RKHS. According to Theorem 2.5, the reproducing kernel KH (associated to H) is unique and different from
the standard kernel Kr. Since Kr and KH come out from the same Sobolev space, they can be considered as
equivalent Sobolev kernels. This terminology is strictly delineated in [79].
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Definition 3.1. Let K : [0 , 1] × [0 , 1] → R be a kernel with associated RKHS denoted by H. Then, K is said
to be a Sobolev kernel (of order r) if ∥·∥H and ∥·∥Hr are two equivalent norms on Hr([0 , 1]).

The next section focuses on the particular case of the unanchored Sobolev RKHSs. Just as the standard
Sobolev RKHSs, they are built from the Sobolev spaces Hr([0 , 1]). The only difference lies in the choice of the
inner product used to build the Hilbertian structure.

3.2. Unanchored Sobolev spaces
A simple way to define an alternative inner product on Hr([0 , 1]) is to take:

⟨h1, h2⟩Hr
Sob

:=
r−1∑
k=0

(∫ 1

0
Dkh1(x) dx

)(∫ 1

0
Dkh2(x) dx

)
+
∫ 1

0
Drh1(x)Drh2(x) dx . (3.6)

The induced norm ∥·∥Hr
Sob

is equivalent to the standard Sobolev norm ∥·∥Hr . The two inequalities in Eq. (3.5)
are indeed satisfied by ∥·∥Hr

Sob
. The right-hand side is a direct consequence of the Cauchy-Schwarz inequality

(when it is applied in ∥h∥2
Hr

Sob
to majorize the mean values of the derivatives). As regards the left-hand side, it

results from a recursive use of the Poincaré-Wirtinger inequality [19] (see Comment 3.A on Chapter 9, p. 312).
In particular, this inequality allows to derive successive upper bounds of ∥h∥2

Hr which are gradually freed from
the L2-norms of the low-order derivatives.

Definition 3.2. The RKHS obtained when Hr([0 , 1]) is endowed with the inner product defined in Eq. (3.6)
is called the unanchored Sobolev space (of order r) and denoted by Hr

Sob.

Contrary to what was deplored for the reproducing kernel Kr of the standard Sobolev space, the reproducing
kernel Kr

Sob of the unanchored Sobolev space has an easily computable expression at all orders.

Theorem 3.3. For any r ≥ 1, the reproducing kernel of the unanchored Sobolev space Hr
Sob is given by:

∀x, x′ ∈ [0 , 1], Kr
Sob(x, x′) := 1 + kr

Sob(x, x′) =
r∑

k=0

Bk(x)Bk(x′)
(k!)2 + (−1)r+1

(2r)! B2r(|x− x′|) , (3.7)

where (Bk)k≥0 denotes the sequence of Bernoulli polynomials.

For the detailed proof, the interested reader is invited to consult [56] (see Section 2.3.3, p. 35–38). Unlike
the scattered information found in older works [28,112], this proof is self-contained and easy to read.

Remark 3.4. The kernels (Kr
Sob)r≥1 are all ANOVA. This can be checked very easily with the properties of

Bernoulli polynomials (recalled in Appendix A.1), especially the zero-mean property (see Appendix A.1.6) and
the symmetry properties (see Appendix A.1.4).

3.3. Properties of Sobolev kernels
Several general results regarding Sobolev kernels (in the meaning of Definition 3.1) are now highlighted

because they are essential to understand the rest of this work.

Proposition 3.5. All Sobolev kernels are Mercer kernels.

Proof. Let K be a Sobolev kernel (of order r ≥ 1). The Sobolev embedding theorem yields Hr([0 , 1]) ⊂ C([0 , 1]).
Then, Lemma 4.28 in [25] allows to justify that K is continuous. □

Proposition 3.6. All Sobolev kernels are characteristic to M+
1 ([0 , 1]).
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Proof. Let K be a Sobolev kernel (of order r ≥ 1). According to Proposition 3.5 and Remark 2.16, it is sufficient
to prove that K is universal. In other words, the only point to justify is the uniform denseness of Hr([0 , 1]) in
C([0 , 1]). With Eq. (3.2), it is obvious that Hr([0 , 1]) contains all the polynomial functions. According to the
Stone-Weierstrass theorem, the algebra of polynomials is uniformly dense in C([0 , 1]). Hence, the same is true
for Hr([0 , 1]). Therefore, K is universal, and thus characteristic to M+

1 ([0 , 1]). □

Proposition 3.7. A Sobolev kernel is not always ANOVA.

Proof. A counterexample is provided by the kernelK1
anch(x, x′) = 1+k1

anch(x, x′) where k1
anch(x, x′) := min(x, x′).

K1
anch is the reproducing kernel of the RKHS (denoted by H1

anch) obtained when H1([0 , 1]) is equipped with the
inner product ⟨h1, h2⟩H1

anch
:= h1(0)h2(0) + ⟨h′

1, h
′
2 ⟩L2 [12] (see Example 23, p. 322). This RKHS is sometimes

called the Sobolev space (of order 1) anchored at 0 [55, 60, 70]. This explains why the subscript “anch” is used
here to denote the RKHS and its reproducing kernel. Coming back to the proof, the kernel k1

anch cannot be
orthogonal since it is positive almost everywhere on [0 , 1]2. Therefore, K1

anch is not an ANOVA kernel. □

Theorem 3.8. If K is a Sobolev kernel (of order r ≥ 1), then the eigenvalues of the kernel integral operator
TK : L2([0 , 1]) → L2([0 , 1]) verify λk = O(1/k2r).

This result is mentioned in many recent papers [6, 115, 119] but the original proof dates back to much older
works [13,14] where more general conclusions on Sobolev spaces are enunciated.

Several illustrations of Theorem 3.8 can be found in Appendix B.3. Polynomial eigendecays are one major
singularity of Sobolev kernels. For comparison, Gaussian kernels are characterized by exponential eigendecays
and thus correspond to much smaller RKHSs.

Now that all the necessary mathematical concepts have been clearly introduced, it is time to explain what
kernels are used for in sensitivity analysis.

4. Kernel-based global sensitivity analysis
The main ambition of this section is to provide a brief overview of kernel methods in global sensitivity

analysis (GSA) and to explain why the feature maps of Sobolev kernels provide valuable insights into the newly
developed HSIC-ANOVA framework. First, Section 4.1 deals with HSIC indices and highlights their ability to
characterize independence. Then, Section 4.2 explains why the (Mercer) feature maps of the input and output
kernels help identify the (most important) dependence patterns captured by HSIC indices. Finally, Section 4.3
focuses on the HSIC-ANOVA decomposition. The reasons for the use of Sobolev kernels are detailed and the
questions raised by this choice are put forward.

4.1. Sensitivity measures based on the Hilbert-Schmidt independence criterion
Let us take the usual notations in the field of uncertainty quantification. In this context, an output of

interest Y is computed by a numerical simulator g : X1 × . . . × Xd → Y which is given a set of possibly
dependent random variables X1, . . . , Xd gathered in a random vector X. In terms of modeling, the simulator is
handled as a deterministic black-box function. Each random input Xi takes its values in Xi ⊆ R and follows a
probability distribution PXi

∈ M+
1 (Xi). In addition, a continuous kernel Ki : Xi ×Xi → R (with RKHS denoted

by Hi) is assigned to Xi. Similar mathematical objects and notations are adopted for the output variable Y .

4.1.1. Definition and estimation of HSIC indices
As recalled in [18,29], many existing sensitivity measures seek to quantify the discrepancy between the joint

input-output distribution PXiY and the product of marginal distributions PXi
⊗ PY (representing hypothetical

independence between Xi and Y ). The key step is thus the choice of a dissimilarity measure on M+
1 (Xi × Y).

For example, taking the total-variation distance leads to Borgonovo’s indices [15]. Despite real advantages, this
method involves a delicate preliminary step in which all input-output densities need to be estimated from the
available data [33]. To avoid this, a kernel strategy consists in using the MMD (see Section 2.2.3) related to the
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tensor product kernel Ki ⊗ KY . The discrepancy between PXiY and PXi ⊗ PY is thus measured through the
distance of their respective images in the tensor product RKHS Hi ⊗ HY . This kernel-based approach amounts
to applying the Hilbert-Schmidt independence criterion (HSIC) to all input-output pairs:

∀ 1 ≤ i ≤ d, HSIC(Xi, Y ) := MMD2(PXiY ,PXi
⊗ PY ) = ∥µPXiY

− µPXi
⊗ PY

∥2
Hi⊗HY

. (4.1)

The resulting sensitivity measures are called HSIC indices. Although they were initially intended for variable
selection in machine learning [52,54], they have been increasingly used over the past few years in GSA [29,74].
The alternative formula of the MMD given in Eq. (2.5) allows to rewrite each index HSIC(Xi, Y ) as a sum of
three expectations:

HSIC(Xi, Y ) = E [Ki(Xi, X
′
i)KY (Y, Y ′)] + E [Ki(Xi, X

′
i)] E [KY (Y, Y ′)] − 2E [Ki(Xi, X

′
i)KY (Y, Y ′′)] , (4.2)

where (Xi, Y ), (X ′
i, Y

′) and (X ′′
i , Y

′′) are three random pairs following the joint input-output distribution
PXiY while being independent of each other. Based on Eq. (4.2), the quantity HSIC(Xi, Y ) can be expressed
as a single expectation (see Appendix C.2.1), and more precisely as the expectation of a symmetric function
involving four independent copies of the input-output vector Z := (Xi, Y ). This paves the way to an estimator
of HSIC(Xi, Y ) in the form of a U-statistic or a V-statistic [53, 98]. Further technical details related to the
construction of ĤU

i (U-statistic estimator) and ĤV
i (V-statistic estimator) are postponed to Appendix C.2.2.

In the following, when a result is valid for both ĤU
i and ĤV

i , no distinction will be made between them and
the HSIC estimator will be merely denoted by Ĥi.

From a theoretical perspective, an important point regarding the efficiency of inference is the existence of a
central limit theorem (CLT) that governs the asymptotic behavior of Ĥi [53] (see Theorem 1, p. 4). This notably
shows that Ĥi converges to the exact value HSIC(Xi, Y ) at the rate of 1/n. A similar convergence rate can also
be achieved for most Sobol’ index estimators, as highlighted by the CLTs established in [64] (see Sections 3.1
and 4.2, pp. 345–348) and more recently in [47] (see Section 4.2, p. 2351). Although the convergence speed of
an HSIC estimator (taken alone) seems comparable to that of any Sobol’ index estimator, it is actually much
easier to estimate all HSIC indices than all Sobol’ indices. Indeed, the entire collection of HSIC estimates can be
directly computed from a single Monte Carlo design of size n, whereas the computation of all Sobol’ estimates
asks for a Pick-Freeze design composed of at least n (d+ 1) samples [82]. Hence, HSIC indices are particularly
attractive to tackle large-scale problems because the number of input-output evaluations required to reach
sufficient accuracy (on the entire collection of sensitivity indices) does not increase with the dimensionality.

4.1.2. Characterization of independence with HSIC indices
From Eq. (4.1), it is clear that one has HSIC(Xi, Y ) = 0 in case of independence between Xi and Y . The

converse is false in general but becomes true if both Ki and KY are sufficiently sophisticated.

Proposition 4.1. Let Ki : Xi × Xi → R and KY : Y × Y → R be two kernels such that Ki is characteristic to
M+

1 (Xi) and KY is characteristic to M+
1 (Y). Then, one has:

Xi ⊥ Y ⇐⇒ HSIC(Xi, Y ) = 0 .

Proof. It is straightforward in view of the definitions given so far. As already mentioned in Remark 2.10, the
tensor product kernel Ki ⊗KY is characteristic to M+

1 (Xi × Y). The map ν ∈ M+
1 (Xi × Y) 7→ µν ∈ H1 ⊗ HY

is therefore injective and this ends the proof. □

Proposition 4.1 is fundamental in the prospect of building a test of independence. Indeed, a plethora of test
procedures have been developed on the basis of this property [3, 26, 32, 43, 44]. Generally speaking, a test of
independence is a statistical procedure intended to make a choice between:

(H0) : Xi ⊥ Y vs. (H1) : Xi and Y are dependent variables.
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IfKi andKY are two characteristic kernels, taking the HSIC allows to transform the initial problem of hypothesis
test into a simpler one:

(H0) : HSIC(Xi, Y ) = 0 vs. (H1) : HSIC(Xi, Y ) > 0.

From here, any estimator of HSIC(Xi, Y ) with known distribution under (H0) is a suitable test statistic. In
particular, the estimators ĤU

i and ĤV
i (see Appendix C.2.2) are two typical examples. Their asymptotic

distributions under (H0) were first derived in [53] (see Theorem 2, p. 4) and several refinements have been
proposed since then [117, 118]. Naturally, the acceptance (resp. rejection) region of (H0) is composed of the
smallest (resp. largest) values taken by the test statistic Ĥi. When the sample size is small, asymptotic test
procedures are no longer valid and non-parametric test procedures based on random permutations must be used
instead [32,53].

4.2. Connections between feature maps and HSIC indices
Beyond their original mathematical construction based on kernel mean embeddings, HSIC indices can also be

rewritten as generalized covariance operators [9,109]. In fact, it is proved in [54] that HSIC(Xi, Y ) = ∥CXiY ∥2
HS

where the cross-covariance operator CXiY : HY → Hi is defined by:

∀hi ∈ Hi, ∀hY ∈ HY , ⟨CXiY hY , hi⟩Hi
= Cov(hi(Xi), hY (Y )) .

After replacing ∥·∥HS by its definition, one has:

∀ 1 ≤ i ≤ d, HSIC(Xi, Y ) =
∑

k

∑
l

|Cov (uik(Xi) , vl(Y )) |2 with
{

(uik)k an ONB of Hi ,

(vl)l an ONB of HY .
(4.3)

With the above reformulation, HSIC(Xi, Y ) appears to be an aggregation of covariance terms obtained after
scanning all basis directions in the two RKHSs. Quantifying with Cov(·, ·) the linear dependence between uik(Xi)
and vl(Y ) amounts to quantifying a part of the non-linear dependence between Xi and Y , more precisely the
non-linear dependence pattern characterized by the pair of preliminary transformations (uik, vl).
Remark 4.2. In Eq. (4.3), the indexation sets associated to k and l are deliberately not specified. This is
done to emphasize the fact that indexing will depend on the selected kernels. Indeed, if a kernel as finite (resp.
infinite) rank, the induced RKHS has finite (resp. infinite) dimension, and the associated ONB is composed of
a finite (resp. infinite) number of basis functions.

Eq. (4.3) reveals that the identification of the dependence patterns captured by the HSIC (when built with
Ki and KY ) simply requires the knowledge of ONBs of Hi and HY . For a given RKHS, it has already been
explained in Section 2.4 that an ONB can be directly obtained from the kernel expression by finding a Mercer
expansion (see Theorem 2.21) or any other series expansion based on symmetric and separable functions (see
Theorem 2.23). Depending on the kernel, this may be more or less difficult.
Example 4.3. Let us imagine that HSIC(Xi, Y ) is computed with two Gaussian kernels (with scale parameters
respectively denoted by γi and γY ). This is the most common situation in practice. A series expansion of the
Gaussian kernel KG was provided in Example 2.12 to reveal the hidden existence (within KG) of infinitely many
damped polynomial features. Theorem 2.23 can then be used to justify that the features exactly form an ONB
of the RKHS (induced by KG). With this in mind, the generalized covariance defined in Eq. (4.3) becomes:

HSIC(Xi, Y ) =
∞∑

k=0

∞∑
l=0

|Cov (uik(Xi) , vl(Y )) |2 with


∀ k ≥ 0, uik(xi) := 1√

k!
exp

[
−1

2

(
xi

γi

)2
] (

xi

γi

)k

,

∀ l ≥ 0, vl(y) := 1√
l!

exp
[

−1
2

(
y

γY

)2
] (

y

γY

)l

.



18 NEW INSIGHTS INTO THE FEATURE MAPS OF SOBOLEV KERNELS

Now, let (uik)k and (vl)l be the functions obtained after an L2-normalization (with respect to PXi and PY )
of the basis functions extracted from Hi and HY . With these new notations, Eq. (4.3) becomes:

HSIC(Xi, Y ) =
∑

k

∑
l

∥uik∥2
L2 ∥vl∥2

L2 |Cov (uik(Xi) , vl(Y )) |2
, (4.4)

and it is now possible to find a uniform upper bound for all covariance terms:

0 ≤ |Cov (uik(Xi) , vl(Y )) |2 ≤ V(uik(Xi))V(vl(Y )) =
(

1 − EPXi
[uik(Xi)]2)(1 − EPY

[vl(Y )]2) ≤ 1 .

Hence, each covariance term in Eq. (4.4) lies in [0 , 1] and it is weighted by a coefficient equal to ∥uik∥2
L2∥vl∥2

L2 .
This means that the HSIC captures many different dependence patterns but they are not equally weighted and
the weighting system depends on the encountered distributions PXi

and PY .
• For each input variable Xi, the L2-norms of the basis functions (uik)k can be calculated by hand or

approximated by numerical integration because PXi is provided.

• For the output variable Y , since PY is unknown, the L2-norms of the basis functions (vl)l can only be
estimated from the available output samples.

It can be easily proved that the two sequences (∥uik∥L2)k and (∥vl∥L2)l are square summable and thus vanish
at infinity. As a result, only a small number of dependence patterns actually count towards the final value of
HSIC(Xi, Y ). Furthermore, an enhanced (if not optimal) version of Eq. (4.4) can be achieved if Ki and KY

have explicit Mercer decompositions (for PXi and PY respectively):

∀xi, x
′
i ∈ Xi, Ki(xi, x

′
i) =

∑
k

λk ϕik(xi)ϕik(x′
i) with λi1 ≥ λi2 ≥ . . . > 0 ,

∀ y, y′ ∈ Y, KY (y, y′) =
∑

l

µl ψl(y)ψl(y′) with µ1 ≥ µ2 ≥ . . . > 0 .

Theorem 2.21 allows to rewrite Eq. (4.3) with the eigenvalues and eigenfunctions of TKi and TKY
:

HSIC(Xi, Y ) =
∑

k

∑
l

λik µl|Cov (ϕik(Xi) , ψl(Y )) |2
. (4.5)

Since the eigenfunctions are already L2-normalized, Eq. (4.5) is already of the same form as Eq. (4.4) and no
renormalization effort is necessary. Therefore, each coefficient λik µl must be interpreted as the weight assigned
to the dependence pattern characterized by the pair (ϕik, ψl). Just as the L2-norms in Eq. (4.4), the two
sequences of eigenvalues (λik)k and (µl)l are square summable and vanish at infinity. They even decrease faster
since the eigenfunctions (ϕik)k and (ψl)l are orthogonal in the L2-sense, contrary to the features (uik)k and
(vl)l in Eq. (4.4). In short, the Mercer feature map of Ki (resp. KY ) with respect to PXi (resp. PY ) provides
the most relevant description of how Xi (resp. Y ) is transformed when HSIC(Xi, Y ) is computed. In particular,
Mercer features have two major advantages over any other collection of features:

• They are naturally ranked by increasing order of influence.

• Their L2-norms have a faster decay rate, which results in a sparser representation of HSIC(Xi, Y ).

4.3. An ANOVA framework for HSIC indices
Despite their many advantages (low estimation cost, characterization of independence, almost no limiting

assumption on the input and output distributions), HSIC indices also suffer from major shortcomings. Above
all, as the sum of all HSIC indices is not equal to 1, they cannot be interpreted as percentages of influence.
Moreover, in the absence of a universal bound for HSIC indices, it is difficult to know what is meant by small



NEW INSIGHTS INTO THE FEATURE MAPS OF SOBOLEV KERNELS 19

and large values. To remedy this difficulty, the ANOVA framework (until now reserved for Sobol’ indices)
has been freshly extended to kernel-based sensitivity measures [10, 11, 30]. More specifically, an ANOVA-like
decomposition has been set up for HSIC indices in [30] and it has immediately aroused much interest in the
GSA community [45,78,85]. However, this breakthrough was obtained at the cost of stronger assumptions (on
both the input kernels and the input probability distributions).

Theorem 4.4. It is assumed that:
(A1) The input variables X1, . . . , Xd are mutually independent.

(A2) There is an ANOVA kernel Ki = 1 + ki (with RKHS Hi = R ⊕ Fi) for each marginal distribution PXi
.

A multivariate ANOVA kernel can then be constructed for each subset of input variables:

∀ u := {u1, . . . , us} ⊆ {1, . . . , d}, Ku := Ku1 ⊗Ku2 ⊗ . . .⊗Kus
.

(A3) The joint input distribution PX and the output distribution PY are such that:

∀ u ⊆ {1, . . . , d}, EPXu
[Ku(Xu,Xu)] < ∞ and EPY

[KY (Y, Y )] < ∞ .

An HSIC index can then be computed for each subset of input variables:

∀ u ⊆ {1, . . . , d}, HSIC(Xu, Y ) := MMD2(PXuY ,PXu ⊗ PY ) .

The HSIC-ANOVA decomposition is then given by:

HSIC(X, Y ) =
∑

u⊆{1,...,d}

HSICu =
∑

u⊆{1,...,d}

∑
v⊆u

(−1)|u|−|v|HSIC(Xv, Y ) . (4.6)

The proof may be found in [30] (see Appendix A.3, pp. 33–37). It notably relies on earlier works dealing
with ANOVA decompositions of multivariate functions in well-adapted RKHSs [70,114]. The assumption (A1)
may seem too restrictive but it is in fact similar to what is demanded for Sobol’ indices, at least in their
most usual setting9. Theorem 4.4 provides a rigorous decomposition of the quantity HSIC(X, Y ) into the sum
of 2d − 1 HSIC terms, one per each subset Xu of input variables. If taking u := {i} in Eq. (4.6), one has
HSICi = HSIC(Xi, Y ). This suggests to renormalize HSIC indices in the following way:

∀ 1 ≤ i ≤ d, SHSIC
i := HSIC(Xi, Y )

HSIC(X, Y ) . (4.7)

The resulting collection of sensitivity indices are called the first-order HSIC-ANOVA indices [31]. Indices of
higher order can also be defined in the same spirit. In particular, the total-order HSIC-ANOVA indices are
studied in [85]. Unlike the R2-HSIC indices (see Appendix C.1.2), introduced much earlier [29] and resulting
from a different renormalization technique, HSIC-ANOVA indices can be regarded as percentage-like importance
measures, especially because their sum is equal to 1.

Remark 4.5. Let us assume that the input and output kernels verify (A2) and (A3). In addition, if all kernels
are characteristic, HSIC indices are able to characterize independence, and the same is true for the first-order
HSIC-ANOVA indices SHSIC

i which are proportional to them.

9The original definition of Sobol’ indices [96, 97] is based on the Sobol’-Hoeffding decomposition of the input-output numerical
simulator g : X1 × . . . × Xd → Y. Since the uniqueness of this decomposition is only guaranteed in the presence of mutually
independent inputs, Sobol’ indices are well defined only under this assumption. Over the past fifteen years, there have been several
attempts to extend Sobol’ indices to correlated inputs [24,73,80] but none of them has proved sufficiently satisfactory.
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From a theoretical viewpoint, the HSIC-ANOVA methodology successfully combines the advantages of the
HSIC and ANOVA frameworks. Now comes the question of its implementation in practice. To comply with the
assumptions of Theorem 4.4 and Remark 4.5, the output kernel KY must be characteristic and a characteristic
ANOVA kernel Ki = 1 + ki must be found for each input probability distribution PXi

∈ M+
1 (Xi). As already

evoked in Section 2.2.1, there is no characteristic ANOVA kernel for most parametric families, except for the
standard uniform distribution. A well-known trick is to replace the initial variable Xi by Ui := FXi(Xi) where
FXi

denotes the cumulative distribution function of PXi
. Of course, the mathematical modeling of the numerical

simulator is adapted accordingly and becomes g : [0 , 1]d → Y. As the problem can always be reformulated in
this way, X1, . . . , Xd are now assumed to follow standard uniform distributions. Then, among all possible kernel
choices, the practice promoted in [30] is to use Sobolev kernels, and more precisely the unanchored Sobolev
kernels (Kr

Sob)r≥1. They are several reasons for this choice:
• They are ANOVA (see Remark 3.4) and characteristic (see Proposition 3.6).

• They have a simple analytical formula (unlike the orthogonalized kernels popularized in [42,49]).

• No parameter tuning is necessary and the level of smoothness in Hr
Sob can be adjusted with the integer

parameter r ≥ 1.
Up to now, HSIC indices have been mainly estimated with kernels drawn from Gaussian process regression
(Gaussian kernels, Laplace kernels, Matérn kernels). To the best of our knowledge, the initiative of computing
HSIC indices with Sobolev kernels is one major peculiarity of the HSIC-ANOVA framework. For a complete
understanding of the dependence patterns captured by the first-order HSIC-ANOVA indices, one must return
to the cross-covariance viewpoint. In particular, Eq. (4.3) becomes:

SHSIC
i ∝ HSIC(Xi, Y ) =

∑
k

∑
l

|Cov (uik(Xi) , vl(Y )) |2 with
{

(uik)k an ONB of Hr
Sob ,

(vl)l an ONB of HY .
(4.8)

If KY is the Gaussian kernel, an ONB of HY has already been provided in Example 4.3. The identification
of an ONB of Hr

Sob seems to be the only remaining technical deadlock. According to Theorems 2.21 and 2.23,
a solution may be found through the extraction of a feature map from Kr

Sob. This objective is pursued from
Section 5 to Section 8. Of all possible feature maps, Mercer’s is the most instructive because it provides the
most synthetic description of the role played by Kr

Sob in the computation of SHSIC
i . That is why Sections 5

and 6 only focus on this specific feature map. In Section 5, numerical experiments are first conducted and this
surprisingly helps respond many theoretical answers.

Since the rest of this work is dedicated to the study of the unanchored Sobolev kernels, a simplified terminology
is adopted. Sobolev kernels will only refer to the kernels (Kr

Sob)r≥1 even if Definition 3.1 is more general.
Likewise, Sobolev spaces will only refer to the unanchored Sobolev spaces (Hr

Sob)r≥1.

5. Numerical extraction of the Mercer feature maps
This section aims at using a numerical method called kernel feature analysis (KFA) to get a first idea of what

the Mercer expansion of Sobolev kernels may be like. Since it is precised in Theorem 3.8 that the decay speed
of the eigenvalues is always polynomial for Sobolev kernels, the only unknown here is the mathematical nature
of the eigenfunctions. In Section 5.1, KFA is described in the general context of a Mercer kernel. In Section 5.2,
it is applied to Sobolev kernels and valuable conclusions are drawn from this numerical study.

5.1. Key principles of KFA
Let K : X × X → R be a Mercer kernel, let ν be a probability measure with support X and let TK be

the integral operator built from K and ν. By Theorem 2.18, K admits an eigendecomposition based on a
sequence of L2-normalized eigenfunctions with positive eigenvalues. The general idea of KFA (originally called
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the Nyström method [99, 100]) is to estimate this eigendecomposition by solving a discretized version of the
eigenvalue problem. Unlike the Galerkin method [69, 93] that relies on a deterministic discretization of the
eigenvalue equation TK ϕ = λϕ, KFA is a simulation-based approach. Only the key points of the method are
outlined in what follows. For a step-by-step explanation, the reader is referred to [72] or to Appendix D.

Let f ∈ L2(X , ν) be an eigenfunction of TK associated to a positive eigenvalue λ. For now, no constraint
is imposed on the L2-norm of f . It will be seen later how to recover a unit-norm function (as demanded by
Theorem 2.18). The starting point to estimate both f and λ is to draw a n-sample xsim := (xi)1≤i≤n from
ν. In each pointwise equality [TK f ](xi) = λ f(xi), the left-hand term is then replaced by its Monte Carlo
approximation. The resulting system of n equations then includes n+ 1 unknowns (namely λ and the n values
of f). The Gram matrix Kn (built from xsim) helps rewrite the system as a matrix equation:

Kn v = (nλ) v with Kn := [K(xi, xj)]1≤i,j≤n ∈ Rn×n and v := [f(xi)]1≤i≤n ∈ Rn . (5.1)

The eigenvalue problem related to TK is thus transformed into a matrix eigenvalue problem which can be solved
numerically (as long as n is not too large). Let (γk)1≤k≤n denote the eigenvalues of Kn (with γ1 ≥ . . . ≥ γn ≥ 0)
and let (vk)1≤k≤n denote the corresponding eigenvectors. In light of Eq. (5.1), the k-th largest eigenvalue of
TK can be estimated by λ̂k = γk/n. In addition, the eigenvector vk admits the latent structure [fk(xi)]1≤i≤n

where fk is an eigenfunction of TK associated to λk (the k-th largest eigenvalue). For this reason, vk must
be understood as a discrete estimate of fk. As standard eigenvalue algorithms are designed to return unit
eigenvectors in Rn, one has ∥fk∥L2≈ 1/

√
n in practice. To bypass this problem, vk is replaced by wk :=

√
nvk

which is now a discrete estimate of the L2-normalized eigenfunction ϕk := fk/∥fk∥L2 . Then, for extrapolation
purposes, it can be useful to construct an estimate of ϕk that can be evaluated everywhere on the domain X .
An interpolation method called the Nyström extension [46] can be used to build ϕ̂k : X → R from the only
knowledge of γk and vk (see Appendix D).

From a practical viewpoint, plotting the histogram of the eigenvalues (λ̂k)1≤k≤n allows to visualize how fast
the eigenvalues decrease. In particular, if the eigendecay is very fast, the Mercer decomposition can be truncated
after a few terms and the corresponding eigenfunctions stand for the most influential features. The eigenfunction
estimates (ϕ̂k)1≤k≤n are also worth plotting. They may help understand what the true eigenfunctions look like,
or at least identify some of their properties (monotonicity, periodicity, upper and lower bounds). Sometimes
the displayed curves have such distinctive shapes that one can easily guess the analytical expression of the
eigenfunctions (see Figures 1, 3 and 4). The purpose of the next section is to apply KFA to Sobolev kernels
in order to extract relevant information about their eigenvalues and eigenfunctions, and from there to deduce
information about their Mercer feature maps.

5.2. Application to Sobolev kernels
The procedure detailed in Section 5.1 is now applied to Sobolev kernels. This means that ν is the uniform

distribution, X = [0 , 1] and K = kr
Sob (for some r ≥ 1). The eigenvalue problem under study is then:

Tkr
Sob

ϕ = λϕ with ϕ ∈ L2([0 , 1]) and λ > 0 . (Sr
λ)

The notation (Sr
λ) will be extensively used in all what follows, and sometimes declined to specific values of r.

In particular, the letter S was chosen to indicate that the ambition is to extract a feature map by means of a
spectral approach. For convenience, two additional notations are introduced:

• λ(Tkr
Sob

) is the eigenspectrum of the integral operator Tkr
Sob

.

• For any fixed eigenvalue λ, Er(λ) is the eigenspace of λ, i.e. the subspace of L2([0 , 1]) composed of all
the eigenfunctions of Tkr

Sob
associated to λ.
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5.2.1. Application to the Sobolev kernel k1
Sob

The Gram matrix Kn is built from n = 500 sample points and the results are represented in Figure 1.
The histogram plot in Figure 1 (a) allows to visually appreciate the decay speed of the estimated eigenvalues.
In Figure 1 (b), the eigenvectors are plotted together with the Nyström approximations that they allow to
construct. For each pair (λ̂k,wk), the eigenvector coefficients are marked by colored dots, while the resulting
Nyström extension ϕ̂k is represented as a solid line (of the same color) which interpolates these dots. To
check if the eigendecay is truly polynomial, a simple trick is to apply a logarithmic transformation to the
estimated eigenvalues. As can be observed in Figure 2 (a), the resulting estimates are then arranged along a
decreasing straight line. The estimated slope β̂1 ≈ −2.0 means that λk = O(1/k2). This is fully consistent with
Theorem 3.8, which gives significant credit to the KFA method.

Going back to Figure 1 (b), it can be observed that the eigenfunction estimates (ϕ̂k)1≤k≤6 look like some
sinusoidal functions. Beyond the general appearance of the curves, some other particularities can be observed.
Firstly, the eigenfunctions correspond to an increasing number of half-periods. Secondly, there is no phase
shift and the eigenfunctions take their largest amplitude at the bounds of the interval [0 , 1]. In light of these
elements, all the functions t 7→

√
2 cos(kπt) with k ≥ 1 emerge as plausible eigenfunctions. This conjecture is

indeed true, as confirmed by the proposition below.

Theorem 5.1. For any k ≥ 1, the function ck : t ∈ [0 , 1] 7→
√

2 cos(kπt) is an L2-normalized eigenfunction of
Tk1

Sob
with associated eigenvalue λk := 1/(kπ)2. The eigenspectrum λ(Tk1

Sob
) consists of the null eigenvalue 0

and the eigenvalues (λk)k≥1. Accordingly, the Mercer expansion of k1
Sob may be written as follows:

∀x, x′ ∈ [0 , 1], k1
Sob(x, x′) =

∞∑
k=1

1
(kπ)2 ck(x) ck(x′) . (5.2)

Proof. For any given x ∈ [0 , 1], [Tk1
Sob
ck](x) can be expressed as an integral over [0 , 1]. Then, basic calculations

allow to show that [Tk1
Sob
ck](x) = ck(x)/(kπ)2. They are detailed in Appendix G.1 as supplementary material.

This confirms that ck is an eigenfunction and this also indicates that λk := 1/(kπ)2 is the corresponding
eigenvalue. In addition, since k1

Sob is an orthogonal kernel, Tk1
Sob

1 = 0 with 1 denoting the constant function
equal to 1. This proves that 0 ∈ λ(Tk1

Sob
) and that 1 ∈ E1(0). There is no other eigenvalue since the

orthonormal system (ONS) defined by (ck)k≥0 := {1 ; (ck)k≥1} is already an ONB of L2([0 , 1]) as recalled
in [59] (see Theorem 4.1, p. 21). By Theorem 2.18, the Mercer decomposition of k1

Sob directly follows. □

Remark 5.2. It must be acknowledged that the Mercer expansion of k1
Sob was already existing in the literature.

A specific remark on the eigendecomposition of Tk1
Sob

may be found in [35] while a detailed proof is provided
in [37] (see Lemma 1, p. 9). The proof technique is rather different from ours since the idea is to expand k1

Sob
in an ONB of L2([0 , 1]2) obtained by tensorization of the ONB (ck)k≥0. In the continuation of this work, two
additional proof techniques will be proposed. In Section 6, the Mercer decomposition is recovered by solving a
boundary value problem. In Section 7, the trick consists in rewriting k1

Sob only in terms of B2 before using a
Fourier series expansion.

Theorem 5.1 allows to disclose the Mercer feature map of K1
Sob = 1 + k1

Sob. One can see that it is composed
of one constant feature and an infinite number of purely sinusoidal features. The Mercer decomposition of
K1

Sob paves the way to a feature-based characterization of the unanchored Sobolev space H1
Sob. Importantly,

Theorem 2.21 ensures that the system {1 ; (c̃k)k≥1} with c̃k(·) := ck(·)/kπ is an ONB of H1
Sob.

Remark 5.3. The Mercer expansion of the unanchored Sobolev kernel K1
Sob is actually very similar to that

of the standard Sobolev kernel K1 (see Appendix B.3). The eigenfunctions {1 ; (ck)k≥1} are the same and
the eigenvalues are asymptotically equivalent. At first sight, this may be surprising because the analytical
expressions of K1 and K1

Sob are much different. However, from a theoretical viewpoint, this is pretty natural
since the two kernels are related to the same function space H1([0 , 1]) and they result from the use of two
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equivalent metrics. Furthermore, Theorem 3.8 guarantees that the eigenvalues of TK1 and TK1
Sob

have the same
decay speed, namely O(1/k2).

Now that k1
Sob has been carefully studied, the question is whether k2

Sob has similar properties.

5.2.2. Application to the Sobolev kernel k2
Sob

The estimation method is exactly the same and the results (for n = 500 sample points) are represented
in Figure 3. The largest estimated eigenvalue λ̂1 is predominant to such an extent that it is almost equal
to the total eigensum. In comparison with the histogram plot from Figure 1 (a), the eigendecay observed in
Figure 3 (a) is much faster. This is not really surprising since Theorem 3.8 indicates that the new decay order
is 1/k4. However, this situation could not have been fully anticipated only on the basis of Theorem 3.8 because
the very start of the eigendecay could as well have been much slower than the final asymptotic trend.

Just as for r = 1, the logarithmic transformation is applied to the eigenvalue estimates. The results are
shown in Figure 2 (b) and one can see that the log-transformed eigenvalue estimates perfectly match with a
straight line. After being rounded, the estimated slope β̂1 = −4.44 yields λk = O(1/k4) and the decay rate
stipulated in Theorem 3.8 is recovered.

As the largest eigenvalue λ1 seems to be heavily dominating in λ(Tk2
Sob

), the Mercer expansion of k2
Sob may

be restricted to its first term. Numerically, one can check that λ̂1 ≈ 1/12. It can also be observed in Figure 3 (b)
that ϕ̂1 looks like the L2-normalized zero-mean linear function P1 : t ∈ [0 , 1] 7→ 2

√
3 (t− 1/2). Hence, k2

Sob can
be approximated by:

k2
Sob(x, x′) ≈ λ1 ϕ1(x)ϕ1(x′) ≈ λ̂1 P1(x)P1(x′) =

(
x− 1

2

)(
x′ − 1

2

)
= B1(x)B1(x′) =: klin(x, x′) . (5.3)

klin is the dot-product kernel centered at the midpoint (1/2, 1/2) of [0 , 1]2. This kernel is not characteristic
and it is therefore unsuitable for many tasks. The fact that k2

Sob ≈ B1 ⊗ B1 also indicates that the numerical
behavior of k2

Sob is almost entirely driven by one single term of its definition. The strong similarity between
k2

Sob and klin = B1 ⊗B1 is an important conclusion whose implications will be further discussed.
The eigenfunction estimates (ϕ̂k)1≤k≤6 shown in Figure 3 (b) deserve to be paid some attention. In fact,

the shape of ϕ̂k suggests that the underlying eigenfunction ϕk might be a polynomial function of degree k:
ϕ̂1 looks like a straight line, ϕ̂2 like a parabola, ϕ̂3 like a cubic curve and so on. Remember that the shifted
Legendre polynomials (see Appendix A.2) are a family of orthogonal polynomials in L2([0 , 1]). More precisely,
it is the only family (Pk)k≥0 such that deg(Pk) = k and ⟨Pk, Pl⟩L2 = δkl. As a result, one can naturally wonder
whether the eigenfunctions of Tk2

Sob
are the shifted Legendre polynomials. Surprisingly, the conjecture is false.

Therefore, the visual insights brought by KFA are misleading this time. This situation can be illustrated in the
specific case of P1 = 2

√
3B1. In fact, when Tk2

Sob
is applied to B1 ∝ P1, a polynomial of degree 5 comes out:

∀x ∈ [0 , 1], [Tk2
Sob
B1](x) = 1

12

(
708
720x− 1

2

)
+
(

1
120x

5 − 1
48x

4 + 1
72x

3
)
. (5.4)

The calculation details are provided in Appendix G.2 as supplementary material. Eq. (5.4) shows that Tk2
Sob
B1

and B1 cannot be proportional. Hence, P1 cannot be an L2-normalized eigenfunction of Tk2
Sob

. The same
strategy could be used for P2 but the integral calculations (which are already tedious for P1) would become
extremely tiresome. In Section 6, a much faster way to reach a more general conclusion will be presented.

The next objective is to study what happens when r ≥ 3.

5.2.3. Application to the Sobolev kernels kr
Sob with r ≥ 3

Performing KFA for different Sobolev kernels such that r ≥ 3 confirms that the eigenvalues of Tkr
Sob

decrease
with a polynomial rate of 1/k2r. In addition, two important properties are always verified. Firstly, the largest
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eigenvalue is strongly predominant and it can be approximated by λ̂1 = 1/12. Secondly, the eigenfunction
estimates (ϕ̂k)k≥1 look like the shifted Legendre polynomials (Pk)k≥1. Based on these two remarks, all what
was said in Section 5.2.2 can be repeated identically and the same conclusions can be drawn. As a result,
the Sobolev kernels (kr

Sob)r≥2 and the dot-product kernel klin are expected to show similar behaviors. This
closeness is even accentuated because the eigendecay occurs faster (as r increases) and the truncation of the
Mercer expansion in Eq. (5.3) is therefore all the more justified.

One major difference between k2
Sob and kr

Sob emerges as r becomes larger. This can be observed in Figure 4
where KFA is used to estimate the eigenfunctions associated to k5

Sob. The eigenfunction estimates (ϕ̂k)1≤k≤6 and
the shifted Legendre polynomials (Pk)1≤k≤6 seem to perfectly match. Although this is again a numerical illusion
(as will be demonstrated in Section 6), this suggests that the shifted Legendre polynomials may be asymptotic
eigenfunctions (in other words, the eigenfunctions of the limit integral operator obtained as r → ∞). Such a
thorny question is not answered here but it will be further studied in Section 8.

As a conclusion, KFA was of great help in the study of the Mercer feature maps associated to Sobolev kernels.
For r = 1, KFA provided the guidance to explicit the Mercer decomposition of k1

Sob and thereby understand
that the associated feature map only consists of sinusoidal features. For r = 2, KFA highlighted the fact that
kr

Sob behaves like the dot-product kernel klin centered at (1/2, 1/2) but the exact Mercer decomposition of k2
Sob

could not be disclosed. More generally, for r ≥ 3, KFA showed that the eigenfunctions involved in the Mercer
decomposition of kr

Sob are very close to the shifted Legendre polynomials.

To go beyond these first conclusions, further investigations on Sobolev kernels are conducted in the next
section. In particular, the use of a differential approach provides new answers.

6. Extraction of Mercer feature maps with a differential approach
In this section, a differential approach is proposed to gain additional insights into the Mercer feature maps

of Sobolev kernels (especially in the case where r ≥ 2). For this, the key idea is to differentiate the eigenvalue
equation coming from Mercer’s theorem and to transform the infinite-dimensional eigenvalue problem (Sr

λ)
into a boundary value problem, i.e. an ordinary differential equation (ODE) subject to a system of boundary
conditions. Section 6.1 explains how to switch from one formulation of the problem to the other. Section 6.2
deals with the resolution of the resulting boundary value problem. Depending on the smoothness parameter r,
a closed-form solution may exist or not.

6.1. Transformation of the eigenvalue problem into a boundary value problem
Before computing derivatives, the important issue of the differentiability of the eigenfunctions involved in

(Sr
λ) must be addressed. For fixed r ≥ 1, let ϕ ∈ L2([0 , 1]) be an eigenfunction of Tkr

Sob
. With Theorem 2.21, it is

clear that ϕ belongs to the function space Hr([0 , 1]). Then, in virtue of the basic results recalled in Section 3.1,
and especially the definition of Hr([0 , 1]) provided in Eq. (3.2), it can be said that:

(i) the weak derivative Dkϕ is well defined at any order k ≥ 1,

(ii) Dkϕ remains in L2([0 , 1]) for all 0 ≤ k ≤ r,

(iii) ϕ is r − 1 times continuously differentiable on [0 , 1].
In short, ϕ is always at least continuous, with the worst case occurring for r = 1. It must be acknowledged
that this simple conclusion could have been directly drawn from Theorem 2.18 (as kr

Sob is continuous on [0 , 1]2
whatever r ≥ 1), and independently of the Sobolev embedding theorem, which is (in a sense) too strong a result.
The continuity of ϕ is an essential property. It is actually the key argument to demonstrate that ϕ is infinitely
differentiable on [0 , 1]. As a consequence, ϕ is much smoother than first expected, and appears to be a very
special function within Hr([0 , 1]). This point is clarified in the theorem below.
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Proposition 6.1. Let ϕ ∈ L2([0 , 1]) be an eigenfunction of Tkr
Sob

with eigenvalue λ > 0. Then, ϕ ∈ C∞([0 , 1])
and it is a solution of the following ODE:

λϕ[2r] + (−1)r+1 ϕ = 0 . (Er
λ)

The reader is referred to Appendix F.2 for the detailed proof. Knowing that ϕ ∈ C([0 , 1]), the Leibniz integral
rule allows to justify that the eigenvalue equation λϕ = Tkr

Sob
ϕ can be differentiated on both sides. This leads

to an integral expression of λϕ[1] and the same technique can be repeated. The derivatives ϕ[1], . . . , ϕ[2r] are
computed recursively and the properties of Bernoulli polynomials make ϕ be a solution of the ODE (Er

λ). As
ϕ[2r] ∝ ϕ, a simple proof by induction leads to ϕ ∈ C∞([0 , 1]).

With the ODE (Er
λ) from Proposition 6.1, it can be proved much more easily that Tkr

Sob
does not admit any

polynomial eigenfunction, as stated in Corollary 6.2 below.

Corollary 6.2. Let ϕ ∈ L2([0 , 1]) be an eigenfunction of Tkr
Sob

with eigenvalue λ > 0. Then, ϕ cannot be a
polynomial function.

Proof. For the sake of contradiction, let us assume that Tkr
Sob

admits one polynomial eigenfunction ϕ with
eigenvalue λ > 0. Let P ∈ R[X] denote the polynomial expression associated to the polynomial function
ϕ ∈ R[0,1]. According to Theorem 6.1, ϕ is one solution of the ODE (Er

λ). After switching to polynomial
expressions, one has λP [2r] = (−1)rP . Taking the degree on both sides of the previous equality leads to a
contradiction. □

It is important to realize that Proposition 6.1 provides a necessary but not sufficient condition for being
an eigenfunction. In particular, for any positive eigenvalue λ, the solution space associated to (Er

λ) is too big
compared to what is expected for the solution space of (Sr

λ). On the one side, the solution space associated
to (Sr

λ) is the eigenspace Er(λ). According to what was said in Section 5 (especially in Theorem 5.1), Er(λ)
is a 1-dimensional linear subspace of L2([0 , 1]). On the other side, the solution space associated to (Er

λ) is a
2r-dimensional linear subspace of L2([0 , 1]). As a consequence, additional constraints must be added to (Er

λ) in
order to restrain the solution space. This is the subject of the theorem below.

Theorem 6.3. Let ϕ ∈ L2([0 , 1]) and λ > 0. Then, the two following statements are equivalent:
(i) ϕ is an eigenfunction of the integral operator Tkr

Sob
with eigenvalue λ.

(ii) ϕ is a solution of the boundary value problem defined as:

λϕ[2r] + (−1)r+1 ϕ = 0 with


ϕ[r](0) = ϕ[r](1) = 0

∀ 0 ≤ p ≤ r − 2, (−1)r+p(ϕ[p](1) − ϕ[p](0)) = ϕ[2r−p−1](0)

∀ 0 ≤ p ≤ r − 2, ϕ[2r−p−1](0) = ϕ[2r−p−1](1)

. (Br
λ)

The reader is referred to Appendix F.3 for the detailed proof. As Theorem 6.3 is an extended version of
Proposition 6.1, the proof does not repeat what is said in Appendix F.2 and rather focuses on how to obtain the
boundary conditions and the converse statement. For the boundary conditions, the derivatives of the eigenvalue
equation (already calculated for the purposes of Proposition 6.1) need to be evaluated at the bounds of [0 , 1] and
the properties of Bernoulli polynomials eventually lead to the expected constraints. For the converse statement,
one must write Tkr

Sob
ϕ = (−1)r λTkr

Sob
ϕ[2r] and repeat 2r times a trick that consists in using an integration by

parts before selecting an appropriate boundary condition to enable simplifications.

Remark 6.4. Theorem 6.3 is an important result since the equivalence between the eigenvalue problem (Sr
λ)

and the boundary value problem (Br
λ) is clearly established. Differentiating the eigenvalue equation TK ϕ = λϕ

in order to obtain an equivalent boundary value problem is a well-known proof technique to disclose the Mercer
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expansion of a given kernel. Other examples of boundary value problems obtained in this way are provided in
the Appendix B.

As many analytical techniques are available to solve linear ODEs, the reformulation of (Sr
λ) as (Br

λ) opens
the way for a possibly faster and simpler analytical resolution. This question is discussed in the next section.

6.2. Analytical resolution of the boundary value problem
For r = 1, the boundary value problem (Br

λ) becomes:

λϕ′′ + ϕ = 0 with ϕ′(0) = ϕ′(1) = 0 and λ > 0 . (B1
λ)

The resolution is straightforward (see Appendix E.1) and fortunately allows to recover the Mercer expansion
already established in Theorem 5.1.

For r ≥ 2, solving the homogeneous linear ODE (Er
λ) simply boils down to finding the complex roots of the

characteristic polynomial χr(z) := λ z2r + (−1)r+1. To achieve this, one can write:

χr(z) = 0 ⇐⇒ λ z2r = (−1)r ⇐⇒
[

2r
√
λ z
]2r

= i2r ⇐⇒ ζ2r = 1 with ζ := −i 2r
√
λ z .

After using the 2r-th roots of unity in C, a solution set containing 2r elements can be derived:

χr(z) = 0 ⇐⇒ ζ ∈
{
e2iπ( j

2r ) with 0 ≤ j ≤ 2r − 1
}

⇐⇒ z ∈
{
ξ e2iπ( j

2r + 1
4 ) with ξ := 1

2r
√
λ

and
⌊r

2

⌋
≤ j ≤

⌈
3r
2

⌉
− 1
}
.

where ⌊·⌋ and ⌈·⌉ are respectively the floor and ceiling functions. For the sake of convenience, the roots of χr

are indifferently denoted by (zi)1≤i≤2r in what follows. Any solution of the ODE (Er
λ) can then be expressed as:

∀t ∈ [0 , 1], ϕ(t) =
2r∑

i=1
wi exp(zi t) with w := (w1, . . . , w2r) ∈ C2r . (6.1)

Since all coefficients in χr are real numbers, there also exists a real-valued variant of Eq. (6.1) but it would
be tedious and useless to formalize it. Thus, the construction of the solution space associated to (Er

λ) is not a
problem, especially if a basis of complex-valued solutions is used to do so. On the contrary, it is much harder to
restrain this solution space according to the boundary conditions specified in (Br

λ). In fact, when the boundary
conditions are rewritten in terms of the general solution given in Eq. (6.1), a non-linear system depending on
both ξ and w1, . . . , w2r comes out and it cannot be solved analytically.
Remark 6.5. For the Laplace kernel and the uniform distribution on a symmetric interval [−a , a], the same
pitfall is encountered (see Appendix B.2). The eigenvalue problem is transformed into a boundary value problem
which cannot be solved completely [48] (see Section 2.3.3, pp. 27–45). In particular, the Mercer expansion
remains partly implicit because the eigenvalues rely on the unknown solutions of a transcendental equation.

Let us take a close look at what happens for r = 2. This time, the boundary value problem is given by:

λϕ[4] − ϕ = 0 with
{
ϕ′′(0) = ϕ′′(1) = 0
ϕ(1) − ϕ(0) = ϕ[3](0) = ϕ[3](1)

and λ > 0 , (B2
λ)

and any real-valued solution of the ODE may be written as:

ϕ(t) = αeξt + βe−ξt + γ cos(ξt) + δ sin(ξt) with ξ := 1
4
√
λ

and (α, β, γ, δ) ∈ R4. (6.2)



NEW INSIGHTS INTO THE FEATURE MAPS OF SOBOLEV KERNELS 27

With this kind of general solution, the boundary conditions may be rearranged as a system of 2r = 4 equations:

M2(ξ) w = 0 where M2(ξ) :=


1 1 −1 0
eξ e−ξ − cos(ξ) − sin(ξ)

eξ − 1 1 − e−ξ sin(ξ) 1 − cos(ξ)
eξ − ξ3 − 1 e−ξ + ξ3 − 1 cos(ξ) − 1 sin(ξ) + ξ3

 and w :=


α
β
γ
δ

 .

Contrary to what such a rearrangement might suggest, the equation M2(ξ) w = 0 is not a linear system
because most coefficients in M2(ξ) depend on ξ (or equivalently on λ) which is unknown. Therefore, a system
of 2r = 4 equations in 2r+ 1 = 5 unknowns must be solved. However, as ξ is the only unknown involved in the
parametrization of the square matrix M2(ξ), the specific structure adopted by the boundary conditions paves
the way to a simple characterization of the eigenvalues:

• If M2(ξ) is an invertible matrix, the linear equation M2(ξ) w = 0 admits w = 0 as unique solution in
R4. In this case, the solution space of (B2

λ) is restricted to ϕ = 0. Hence, λ = 1/ξ4 is not an eigenvalue.

• If M2(ξ) is a singular matrix, M2(ξ) w = 0 admits infinitely many non-zero solutions in R4. The
functions resulting from the use of such coefficients in Eq. (6.2) are non-zero solutions of the boundary
value problem (B2

λ). They thus live in the eigenspace E2(λ) associated to the eigenvalue λ = 1/ξ4.

As a consequence, non-trivial eigenfunctions only arise from situations where the matrix M2(ξ) is singular. The
eigenspectrum of Tk2

Sob
can thus be found out after solving the equation:

η2(ξ) := det [M2(ξ)] = 0 .

Computing analytically the determinant of M2(ξ) yields:

∀ξ > 0, η2(ξ) = −2e−ξ
[

2 (eξ − 1)2 sin(ξ) + (ξ3 + e2ξ (ξ3 − 2) + 2) cos(ξ) − 2 (1 + ξ3eξ − e2ξ)
]
. (6.3)

The roots of η2 on (0 ,+∞) do not have a closed-form expression. However, η2 is asymptotically equivalent to
the very simple function η∞

2 defined below.

Proposition 6.6. The asymptotic behavior of η2 obeys the following equivalence relation:

η2(ξ) ∼
ξ→∞

η∞
2 (ξ) := −a2(ξ) b2(ξ) with

a2(ξ) := 2 ξ3 eξ

b2(ξ) := cos(ξ)
.

Proof. After identifying that ξ3 e2ξ is the leading-order factor in Eq. (6.3), η∞
2 follows immediately:

η2(ξ) = −2ξ3eξ


2(eξ − 1)2

ξ3e2ξ︸ ︷︷ ︸
−−−→

ξ→∞
0

sin(ξ) + ξ3 + e2ξ(ξ3 − 2) + 2
ξ3e2ξ︸ ︷︷ ︸

−−−→
ξ→∞

1

cos(ξ) − 2(1 + ξ3eξ − e2ξ)
ξ3e2ξ︸ ︷︷ ︸

−−−→
ξ→∞

0


∼

ξ→∞
−2 ξ3 eξ cos(ξ) .

□



28 NEW INSIGHTS INTO THE FEATURE MAPS OF SOBOLEV KERNELS

A direct consequence of Proposition 6.6 is the following approximation formula for small eigenvalues:

η2(ξ) = 0

for ξ → ∞
⇐⇒

η∞
2 (ξ) = 0

for ξ → ∞
⇐⇒

cos(ξ) = 0

for ξ → ∞
⇐⇒

ξk =
( 2k+1

2
)
π

for k → ∞
⇐⇒

λk = 1[( 2k+1
2
)
π
]4

for k → ∞
. (6.4)

These asymptotic derivations are consistent with Theorem 3.8 which says that the eigenvalues decrease with a
rate proportional to 1/k4 in the case of K2

Sob. In fact, Eq. (6.4) does even better than Theorem 3.8 because the
eigendecay is henceforth known up to the multiplicative constant (and not only bounded).

For r = 3, the same method can be used to deduce the decay rate of the eigenvalues. The general solution of
the ODE (E3

λ) is easy to obtain (see Appendix E.2 for further details) but it is still a bit more complicated to
leverage the extra information brought by the boundary conditions. They can be reorganized as M3(ξ) w = 0
with w containing the 2r = 6 coefficients involved in the general solution of the ODE. Therefore, the eigenvalues
of Tk3

Sob
correspond to the roots of the function η3 : ξ 7→ det [M3(ξ)] on (0 ,+∞). The intractable expression of

M3(ξ) makes pointless the calculation by hand of the determinant involved in the definition of η3. Therefore,
no counterpart of Eq. (6.3) is available when r = 3. However, an asymptotically equivalent function η∞

3 can be
found, as shown below.

Proposition 6.7. The asymptotic behavior of η3 obeys the following equivalence relation:

η3(ξ) ∼
ξ→∞

η∞
3 (ξ) := −a3(ξ) b3(ξ) with

a3(ξ) := 3
4 ξ

8 e
√

3 ξ

b3(ξ) := sin(ξ)
.

The reader is referred to Appendix E.2 for the entire proof. Once again, an approximation formula for small
eigenvalues can be derived:

η3(ξ) = 0

for ξ → ∞
⇐⇒

η∞
3 (ξ) = 0

for ξ → ∞
⇐⇒

sin(ξ) = 0

for ξ → ∞
⇐⇒

ξk = kπ

for k → ∞
⇐⇒

λk = 1
(kπ)6

for k → ∞
. (6.5)

Just as for r = 2, the approximation formula obtained after asymptotic derivations may be seen as a refined
version of Theorem 3.8 which only allowed to affirm that λk = O(1/k6).

For r ≥ 4, the general solution of the ODE (Er
λ) can be derived in the same way as for r ∈ {2, 3}. However, the

analytical resolution of the boundary value problem (Br
λ) cannot be pushed any further because the expression

of M2r(ξ) is too cumbersome. Therefore, no generalization of Eq. (6.4) and (6.5) might be obtained, unless
using a symbolic math software.

As a conclusion, Section 6 focused on the transformation of the original eigenvalue problem (Sr
λ) into the

boundary value problem (Br
λ). A general solution can always be found for the associated ODE but it is then

much harder to take into account the boundary conditions. A complete analytical resolution is possible for r = 1
and allows to recover the Mercer expansion of k1

Sob. For r ≥ 2, the boundary conditions result in a non-linear
system of equations without closed-form solution. This unfortunately means that the Mercer expansion of kr

Sob
remains partly implicit, and that we should not hope for better.

Beyond the expected conclusions, the differential approach also brings additional answers. On the one hand,
it is now mathematically proved that the eigenfunctions cannot be of polynomial type. On the second hand,
when the boundary conditions do not allow for an exact resolution, they can still be used to derive approximation
formulas which confirm that the decay rates are polynomial with order of 1/k2r (at least for r ∈ {1, 2, 3}).
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Despite those findings, the identification of a fully explicit feature map remains an open question. In the
next section, an approach based on Fourier series provides complementary insights.

7. Feature maps based on a sub-kernel decomposition
Significant efforts were made in Sections 5 and 6 with the aim of discovering the Mercer decomposition of the

Sobolev kernel kr
Sob. The related feature map φr

Sob is of particular interest because its features take the form
of mutually orthogonal functions in L2([0 , 1]). Unfortunately, φr

Sob has a closed-form expression only for r = 1
and remains partly implicit in all other cases. However, the study of Sobolev kernels must not be stopped here.

The main objective of this section is therefore to identify another feature map ψr
Sob : [0 , 1] → ℓ2(N∗). To

this end, Section 7.1 seeks to rewrite kr
Sob as the sum of two kernels in order to split the initial problem into

two simpler problems. Then, it is shown in Section 7.2 that an explicit feature map can be easily extracted for
each of the two identified kernels. The feature map ψr

Sob obtained after merging the two collections of features
offers a different view on Sobolev kernels and notably allows to derive an ONB of Hr

Sob (whatever is r ≥ 2).
Finally, in Section 7.3, the links between the non-orthogonal feature map ψr

Sob and the Mercer feature map
φr

Sob are discussed. In particular, the additional insights provided by ψr
Sob are leveraged to better understand

the numerical results observed in Section 5.

7.1. Decomposition of Sobolev kernels into a sum of two sub-kernels
Let us consider the following decomposition of kr

Sob as the sum of two kernels:

kr
Sob(x, x′) = kr

A(x, x′) + kr
B(x, x′) with kr

A :=
r∑

i=1

Bi(x)Bi(x′)
(i!)2 and kr

B(x, x′) := (−1)r+1

(2r)! B2r(|x− x′|) .

It is trivial to see that kr
A is a kernel as it is a positive linear combination of r symmetric separable functions.

In the case of kr
B , positive definiteness deserves further explanations. First, it should be noted that all Bernoulli

polynomials (except B1) have equal boundary values, i.e. they verify Bn(0) = Bn(1) for n ̸= 1. Hence, each
polynomial Bn may be envisioned as the restriction on [0 , 1] of a 1-periodic continuous function defined on R.
This suggests to compute the Fourier series expansion of Bn. The Fourier coefficients of Bn are actually easy
to derive (see Appendix A.1.5) and one eventually has:

∀n ≥ 2, ∀x ∈ [0 , 1], Bn(x) = (−2)n!
∞∑

k=1

cos(2kπx− nπ
2 )

(2kπ)n
. (7.1)

After replacing B2r by its Fourier series expansion, kr
B turns into:

∀x, x′ ∈ [0 , 1], kr
B(x, x′) = 2

∞∑
k=1

1
(2kπ)2r

[ cos(2kπx) cos(2kπx′) + sin(2kπx) sin(2kπx′) ] . (7.2)

Since kr
B is expressed as a series of symmetric separable functions with positive coefficients, it is now obvious

that it is a positive definite function on [0 , 1]2.

Remark 7.1. Kr
B = 1 + kr

B is a well-known kernel in the literature [6, 12, 28]. It is often introduced as the
reproducing kernel of the following periodic Sobolev space:

Hr
per([0 , 1]) :=

{
h ∈ R[0,1]

∣∣∣∣∣ h[k] ∈ L2([0 , 1]) ∀ 0 ≤ k ≤ r

h[k](0) = h[k](1) ∀ 0 ≤ k ≤ r − 1

}
, (7.3)
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when this one is equipped with the inner product:

⟨·, ·⟩Hr
per

: Hr
per([0 , 1]) × Hr

per([0 , 1]) −→ R

(h1 , h2 ) 7−→
(∫ 1

0
h1(x) dx

)(∫ 1

0
h2(x) dx

)
+
∫ 1

0
h

[r]
1 (x)h[r]

2 (x) dx .
(7.4)

Hr
per([0 , 1]) is obtained from Hr([0 , 1]) by adding boundary conditions that force the first r − 1 derivatives to

have equal boundary values.

7.2. Identification of explicit feature maps
7.2.1. Explicit feature map for kr

A

For the kernel kr
A, a feature map ψr

A : [0 , 1] → Rr immediately stands out:

kr
A(x, x′) = ⟨ψr

A(x), ψr
A(x′)⟩Rr with ψr

A(x) =
(
B̃k(x)

)
1≤k≤r

where B̃k(x) := Bk(x)
k! . (7.5)

The feature space is the Euclidean space Rr and every feature function ψr
A(x) consists of r polynomial features.

Remark 7.2. As Bernoulli polynomials are not orthogonal in L2([0 , 1]), the definition of kr
A is not a Mercer

expansion of kr
A with respect to the uniform distribution on [0 , 1]. To obtain one, there is no other option than

solving analytically the eigenvalue problem related to Tkr
A

. Whether it is straightforward to prove that:

Tkr
A
ϕ = λϕ =⇒ ϕ ∈ Span({B1, . . . , Br}) ,

it is much more complicated to go further. In fact, tedious and error-prone hand calculations are required in
order to determine which linear combinations of B1, . . . , Br correspond to the eigenfunctions of Tkr

A
. Even for

r = 3, this asks for considerable efforts. Consequently, there is no point in going further in this direction.
7.2.2. Explicit feature map for kr

B

For the kernel kr
B , a feature map ψr

B : [0 , 1] → ℓ2(N∗) stems from the series expansion established in Eq. (7.2):

kr
B(x, x′) = ⟨ψr

B(x), ψr
B(x′)⟩ℓ2 with ψr

B(x) :=
[

(c̃ r
2k)k≥1 ; (s̃ r

2k)k≥1

]
where

{
c̃ r

2k(x) := c2k(x)/(2kπ)r

s̃ r
2k(x) := s2k(x)/(2kπ)r

and
{
c2k(x) :=

√
2 cos(2kπx)

s2k(x) :=
√

2 sin(2kπx)
.

(7.6)

Here, the feature space is the Hilbert space ℓ2(N∗) and every feature function ψr
B(x) is composed of an infinite

number of sinusoidal features which are organized into pairs. From one pair to the next, the frequency fk := k
increases whereas the amplitude Ar

k :=
√

2/(2kπ)r decreases.
The ONS {(c2k)k≥1, (s2k)k≥1} is nothing but the Fourier ONB of L2([0 , 1]), after removing the constant

function 1 from it. As a consequence, Eq. (7.2) is exactly the Mercer decomposition of kr
B and the eigenvalues

of Tkr
B

are given by µk := 1/(2kπ)2r with k ≥ 1. The polynomial rate of the eigendecay is perfectly in line with
Theorem 3.8 because kr

B is the reproducing kernel of an infinite-dimensional sub-RKHS of Hr([0 , 1]). In the
rest of this work, the notation ψr

B is replaced by φr
B to stress that this feature map is of Mercer’s type.

It is worth noting that the smoothness parameter r has a very targeted influence on the Mercer decomposition
of kr

B . One the one hand, the exponent of the power law describing the eigendecay is equal to 2r. On the other
hand, r does not interfere in the definition of the eigenfunctions (c2k)k≥1 and (s2k)k≥1. This means that all
kernels kr

B (with r ≥ 1) induce the same initial collection of sinusoidal features but they are not weighted in the
same way from one kernel kr

B to another. High-frequency features are always more penalized than low-frequency
features, and the imbalance between them worsens as r increases.
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7.2.3. Explicit feature map for kr
Sob

Replacing kr
B by its Mercer expansion in the initial definition of kr

Sob yields:

kr
Sob(x, x′) =

r∑
k=1

Bk(x)Bk(x′)
(k!)2 +

∞∑
k=1

c2k(x) c2k(x′)
(2kπ)2r

+
∞∑

k=1

s2k(x) s2k(x′)
(2kπ)2r

(7.7)

=
r∑

k=1
B̃k(x) B̃k(x′) +

∞∑
k=1

c̃ r
2k(x) c̃ r

2k(x′) +
∞∑

k=1
s̃ r

2k(x) s̃ r
2k(x′) (7.8)

and a global feature map ψr
Sob : [0 , 1] → ℓ2(N∗) follows:

kr
Sob(x, x′) = ⟨ψr

Sob(x), ψr
Sob(x′)⟩ℓ2 with ψr

Sob(x) := [ψr
A(x) ; ψr

B(x) ] =
[(
B̃k

)
1≤k≤r

; (c̃ r
2k)k≥1 ; (s̃ r

2k)k≥1

]
.

ψr
Sob is not a Mercer feature map because the identified features are not mutually orthogonal in L2([0 , 1]) even

though there exist orthogonality relations between some of them.
In return for its non-orthogonality, ψr

Sob has the great advantage of being totally explicit. In particular, ψr
Sob

allows to clearly establish the coexistence of two different kinds of features within kr
Sob. Moreover, the role

played by the smoothness parameter r in the balance between the polynomial and sinusoidal features is now
clear. When r is increased by one unit, the former polynomial features (B̃k)1≤k≤r−1 remain unchanged, a new
polynomial feature B̃r comes into play and the weights (√µk)k≥1 assigned to the sinusoidal features (c2k)k≥1
and (s2k)k≥1 are all multiplied by the factor 1/(2kπ). In short, the amount of polynomial features increases
while the amplitude of sinusoidal features is gradually shrunk. This explains why KFA shows polynomial-like
eigenfunctions for r = 2 and beyond (see Figures 3 to 4).

The numerical results brought by KFA and the new insights brought by the analysis ψr
Sob are indeed consistent

and complementary. From a theoretical viewpoint, the analytical expression of ψr
Sob indicates that there is a

gradual evolution of the balance between polynomial and sinusoidal features as r becomes larger. From a
numerical viewpoint, KFA reveals that this transition is rather abrupt and corresponds to the switch from
r = 1 to r ≥ 2. Given ψ1

Sob, inserting B̃2 and replacing the initial weights 1/(2kπ) by smaller weights 1/(2kπ)2

is thus enough to trigger a definitive reversal in the balance between the polynomial and sinusoidal features.
This question is further investigated in Section 7.3.

7.2.4. Feature-based characterization of Hr
Sob

kr
Sob was rewritten in Eq. (7.8) as a series of symmetric and separable functions. In view of Theorem 2.23,

one may monder whether the system defined by:

(gr
k)k :=

{
1 ; (B̃k)1≤k≤r ; (c̃ r

2k)k≥1 ; (s̃ r
2k)k≥1

}
= { 1 ; (fr

k )k} (7.9)

is an ONB of Hr
Sob or not. It can be easily proved that this system is not ω-independent (see Remark 2.24).

Indeed, after taking n = 2 in Eq. (7.1), a series expansion of B̃2 follows:

B̃2(·) = 1
2 B2(·) = 2

∞∑
k=1

(2kπ)r−2 c̃ r
2k(·) ,

which means that one can find a non-zero sequence of coefficients (γk)k making the series
∑

k γk g
r
k(·) converge

and be equal to zero everywhere on [0 , 1]. However, no square-summable sequence is able to do the same.

Proposition 7.3. The system (gr
k)k defined by Eq. (7.9) is ℓ2-linearly independent.
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The reader is referred to Appendix F.4 for the detailed proof. A key step is to prove that Hr([0 , 1]) is the
direct sum of the function spaces induced by the sub-kernels kr

A and Kr
B .

Now that Proposition 7.3 is stated, Theorem 2.23 can be applied rigorously. Therefore, it can be concluded
that the system (gr

k)k is indeed an ONB of Hr
Sob.

7.3. Comparison with Mercer feature maps
The objective is now to compare the Mercer feature map φr

Sob (known for r = 1 and approximated for r ≥ 2)
and the non-orthogonal feature map ψr

Sob (known whatever is r ≥ 1). φr
Sob involves features which are either

purely sinusoidal (for r = 1) or pseudo-polynomial (for r ≥ 2). On the contrary, the closed-form expression of
ψr

Sob shows that polynomial and sinusoidal features always coexist. To bridge the gap between the two feature
maps, the L2-norms of the non-orthogonal features (gr

k)k must be computed. In fact, according to what was
said in Section 4.2, and more precisely what was established in Eq. (4.4), the contribution of each input basis
function gr

k to the final value of the index SHSIC
i defined in Eq. (4.7) can be read through its norm in L2([0 , 1]).

Moreover, it can also be shown that:

∥TKr
Sob

∥2
HS =

∑
k≥1

(λr
k)2 ≥

∑
k

∥gr
k∥4

L2 , (7.10)

where (λr
k)k≥1 are the eigenvalues of TKr

Sob
. For each feature gr

k, the computation of its L2-norm allows to better
understand its contribution to ∥TKr

Sob
∥2

HS, and therefore its influence on the Mercer decomposition of Kr
Sob. For

more details on how the above inequality is obtained, the reader is referred to Appendix F.5, where a proof is
given in the general case of a Mercer kernel K : X × X → R.

7.3.1. Calculation of L2-norms
The properties of Bernoulli polynomials and trigonometric functions allow to derive the L2-norms of the

features identified in Eq. (7.9). Of course, one immediately has ∥c̃ r
2k∥L2 = ∥s̃ r

2k∥L2 = 1/(2kπ)r. As regards the
polynomial features (B̃k)1≤k≤r, their L2-norms are expected to decrease extremely fast because of the presence
of factorials in the denominators. In fact, the L2-norms of Bernoulli polynomials are closely related to Bernoulli
numbers (see Appendix A.1.7) and asymptotic results (see Appendix A.1.2) are available for them:

∥Bk∥2
L2 = |B2k(0)| (k!)2

(2k)! with |B2k(0)| ∼
k→∞

4
√
kπ

(
k

π e

)2k

.

Then, Stirling’s approximation for factorials can be used to deduce an asymptotically-equivalent sequence:

k! ∼
k→∞

√
2kπ

(
k

e

)k

and thus ∥B̃k∥L2 = ∥Bk∥L2

k! =
(

|B2k(0)|
(2k)!

)1/2
∼

k→∞

√
2

(2π)k
. (7.11)

The decay speed is therefore much lower than first thought. It can be checked numerically that the asymptotic
approximation of ∥B̃k∥L2 is actually pretty accurate for small values of k (including k = 1). Hence, the less
influential polynomial feature (i.e. B̃r) and the most influential pair of sinusoidal features (i.e. c̃ r

2 and s̃ r
2 ) are

weighted the same:
∥B̃r∥L2 ≈

√
2/(2π)r and ∥c̃ r

2 ∥L2 = ∥s̃ r
2 ∥L2 = 1/(2π)r .

This yields ∥B̃r∥2
L2 ≈ ∥c̃ r

2 ∥2
L2 + ∥s̃ r

2 ∥2
L2 , which strengthens the idea of a competition between B̃r and (c̃ r

2 , s̃
r
2 ).

7.3.2. Application to the Sobolev kernel k1
Sob

For r = 1, B̃1 is the unique existing polynomial feature and it is facing the entire collection of sinusoidal
features {(c̃ 1

2k)k≥1 ; (s̃ 1
2k)k≥1}. In particular, the pair (c̃ 1

2 , s̃
1
2 ) is directly challenging B̃1 in terms of L2-norm.

Because of this competition, the joint action of polynomial and sinusoidal features generates a specific collection
of Mercer features, namely the collection of sinusoidal features identified in Theorem 5.1.
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Remark 7.4. If the Mercer expansion of k1
Sob had not be provided by Theorem 5.1, it could also have been

obtained only with the tools from Section 7. The trick consists in rewriting k1
Sob in the following way:

k1
Sob(x, x′) = B1(x)B1(x′) + 1

2B2(|x− x′|) = 1
2
[
x2 + (x′)2]− max(x, x′) + 1

3 = B2

(
|x− x′|

2

)
+B2

(
x+ x′

2

)
.

Then, Eq. (7.1) applied to B2 provides:

k1
Sob(x, x′) = 4

∞∑
k=1

cos [kπ(x− x′)]
(2kπ)2 + 4

∞∑
k=1

cos [kπ(x+ x′)]
(2kπ)2 =

∞∑
k=1

ck(x) ck(x′)
(kπ)2 ,

and this offers a third manner of accessing the Mercer decomposition of k1
Sob.

7.3.3. Application to the Sobolev kernels kr
Sob with r ≥ 2

For r ≥ 2, the competition between B̃r and (c̃ r
2 , s̃

r
2 ) is still existing but it is overwhelmed by the lower-degree

polynomial features B̃1, . . . , B̃r−1 which have much larger L2-norms. Since a small number of polynomial
features contribute almost exclusively to ∥TKr

Sob
∥2

HS, it is quite natural that the Mercer decomposition of kr
Sob

involves eigenfunctions which have much in common with the shifted Legendre polynomials (see Appendix A.2).
To go even further, it should be emphasized that the L2-norm of B̃1 is the largest by far. This is consistent
with the conclusion stated in Section 5.2 where it was pointed out that B1 ⊗B1 is the leading term in kr

Sob (as
soon as r ≥ 2).

In this section, the objective was to identify a fully analytical and easily interpretable feature map. This
was achieved by rewriting kr

Sob as the sum of the two sub-kernels. The unified feature map ψr
Sob arising from

this approach is composed of non-orthogonal features (in the L2-sense) but has the tremendous advantage of
clearly establishing the coexistence of polynomial and sinusoidal features. The balance between both types of
features is ruled by the smoothness parameter r. For r = 1, there is a true competition and this gives birth to
a purely sinusoidal Mercer feature map. For r ≥ 2, the sinusoidal features are too heavily penalized and they
become negligible in comparison with the polynomial features. Knowing this, one may think that the sinusoidal
features will vanish asymptotically (i.e. as r → ∞). This intuition will be demonstrated in Section 8.

8. A glance at the asymptotic feature maps
The objective of this section is to understand how the behavior of Sobolev kernels (Kr

Sob)r≥1 evolves when
the smoothness parameter r ≥ 1 becomes extremely large. Findings from Section 7 indicate that the influence
of sinusoidal features vanishes as r increases. This trend suggests that there will be no sinusoidal feature
asymptotically. This intuition has now to be formalized theoretically.

In Section 8.1, it is shown that the sequence of Sobolev kernels converges uniformly to a limit kernel. The
analytical expression of this kernel allows to identify an asymptotic feature map and to derive an ONB of the
limit RKHS. In Section 8.2, further attention is paid to the asymptotic Mercer feature map. Once again, the
shifted Legendre polynomials are proved not to be the unknown eigenfunctions.

8.1. Limit Sobolev kernel and associated RKHS
Since Bernoulli polynomials are continuous functions on [0 , 1], they are bounded and attain their bounds:

∀n ≥ 1, −∞ < mn := min
x∈[0 ,1]

Bn(x) ≤ max
x∈[0 ,1]

Bn(x) =: Mn < +∞ . (8.1)
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Explicit formulas were provided by [71] in order to compute (or at least approximate) those bounds:

∀n ≥ 1,


mn = 2 ζ(n)n!

(2π)n
if n ≡ 0 (mod 4)

mn > − 2n!
(2π)n

otherwise
and


Mn = 2 ζ(n)n!

(2π)n
if n ≡ 2 (mod 4)

Mn <
2n!

(2π)n
otherwise

, (8.2)

where ζ is the Riemann zeta function:

ζ : N \ {0, 1} −→ R

n 7−→ ζ(n) :=
∞∑

k=1

1
kn

.

As ζ is decreasing on N \ {0, 1}, one has 1 ≤ ζ(n) ≤ ζ(2) = π2/6 ≤ 2 and this leads to:

∀n ≥ 1, ∥Bn∥∞ = max
x∈[0 ,1]

|Bn(x)| =: M+
n ≤ 2 ζ(n)n!

(2π)n
≤ 4n!

(2π)n
. (8.3)

The above inequality may be seen as a slightly relaxed summary of Eq. (8.1) and (8.2) obtained after taking a
loose bound of ζ(n). The term on the right-hand side is not the tightest possible upper bound for M+

n but it
is quite sufficient to prove the convergence results presented below.

Proposition 8.1. For any r ≥ 1, let kr
A and kr

B be the kernels introduced in Section 7.1 to decompose kr
Sob.

(a) The kernel sequence (kr
A)r≥1 converges uniformly to the continuous kernel k∞

A defined by:

∀x, x′ ∈ [0 , 1], k∞
A (x, x′) := lim

r→∞
kr

A(x, x′) =
∞∑

i=1

Bi(x)Bi(x′)
(i!)2 . (8.4)

(b) The kernel sequence (kr
B)r≥1 converges uniformly to the zero kernel k∞

B := lim
r→∞

kr
B = 0.

The reader is referred to Appendix F.6 for the detailed proof. This proposition allows to define the limit
Sobolev kernel as K∞

Sob := 1 + k∞
Sob = 1 + k∞

A . The related RKHS is denoted by H∞
Sob = R ⊕ F∞

Sob since k∞
Sob

remains an orthogonal kernel.
As Bernoulli polynomials are not mutually orthogonal in L2([0 , 1]), the closed-form expression in Eq. (8.4)

is not the Mercer expansion of k∞
Sob. However, a feature map ψ∞

Sob : [0 , 1] → ℓ2(N∗) can still be identified:

k∞
Sob(x, x′) = ⟨ψr

Sob(x), ψr
Sob(x′)⟩Rr with ψr

Sob(x) =
(
B̃k(x)

)
k≥1

. (8.5)

It is composed of an infinite number of polynomial features having increasing degrees. ψ∞
Sob must be regarded

as the infinite-dimensional generalization of the feature map ψr
A extracted from the finite-rank kernel kr

A. In
the spirit of what was done in Section 7.2.4 with the polynomial and sinusoidal features extracted from kr

Sob,
the question here is whether the polynomial features (B̃k)k≥0 are the basis functions of the limit RKHS.

Proposition 8.2. The system (B̃k)k≥0 is ℓ2-linearly independent.

The reader is referred to Appendix F.7 for the detailed proof. Theorem 2.23 can then be applied seamlessly
to K∞

Sob in order to show that the polynomial features (B̃k)k≥0 form an ONB of H∞
Sob.

Remark 8.3. If a sequence of kernels (Kn)n≥1 converges pointwise, the limit function K∞ is also a kernel [25]
(see Corollary 4.17, p. 119). However, the characterization of the limit RKHS is in general a delicate issue [5]
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(see Section 9, pp. 362–368). In the case of K∞
Sob, the feature-based formalism proposed in Theorem 2.23 offers

a very convenient way to describe H∞
Sob. In particular, the function space can be expressed as:

H∞
Sob =

{
h ∈ R[0,1]

∣∣∣∣∣ h(·) =
∞∑

k=0
ak
Bk(·)
k! with (ak)k≥0 ∈ ℓ2(N)

}
.

The feature-based viewpoint can also be used to write ⟨·, ·⟩H∞
Sob

. It would have been much more difficult to
obtain the same results with the theory of Sobolev spaces of infinite order [39,40].

This first section has allowed to lay the foundations of the asymptotic framework. The limit Sobolev kernel
K∞

Sob has been identified and its properties have been carefully studied. In the next section, the connections
between the Mercer feature map of K∞

Sob and the shifted Legendre polynomials are investigated.

8.2. Asymptotic Mercer feature maps
The question is whether the Mercer decomposition of k∞

Sob has a closed-form expression relying on basic math
functions. Since k∞

Sob = k∞
A is the limit kernel of the sequence (kr

A)r≥1, the Mercer expansion of these kernels
could help guess the asymptotic Mercer decomposition. Unfortunately, it was explained in Section 7.2.1 that the
eigenvalue problem related to Tkr

A
is more or less difficult to solve depending on the value of r. The resolution

is trivial for r ∈ {1, 2} because the kernel definitions k1
A = B̃1 ⊗ B̃1 and k2

A = B̃1 ⊗ B̃1 + B̃2 ⊗ B̃2 are almost
Mercer representations (up to the normalization of B̃1 and B̃2). On the contrary, the eigenvalue equation is
much more difficult to solve when r ≥ 3.

• For r = 3, the Mercer decomposition of k3
A can be obtained after long and exhausting hand calculations.

The three resulting eigenfunctions are polynomials (which is quite normal since the RKHS induced by
kr

A is the space of all zero-mean polynomials with degree at most 3) but they are not P1, P2 and P3.

• For r ≥ 4, there is no point in trying to apply a brute-force approach based on hand calculations.

Therefore, the Mercer decomposition of k∞
Sob cannot be derived from a general result on the Mercer decomposition

of kr
A. A simple method in order to obtain a definitive answer is to compute Tk∞

Sob
P1 and to prove that it cannot

be proportional to P1. For the sake of convenience, the integral calculation is carried out with B1 ∝ P1:

∀x ∈ [0 , 1],
[
Tk∞

Sob
B1
]

(x) =
∫ 1

0
k∞

Sob(x, ξ)B1(ξ) dξ =
∫ 1

0
ξ k∞

Sob(x, ξ) dξ =
∞∑

k=1

(∫ 1

0
ξ B̃k(ξ) dξ

)
B̃k(x)

=
∞∑

k=1
(−1)k+1 B̃k+1(0) B̃k(x) = 1

12 B̃1(x) +
∞∑

k=1
B̃2k(0) B̃2k+1(x) .

An integration by parts is used to switch from the first line to the second line. Then, the properties of
Bernoulli numbers (see Appendix A.1.2) enable simplifications leading to the final expression. According to
Proposition 8.2, the polynomials (B̃k)k≥1 are ℓ2-linearly independent. This allows to prove that Tk∞

Sob
B1 and

B1 cannot be proportional. As a consequence, B1 is not an eigenfunction of Tk∞
Sob

and neither is P1. With the
same technique but longer calculations, it could be proved that P2 is not an eigenfunction of Tk∞

Sob
, and so on.

Once again, the shifted Legendre polynomials (Pk)k≥1 appear not to be the eigenfunctions of the integral
operator under study. Thus, the asymptotic framework does not explain why those polynomials provide so
accurate approximations of the eigenfunctions involved in the Mercer expansions of the kernels (kr

A)r≥1 and
(kr

Sob)r≥2. Identifying the Mercer expansion of k∞
Sob thus remains an open question.



36 NEW INSIGHTS INTO THE FEATURE MAPS OF SOBOLEV KERNELS

9. Conclusion
The declared objective of this work was to shed light on how the new generation of HSIC indices (called

HSIC-ANOVA indices and based on the use of Sobolev kernels) measures sensitivity. More specifically, as the
knowledge of the feature maps is the key to identify the non-linear transformations applied to the input and
output variables, the most expected achievement was the extraction of at least one fully explicit feature map
from each (unanchored) Sobolev kernel.

Three strategies have been explored: (i) KFA, (ii) the differential approach and (iii) the decomposition into
sub-kernels. It was found that their conclusions overlap on many points, while remaining highly complementary
in the information they provide. Regarding how the feature maps of Sobolev kernels change with r, the three
approaches agree that only two cases need to be distinguished (namely r = 1 vs. r ≥ 2). The Sobolev kernel
K1

Sob is only composed of purely sinusoidal features. The eigenfunctions are cosine functions and the decay rate
of the eigenvalues is 1/k2. Hence, if K1

Sob is assigned to all input variables, the information captured by the
first-order HSIC-ANOVA indices is now transparent:

SHSIC
i ∝ HSIC(Xi, Y ) =

∞∑
k=1

∑
l

1
(kπ)2 |Cov (ck(Xi) , vl(Y )) |2 with

∀ k ≥ 1, ck(xi) =
√

2 cos(kπxi) ,

(vl)l an ONB of HY .

In contrast, if r ≥ 2, Kr
Sob consists of polynomial-like features. The eigenfunctions estimated with the KFA

method look like the shifted Legendre polynomials and the eigenvalues decrease much faster. From a numerical
standpoint, K2

Sob and the following Sobolev kernels behave almost like the dot-product kernel Klin because
their Mercer feature maps are characterized by the predominance of one single linear feature. If K2

Sob is used
to implement the HSIC-ANOVA decomposition, the information captured by the first-order indices is now:

SHSIC
i ∝ HSIC(Xi, Y ) ≈

∑
l

|Cov (B1(Xi) , vl(Y )) |2 with

 B1(xi) = xi − 1
2 ,

(vl)l an ONB of HY .

An important lesson is therefore to avoid using a Sobolev kernel Kr
Sob of order r ≥ 2 within the HSIC. Even

though all Sobolev kernels are characteristic, the computation of HSIC-ANOVA indices must be restricted to
K1

Sob. In a more general perspective, this prompts to question the importance of using characteristic kernels
in GSA. Of course, characteristic kernels offer theoretical guarantees regarding the ability of the HSIC to
characterize independence. However, in practice, this is not sufficient to ensure an efficient detection of statistical
dependence. Using a characteristic kernel is a good practice but investigating the macroscopic kernel behavior
is just as important, if not more so.

At the end of this work, one can say that most of the questions raised by the use of Sobolev kernels received
a satisfactory answer. In light of the numerical and theoretical results, K1

Sob appears to be a nice kernel that
should be trusted to implement the HSIC-ANOVA decomposition. As the first-order HSIC-ANOVA indices are
sufficient to characterize independence (see Remark 4.5), one may wonder about the added value of the total-
order indices. This question echoes the numerical study proposed in [30] where the first-order and total-order
HSIC-ANOVA indices are almost equal in all presented test cases. The very nature of the additional information
captured by higher-order indices will be investigated in future works.
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Appendix A. Remarkable properties of two families of polynomials

A.1. Bernoulli polynomials
This section brings together various results on Bernoulli polynomials which are notably used in the proofs of

Appendix F. A similar table dedicated to Bernoulli polynomials can be found in [1] (see Section 23, pp. 804–
808). For a much more comprehensive overview of existing results on Bernoulli polynomials, it is strongly
recommended to have a look at [68].

A.1.1. Explicit expressions for low degrees
Bernoulli polynomials (Bn)n≥0 are all defined on [0 , 1]. The analytical expressions of the first Bernoulli

polynomials are detailed below:

• B0(x) = 1 ; • B4(x) = x4 − 2x3 + x2 − 1
30 ;

• B1(x) = x− 1
2 ; • B5(x) = x5 − 5

2 x
4 + 5

3 x
3 − 1

6 x ;

• B2(x) = x2 − x+ 1
6 ; • B6(x) = x6 − 3x5 + 5

2 x
4 − 1

2 x
2 + 1

42 ;

• B3(x) = x3 − 3
2 x

2 + 1
2 ; • B7(x) = x7 − 7

2 x
6 + 7

2 x
5 − 7

6 x
3 + 1

6 x .

A.1.2. Bernoulli numbers
For any n ≥ 0, the value Bn(0) is called the n-th Bernoulli number. Here is a list of the first ones:

B0(0) = 1 ; B1(0) = −1
2 ; B2(0) = 1

6 ; B3(0) = 0 ; B4(0) = − 1
30 ; B5(0) = 0 ;

B6(0) = 1
42 ; B7(0) = 0 ; B8(0) = − 1

30 ; B9(0) = 0 ; B10(0) = 5
66 ; B11(0) = 0 . . .

In particular, Bernoulli numbers verify the following properties:

• ∀n ≥ 1, B2n+1(0) = 0 ;

• ∀n ≥ 1, |B2n(0)| = (−1)n+1B2n(0) ;

• |B2n(0)| ∼
n→∞

4
√
nπ
( n

π e

)2n

.

A.1.3. Derivatives

∀n ≥ 1, B′
n(·) = nBn−1(·)

A.1.4. Symmetries and boundary values

∀n ≥ 0, ∀x ∈ [0 , 1], Bn(1 − x) = (−1)n Bn(x)
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This leads to distinguish three cases:

B1(1) = −B1(0) = 1
2 ;

∀n ≥ 0, B2n(1) = B2n(0) ̸= 0 ;

∀n ≥ 1, B2n+1(1) = B2n+1(0) = 0 .

For any n ≥ 2, the polynomial function Bn : [0 , 1] → R can be seen as the restriction of a continuous 1-periodic
function defined on R.

A.1.5. Fourier series expansions
Any Bernoulli polynomial (except B1) is equal to its Fourier series on [0 , 1]. For B1, the equality only holds

on (0 , 1) since B1 cannot be extended as a continuous 1-periodic function. The complex and real versions of
the Fourier series are respectively given by:

• ∀ 0 ≤ x ≤ 1, B0(x) = 1 ;

• ∀ 0 < x < 1, B1(x) = − 1
2πi

∑
k∈Z∗

e2πikx

k
= −

∞∑
k=1

sin(2kπx)
kπ

;

• ∀n ≥ 2, ∀ 0 ≤ x ≤ 1, Bn(x) = − n!
(2πi)n

∑
k∈Z∗

e2πikx

kn
= (−2)n!

∞∑
k=1

cos(2kπx− nπ
2 )

(2kπ)n
.

A.1.6. Mean values

∀n ≥ 1,
∫ 1

0
Bn(x) dx = 0

A.1.7. Integrals

• ∀ (i, j) ∈ N2, βij := ⟨Bi, Bj⟩L2 =
∫ 1

0
Bi(x)Bj(x) dx = (−1)i+1 i! j!

(i+ j)! Bi+j(0) .

• ∀n ∈ N, ∥Bn∥2
L2 =

∫ 1

0
Bn(x)2 dx = (n!)2

(2n)! |B2n(0)| .

A.1.8. Upper bound

∀n ≥ 1, ∥Bn∥∞ = max
x∈[0 ,1]

|Bn(x)| =: M+
n ≤ 4n!

(2π)n

A.2. Legendre polynomials
A few elements about Legendre polynomials are introduced in this section. More details on orthogonal

families of polynomials are provided in [1] (see pp. 773–780).

A.2.1. Definition
Definition A.1. There exists a unique family (Lk)k≥0 of orthogonal polynomial functions in L2([−1 , 1]) such
that deg(Lk) = k and Lk(1) = 1 for all k ≥ 0. They are called Legendre polynomials and they form a complete
and orthogonal system in L2([−1 , 1]).
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Remark A.2. Legendre polynomials are not an ONB of L2([−1 , 1]) because they do not have unit norm:

∀ k ≥ 0, ∥Lk∥2
L2 =

∫ 1

−1
Lk(t)2 dt = 2

2k + 1 ̸= 1 .

For any given interval [a , b], an ONB of L2([a , b]) can be derived from Legendre polynomials. Such basis will
be denoted by (Pk)k≥1 in this work. It is simply obtained by rescaling and renormalizing Legendre polynomials:

∀ t ∈ [a , b], σ(t) = 2t− (a+ b)
b− a

and ∀ k ≥ 0, Pk(t) := [Lk ◦ σ](t)
∥Lk ◦ σ∥L2

=
√

2k + 1
b− a

Lk

(
2t− (a+ b)

b− a

)
.

The shift function σ is a linear mapping from [a , b] into [−1 , 1] that helps go back to the standard definition
domain of Legendre polynomials. Using σ allows to preserve orthogonality among the polynomials (Pk)k≥1
while the multiplying factor ∥Lk ◦σ∥−1

L2 =
√

(2k + 1)/(b− a) ensures that the polynomial functions (Pk)k≥0 are
normalized in L2([a , b]). In the specific case where a = 0 and b = 1, the polynomials (Pk)k≥1 are called the
shifted Legendre polynomials:

∀t ∈ [0 , 1], ∀k ≥ 0, Pk(t) :=
√

2k + 1Lk(2t− 1).

A.2.2. Explicit expressions for low degrees
The very first Legendre and shifted Legendre polynomials are given below:

• L0(x) = 1 ; • P0(x) = 1 ;

• L1(x) = x ; • P1(x) = 2x− 1 ;

• L2(x) = 1
2
(
3x2 − 1

)
; • P2(x) = 6x2 − 6x+ 1 ;

• L3(x) = 1
2
(
5x3 − 3x

)
; • P3(x) = 20x3 − 30x2 + 12x− 1 ;

• L4(x) = 1
8
(
35x4 − 30x2 + 3

)
; • P4(x) = 70x4 − 140x3 + 90x2 − 20x+ 1 .



NEW INSIGHTS INTO THE FEATURE MAPS OF SOBOLEV KERNELS 45

Appendix B. Examples of Mercer decompositions

B.1. Gaussian kernel

∀x, x′ ∈ R, KG(x, x′) := exp
[

−1
2

(
x− x′

γ

)2
]

with γ > 0 and ν is N (0, σ2) .

Eigenvalues and eigenfunctions:

∀ k ≥ 0, λk =
√

2a
A
Bk and ϕk(x) = exp

[
−(c− a)x2] H2k

(√
2c x

)
,

with a = 1
4σ2 ; b = 1

2 γ2 ; c =
√
a2 + 2 ab ; A = a+ b+ c ; B = b

A
.

(Hk)k≥1 are the Hermite polynomials [1] (see pages 773-780).

B.2. Laplace kernel

∀ a > 0, ∀x, x′ ∈ [−a , a], KL(x, x′) = exp
(

−|x− x′|
γ

)
with γ > 0 and ν is U([−a , a]) .

Equivalent boundary value problem:

For any λ > 0, TKL
ϕ = λϕ ⇐⇒ λϕ′′ + w2 ϕ = 0 with


1
γ ϕ(a) + ϕ′(a) = 0
1
γ ϕ(−a) − ϕ′(−a) = 0

and w2 = 2 γ − λ

λ γ2 .

Eigenvalues and eigenfunctions:

• ∀ k ≥ 1, λ1k = 2γ
1 + γ2w2

1k

and ϕ1k(x) = cos(w1kx)√
a+ sin(2w1ka)

2w1k

;

• ∀ k ≥ 1, λ2k = 2γ
1 + γ2w2

2k

and ϕ2k(x) = sin(w2kx)√
a− sin(2w2ka)

2w2k

.

The sequences (w1k)k≥1 and (w2k)k≥1 are the (unknown) solutions of the two following non-linear equations:

(E1) : 1
γ

− w tan(wa) = 0 and (E2) : w + 1
γ

tan(wa) = 0 .
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B.3. Sobolev kernels
B.3.1. Covariance kernel of the Wiener process

∀x, x′ ∈ [0 , 1], KW (x, x′) := min(x, x′) and ν is U([0 , 1]) .

Eigenvalues and eigenfunctions:

∀ k ≥ 1, λk = 1[( 2k−1
2
)
π
]2 and ϕk(x) =

√
2 sin

[(
2k − 1

2

)
πx

]
.

Equivalent boundary value problem:

For any λ > 0, TKW
ϕ = λϕ ⇐⇒ λϕ′′ + ϕ = 0 with

{
ϕ(0) = 0
ϕ′(1) = 0

.

B.3.2. Covariance kernel of the Brownian bridge

∀x, x′ ∈ [0 , 1], KB(x, x′) := min(x, x′) − xx′ and ν is U([0 , 1]) .

Eigenvalues and eigenfunctions:

∀ k ≥ 1, λk = 1
(kπ)2 and ϕk(x) =

√
2 sin(kπx) .

Equivalent boundary value problem:

For any λ > 0, TKB ϕ = λϕ ⇐⇒ λϕ′′ + ϕ = 0 with
{
ϕ(0) = 0
ϕ(1) = 0

.

B.3.3. Reproducing kernel of the standard Sobolev space of order r = 1

∀x, x′ ∈ [0 , 1], K1(x, x′) = 2e
e2 − 1 cosh [ min(x, x′)] cosh [1 − max(x, x′)] and ν is U([0 , 1]) .

Eigenvalues and eigenfunctions:

• λ0 = 1 and ϕ0(x) = 1 ;

• ∀ k ≥ 1, λk = 1
1 + (kπ)2 and ϕk(x) =

√
2 cos(kπx) .

Equivalent boundary value problem:

For any λ > 0, TK1 ϕ = λϕ ⇐⇒ λϕ′′ + (1 − λ)ϕ = 0 with
{
ϕ′(0) = 0
ϕ′(1) = 0

.
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B.3.4. Reproducing kernel of the unanchored Sobolev space of order r = 1

∀x, x′ ∈ [0 , 1], K1
Sob(x, x′) = 1 + k1

Sob(x, x′) = 1 +B1(x)B1(x′) + 1
2 B2 (|x− x′|) and ν is U([0 , 1]) .

Eigenvalues and eigenfunctions:

• λ0 = 1 and ϕ0(x) = 1 ;

• ∀ k ≥ 1, λk = 1
(kπ)2 and ϕk(x) =

√
2 cos(kπx) .

Equivalent boundary value problem:

For any λ > 0, Tk1
Sob

ϕ = λϕ ⇐⇒ λϕ′′ + ϕ = 0 with
{
ϕ′(0) = 0
ϕ′(1) = 0

.

B.3.5. Reproducing kernel of the periodic Sobolev space of order r ≥ 1

∀x, x′ ∈ [0 , 1], Kr
per(x, x′) = 1 + kr

per(x, x′) = 1 + (−1)r+1

(2r)! B2r(|x− x′|) and ν is U([0 , 1]) .

Eigenvalues and eigenfunctions:

• λ0 = 1 and ϕ0(x) = 1 ;

• ∀ k ≥ 1, λ1k = 1
(2kπ)2r

and ϕ1k(x) =
√

2 cos(2kπx) ;

• ∀ k ≥ 1, λ2k = 1
(2kπ)2r

and ϕ2k(x) =
√

2 sin(2kπx) .

Equivalent boundary value problem:

For any λ > 0, Tkr
per
ϕ = λϕ ⇐⇒ λϕ[2r] + (−1)r+1ϕ = 0 with

ϕ
[k](0) = ϕ[k](1)

∀ 0 ≤ k ≤ 2r − 1
.

B.4. Related literature
If additional details are sought, the reader is kindly referred to the following papers:

• For KG: [116] (see pp. 97–98).

• For KL: [48] (see pp. 29–32).

• For KW : [58] (see pp. 487–492).

• For KB: [27] (see p. 7).

• For K1: [41] (see p. IV.8) and [108] (see p. 27).

• For K1
Sob: [36] (see pp. 9–10).

• For Kr
per: [111] (see p. 386).
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Appendix C. Inference of kernel-based sensitivity measures
Let g : X1 × . . .Xd → Y be a numerical simulator. The input variables X1, . . . , Xd and the output variable

Y := g(X1, . . . , Xd) are assumed to be scalar14. They are respectively assigned the kernels K1, . . . ,Kd and KY .
In addition, for each pair Zi := (Xi, Y ) composed of one given input and the common output, the two marginal
distributions and the joint distribution are respectively denoted by PXi

, PY and PXiY .

C.1. Kernel-based sensitivity measures
C.1.1. HSIC indices

The most convenient way to write HSIC indices is to use their formula based on expectations [54]. In fact,
the HSIC index for the pair (Xi, Y ) may be expressed as:

HSIC(Xi, Y ) = E [Ki(Xi, X
′
i)KY (Y, Y ′)] + E [Ki(Xi, X

′
i)] E [KY (Y, Y ′)] − 2E [Ki(Xi, X

′
i)KY (Y, Y ′′)] , (C.1)

where Zi = (Xi, Y ), Z ′
i := (X ′

i, Y
′) and Z ′′

i := (X ′′
i , Y

′′) are three independent random pairs following the same
bivariate distribution PXiY .

C.1.2. R2-HSIC indices
The normalized HSIC index (also called the R2-HSIC index) between Xi and Y is defined in the same fashion

as Pearson’s correlation coefficient (with the HSIC replacing the covariance operator):

R2(Xi, Y ) := HSIC(Xi, Y )√
HSIC(Xi, Xi)

√
HSIC(Y, Y )

. (C.2)

Normalization has the desired effect since one has 0 ≤ R2(Xi, Y ) ≤ 1. However, the proof of this result is much
more complicated than a simple application of the Cauchy-Schwarz inequality (see [31] for more details).

C.1.3. HSIC-ANOVA indices
Provided that the input and output kernels satisfy all the assumptions of Theorem 4.4, an ANOVA-like

decomposition exists for HSIC indices [30]. In particular, the HSIC between X := [X1, . . . , Xd] and Y can be
decomposed as follows:

HSIC(X, Y ) =
∑

u⊆{1,...,d}

HSICu =
∑

u⊆{1,...,d}

∑
v⊆u

(−1)|u|−|v|HSIC(Xv, Y ) .

This allows to define the first-order and total-order HSIC-ANOVA indices in a similar way as Sobol’ indices:

SHSIC
i := HSIC(Xi, Y )

HSIC(X, Y ) and THSIC
i := 1 − HSIC(X−i, Y )

HSIC(X, Y ) (C.3)

where X−i := [Xj ]j ̸=i. Moreover, after realizing that HSIC(X, Y ) − HSIC(X−i, Y ) =
∑

u∋i HSIC(Xu, Y ), it
can be easily proved that 0 ≤ SHSIC

i ≤ THSIC
i ≤ 1.

C.2. Estimation of the HSIC
Here, the objective is to show how to estimate the HSIC between an input variable X ∼ PX (equipped with

the kernel KX) and an output variable Y ∼ PY (equipped with the kernel KY ). Of course, everything can be
generalized to a vector of input variables, thus allowing any of the kernel-based sensitivity measure defined in
Section C.1 to be estimated.

14This choice is made for the sake of simplicity. However, note that everything remains true when the random objects live in
(possibly different) separable spaces [52].
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C.2.1. Preliminary formalization
After grouping all its terms within a single expectation, the HSIC becomes:

HSIC(X,Y ) = E [KX(X,X)KY (Y, Y ′)] + E [KX(X,X ′)] E [KY (Y, Y ′)] − 2E [KX(X,X ′)KY (Y, Y ′′)]

= E [KX(X1, X2)KY (Y1, Y2) +KX(X1, X2)KY (Y3, Y4) − 2KX(X1, X2)KY (Y1, Y3)]

= E [θ(Z1,Z2,Z3,Z4)]

where Z1 := (X1, Y1), Z2 := (X2, Y2), Z3 := (X3, Y3) and Z4 := (X4, Y4) are four independent random pairs
following the same bivariate distribution PXY , and θ : Z4 → R (with Z := X × Y) is the 4-argument function
defined by:

θ : (z1, z2, z3, z4) 7−→ KX(x1, x2)KY (y1, y2) +KX(x1, x2)KY (y3, y4) − 2KX(x1, x2)KY (y1, y3) .

Since θ is not symmetric (i.e. it is not invariant under all possible permutations of its arguments), the theory of
U-statistics and V-statistics [91] (see Chapters 5 and 6, pp. 171–242) cannot be applied directly. To circumvent
this pitfall, θ needs to be replaced by the symmetric function:

θ̃(z1, z2, z3, z4) := 1
4!
∑
σ∈S4

θ
(
zσ(1), zσ(2), zσ(3), zσ(4)

)
where S4 is the set of all permutations of {1, 2, 3, 4}. Ultimately, one has HSIC(X,Y ) = E

[
θ̃(Z1,Z2,Z3,Z4)

]
,

and this expression is the key to build Monte Carlo estimators.

C.2.2. U-statistic and V-statistic estimators
The available data is a Monte Carlo design of experiments composed of n input-output samples:

Zobs :=
{

Z(i)
}

1≤i≤n
=
{(
X(i), Y (i)

)}
1≤i≤n

∼ (PXY )⊗n
.

The U-statistic estimator of HSIC(X,Y ) is given by:

ĤU :=
(
n

4

)−1 ∑
1≤i1<...<i4≤n

θ̃
(

Z(i1),Z(i2),Z(i3),Z(i4)
)

= 1
(n)2

∑
i1 ̸=i2

KX

(
X(i1), X(i2)

)
KY

(
Y (i1), Y (i2)

)
. . .

− 2
(n)3

∑
i1 ̸=i2 ̸=i3

KX

(
X(i1), X(i2)

)
KY

(
Y (i1), Y (i3)

)
. . .

+ 1
(n)4

∑
i1 ̸=... ̸=i4

KX

(
X(i1), X(i2)

)
KY

(
Y (i3), Y (i4)

)
,

with (n)p := n!/(n− p)! for any 0 ≤ p ≤ n. By way of comparison, the V-statistic estimator of HSIC(X,Y ) has
a similar (although slightly simpler) expression:

ĤV := 1
n4

∑
1≤i1,...,i4≤n

θ̃
(

Z(i1),Z(i2),Z(i3),Z(i4)
)
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= 1
n2

∑
i1,i2

KX

(
X(i1), X(i2)

)
KY

(
Y (i1), Y (i2)

)
. . .

− 2
n3

∑
i1,i2,i3

KX

(
X(i1), X(i2)

)
KY

(
Y (i1), Y (i3)

)
. . .

+ 1
n4

∑
i1,i2,i3,i4

KX

(
X(i1), X(i2)

)
KY

(
Y (i3), Y (i4)

)
.
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Appendix D. Kernel feature analysis
Let K : X × X → R be a Mercer kernel, let ν be a probability measure with support X and let TK be the

integral operator built from K and ν. The objective here is to give additional details regarding the numerical
procedure described in Section 5.1 to solve the eigenvalue problem:

TK ϕ = λϕ with ϕ ∈ L2(X , ν) and λ > 0 .

Originally, the approach described below was known as the Nyström method [99,100]. In more recent papers, it is
also called kernel principal component analysis (kernel PCA) [72,89,90] or kernel feature analysis (KFA) [65,95].
In this work, it was decided to use the latter terminology.

D.1. Discretization of the initial eigenvalue problem
Let f ∈ L2(X , ν) be an eigenfunction of TK associated to λ > 0. For now, the idea is to solve the eigenvalue

equation TK f = λ f without paying attention to the fact that the eigenfunction mentioned in Theorem 2.18
are expected to have unit L2-norm. This renormalization issue will be addressed later. The starting point is to
draw a n-sample xsim := (xi)1≤i≤n from ν. For any x ∈ X , the pointwise equality [TK f ](x) = λ f(x) can be
discretized with the Monte Carlo method:

λ f(x) =
∫

X
K(x, ξ) f(ξ) dξ ≈ 1

n

n∑
j=1

K(x, xj) f(xj) with x1, . . . , xn
i.i.d.∼ ν .

Taking x = xi for i ∈ {1, . . . , n} yields a system of n linear equations:

∀ 1 ≤ i ≤ n, λ f(xi) ≈ 1
n

n∑
j=1

K(xi, xj) f(xj) .

After denoting by vi := f(xi) the unknown values taken by f at the simulated points, the above system of
equations may be rewritten as a matrix equation based on the simulated Gram matrix Kn:

Kn v = (nλ) v with Kn := [K(xi, xj)]1≤i,j≤n ∈ Rn×n and v := [vi]1≤i≤n ∈ Rn . (D.1)

The eigenvalue problem related to TK is thus transformed into a matrix eigenvalue problem which can be solved
numerically (as long as n is not too large).

Remark D.1. Let ψ : X → F be one possible feature map of K. Knowing that K(xi, xj) = ⟨ψ(xi), ψ(xj)⟩F ,
the Gram matrix Kn can be envisioned as the covariance matrix of the n feature functions ψ(xi) in the feature
space F . Furthermore, since KFA is basically an eigenanalysis of Kn, it is often called kernel PCA.

D.2. Estimation of the eigenvalues and eigenfunctions
Let (γk)1≤k≤n denote the eigenvalues of Kn and let (vk)1≤k≤n denote the corresponding eigenvectors. By

convention, it is assumed that γ1 ≥ . . . ≥ γn ≥ 0. Note that the eigenvalues are all non-negative because Kn

is a symmetric positive semi-definite matrix. With Eq. (D.1), it is clear that the k-th largest eigenvalue of TK

can be estimated by λ̂k = γk/n.
Now, the question is how to estimate the eigenfunctions (ϕk)1≤k≤n of TK from the eigenvectors (vk)1≤k≤n

of the matrix Kn. As already said when establishing Eq. (D.1), the k-th eigenvector vk := [vik]1≤i≤n may be
seen as a discrete estimate of an eigenfunction fk associated to λk:

∀ 1 ≤ i ≤ n, vik ≈ fk(xi) .
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By default, the Euclidean norm of the eigenvector vk returned by the eigenvalue algorithm is equal to 1. Hence,
the L2-norm of fk is decreasing with the sample size n:

∥fk∥2
L2 =

∫
X

|fk(x)|2 dν(x) ≈ 1
n

n∑
i=1

|fk(xi)|2 ≈ 1
n

n∑
i=1

|vik|2 = 1
n

∥vk∥2
Rn = 1

n
.

This means ∥fk∥L2 ≈ 1/
√
n whereas the eigenfunction ϕk involved in the Mercer decomposition must respect

the unit-norm constraint in L2(X , ν). To bypass this problem, vk is replaced by wk :=
√
nvk and it is then

possible to construct a discrete estimate of the L2-normalized eigenfunction ϕk := fk/∥fk∥L2 :

wik ≈ ϕk(xi) .

Of course, one could decide to take −wk instead of wk. A rule has to be laid down to eliminate this last
degree of freedom. For this, the simulated data in xsim are sorted in increasing order and the eigenvector wk

is renumbered accordingly. There exists an integer mk such that the subsequence (wik)mk≤i≤n is monotonous.
The sign of wk is then chosen so that this subsequence is increasing. Thus, among the two possible functions,
ϕk is assumed to be the one which is increasing in the neighborhood of the upper bound. This decision rule
applies in all the upcoming numerical experiments.

Remark D.2. The eigenvalue and eigenfunction estimates of TK are simply obtained by properly renormalizing
the eigendecompositon of the Gram matrix Kn:

Kn =
n∑

k=1
γk vkvT

k =
n∑

k=1

(γk

n

) (√
nwk

) (√
nwk

)T =
n∑

k=1
λ̂k ϕ̂k(xsim) ϕ̂k(xsim)T .

D.3. Nyström extension
For extrapolation purposes, it would be interesting to construct a continuous estimate of the unknown

eigenfunction ϕk. To do this, an interpolation method called the Nyström extension [46] can be used. In this
approach, for any given point x ∈ X , the value ϕk(x) is estimated from the only knowledge of γk and wk:

ϕ̂Nys
k (x) := 1

γk

n∑
i=1

wik K(x, xi) ≈ 1
λ̂k

∫
X
K(x, ξ)ϕk(ξ) dν(ξ) ≈ ϕk(x) , (D.2)

and this provides an overall estimator ϕ̂Nys
k of the k-th eigenfunction ϕk on X . Computing the value of ϕ̂Nys

k (x)
for any given prediction point x ∈ X only asks for n additional kernel evaluations between x and the points in
xsim. As ϕ̂Nys

k is expressed as a linear combination of n canonical features, ϕ̂Nys
k inherits from the regularity of

the kernel K. In particular, as K is a continuous kernel, ϕ̂Nys
k is in turn a continuous function.

Remark D.3. Although it was not built to this end, note that the function ϕ̂Nys
k interpolates the points xsim

and wk. Indeed, one has:

∀ 1 ≤ j ≤ n, ϕ̂Nys
k (xj) = 1

γk

n∑
i=1

wik K(xj , xi) = 1
γk

(Kn wk)j = 1
γk

(γk wk)j = wjk .
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Appendix E. Analytical resolution of the boundary value problem

E.1. Exact resolution for r = 1
In this case, the boundary value problem (Br

λ) is restricted to:

λϕ′′ + ϕ = 0 with ϕ′(0) = ϕ′(1) = 0 and λ > 0 . (B1
λ)

To begin with, any real-valued solution of this ODE may be written as:

∀t ∈ [0 , 1], ϕ(t) = α cos(ξt) + β sin(ξt) with ξ := 1√
λ

and (α, β) ∈ R2 .

The boundary conditions on ϕ′ yield β = 0 and sin(ξ) = 0. Hence, there are countably infinitely many possible
solutions for ξ and they are all given by ξk = kπ (with k ≥ 1 since λ > 0). The sequence of eigenvalues (λk)k≥1
directly follows with λk = 1/ξ2

k = 1/(kπ)2. For each eigenvalue λk, a pair (αk, βk) ∈ R2 is used to parametrize
the corresponding eigenfunction ϕk. One has βk = 0 but αk remains free of any constraint. This is natural
since the solution space is expected to be an eigenspace (i.e. a linear subspace of dimension at least 1). More
precisely, the eigenspace associated to λk can be expressed as:

E1(λk) := {ϕk : t ∈ [0 , 1] 7−→ αk cos(kπt) with αk ∈ R} .

The solution space of (B1
λ) contains infinitely many solutions but the Mercer decomposition of k1

Sob requires
L2-normalized eigenfunctions. This leads to take αk = ±

√
2 and ϕk : t ∈ [0 , 1] 7→

√
2 cos(kπt). Everything is

therefore consistent with the Mercer expansion of k1
Sob already found in Section 5.

E.2. Partial resolution for r = 3
E.2.1. Construction of the matrix M3(ξ)

For r = 3, the boundary value problem is given by:

λϕ[6] + ϕ = 0 with


ϕ[3](0) = ϕ[3](1) = 0

ϕ(0) − ϕ(1) = ϕ[5](0) = ϕ[5](1)

ϕ′(1) − ϕ′(0) = ϕ[4](0) = ϕ[4](1)

and λ > 0 . (B3
λ)

Any real-valued solution of this ODE may be written as:

ϕ(t) = α cos(ξt) + β sin(ξt) + γ exp (
√

3
2 ξt) cos ( 1

2 ξt) + δ exp (
√

3
2 ξt) sin ( 1

2 ξt) . . .

+µ exp ( −
√

3
2 ξt) cos ( 1

2 ξt) + ν exp ( −
√

3
2 ξt) sin ( 1

2 ξt)

with ξ := 1
6
√
λ

and (α, β, γ, δ, ϵ, ζ) ∈ R6 .

(E.1)
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To go further, the boundary conditions of (B3
λ) need to be rewritten in terms of the general solution of the

ODE. For the sake of convenience, Eq. (E.1) is rewritten in a more compact style:

ϕ(t) = wT Q(t) =
6∑

i=1
wi Qi(t | ξ)

with w := [wi ]1≤i≤6 =


α
β
γ
δ
ϵ
ζ

 and Q(t) := [Qi(t | ξ) ]1≤i≤6 =



cos(ξt)
sin(ξt)
exp (

√
3

2 ξt) cos ( 1
2 ξt)

exp (
√

3
2 ξt) sin ( 1

2 ξt)

exp ( −
√

3
2 ξt) cos ( 1

2 ξt)

exp ( −
√

3
2 ξt) sin ( 1

2 ξt)


.

Assuming that λ = 1/ξ6 is an eigenvalue of Tk3
Sob

, the functions [Qi(· | ξ)]1≤i≤6 form a basis of the 6-dimensional
solution space of the ODE involved in (B3

λ). After rewriting the trigonometric functions as the real parts of
complex-valued functions, the derivatives of the basis functions can be easily calculated:

∀k ≥ 0,



Q
[k]
1 (t | ξ) = ξk cos (ξt+ kπ

2 )

Q
[k]
2 (t | ξ) = ξk sin (ξt+ kπ

2 )

Q
[k]
3 (t | ξ) = ξk exp (

√
3

2 ξt) cos ( 1
2 ξt+ kπ

6 )

Q
[k]
4 (t | ξ) = ξk exp (

√
3

2 ξt) sin ( 1
2 ξt+ kπ

6 )

Q
[k]
5 (t | ξ) = ξk exp ( −

√
3

2 ξt) cos ( 1
2 ξt+ 5kπ

6 )

Q
[k]
6 (t | ξ) = ξk exp ( −

√
3

2 ξt) sin ( 1
2 ξt+ 5kπ

6 )

.

These formulas allow to rearrange the boundary conditions as a system of equations which can be summarized
by M3(ξ) w = 0. In order to provide the analytical expression of all coefficients, M3(ξ) is described with the
help of its two half-matrices:

M3(ξ) =
[

MA(ξ) MB(ξ)
]

∈ R6×6 with
{

MA(ξ) ∈ R6×3

MB(ξ) ∈ R6×3
.

They are respectively given by:

MA(ξ) =



0 −1 0

sin(ξ) − cos(ξ) −e
√

3
2 ξ sin

( 1
2 ξ
)

cos(ξ) − 1 sin(ξ) e
√

3
2 ξ cos

( 1
2 ξ + 2π

3
)

+ 1
2

− sin(ξ) cos(ξ) − 1 e
√

3
2 ξ cos

( 1
2 ξ + 5π

6
)

+
√

3
2

cos(ξ) − 1 sin(ξ) + ξ5 e
√

3
2 ξ cos

( 1
2 ξ
)

− 1 −
√

3
2 ξ5

−( sin(ξ) + ξ3) cos(ξ) − 1 e
√

3
2 ξ cos

( 1
2 ξ + π

6
)

−
√

3
2 + 1

2 ξ
3


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and:

MB(ξ) =



1 0 1

e
√

3
2 ξ cos

( 1
2 ξ
)

−e−
√

3
2 ξ sin

( 1
2 ξ
)

e−
√

3
2 ξ cos

( 1
2 ξ
)

e
√

3
2 ξ sin

( 1
2 ξ + 2π

3
)

−
√

3
2 e−

√
3

2 ξ cos
( 1

2 ξ − 2π
3
)

+ 1
2 e−

√
3

2 ξ sin
( 1

2 ξ − 2π
3
)

+
√

3
2

e
√

3
2 ξ sin

( 1
2 ξ + 5π

6
)

− 1
2 e−

√
3

2 ξ cos
( 1

2 ξ + π
6
)

−
√

3
2 e−

√
3

2 ξ sin
( 1

2 ξ + π
6
)

− 1
2

e
√

3
2 ξ sin

( 1
2 ξ
)

+ 1
2ξ

5 e−
√

3
2 ξ cos

( 1
2 ξ
)

− 1 +
√

3
2 ξ5 e−

√
3

2 ξ sin
( 1

2 ξ
)

+ 1
2ξ

5

e
√

3
2 ξ sin

( 1
2 ξ + π

6
)

− 1
2 −

√
3

2 ξ3 e−
√

3
2 ξ cos

( 1
2 ξ + 5π

6
)

+
√

3
2 + 1

2 ξ
3 e−

√
3

2 ξ sin
( 1

2 ξ + 5π
6
)

− 1
2 +

√
3

2 ξ3



.

E.2.2. Proof of Proposition 6.7
It would be useless to seek to obtain a one-line expression of η3(ξ) = det [M3(ξ)] with a computation by hand

of the determinant. To find the function η∞
3 which is asymptotically equivalent to η3, the trick is to factorize

each row Li (with 1 ≤ i ≤ 6) and each column Cj (with 1 ≤ j ≤ 6) in M3(ξ) by its leading-order term. In
particular:

• L5 must be factorized by ξ5.

• L6 must be factorized by ξ3.

• C3 and C4 must be factorized by e
√

3
2 ξ.

Then, one has η3(ξ) = ξ8 e
√

3ξ det [N3(ξ)] with N3(ξ) the matrix obtained after operating all factorizations.
The idea is then to find a simple function which is asymptotically equivalent to det [N3(ξ)]. A first step consists
in taking asymptotically equivalent functions for all the coefficients of the matrix N3(ξ):

det [N3(ξ)] ∼
ξ→∞

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 e−
√

3
2 ξ 0 1

sin(ξ) − cos(ξ) − sin
( 1

2 ξ
)

cos
( 1

2 ξ
)

e−
√

3
2 ξ sin

( 1
2 ξ
)

e−
√

3
2 ξ cos

( 1
2 ξ
)

cos(ξ) − 1 sin(ξ) cos
( 1

2 ξ + 2π
3
)

sin
( 1

2 ξ + 2π
3
) 1

2

√
3

2

− sin(ξ) cos(ξ) − 1 cos
( 1

2 ξ + 5π
6
)

sin
( 1

2 ξ + 5π
6
)

−
√

3
2 − 1

2

cos(ξ) − 1
ξ5 1

cos
( 1

2 ξ
)

ξ5
sin
( 1

2 ξ
)

ξ5

√
3

2
1
2

−1 cos(ξ) − 1
ξ3

cos
( 1

2 ξ + π
6
)

ξ3
sin
( 1

2 ξ + π
6
)

ξ3
1
2

√
3

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

∼
ξ→∞

det [N∞
3 (ξ)]

The framed coefficients in N∞
3 (ξ) correspond to asymptotic approximations as opposed to all other coefficients

which correspond to the original terms in N3(ξ). It is much more convenient to handle N∞
3 (ξ) because the
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coefficients have simple expressions and most of them vanish asymptotically. To go further, the determinant
calculation rules (and especially the cofactor expansion) must be applied cleverly. More specifically, at each
step, the calculations must be carried out so that the coefficients which are asymptotically vanishing enable
simplifications. It is a fastidious job but it must be completed patiently in order to obtain:

det [N∞
3 (ξ)] ∼

ξ→∞
3
4 sin(ξ) .

The details of the step-by-step dimension reduction are not provided here for conciseness. This finally leads to
the expected result:

η3(ξ) = det [M3(ξ)] = ξ8 e
√

3ξ det [N3(ξ)] ∼
ξ→∞

ξ8 e
√

3ξ det [N∞
3 (ξ)]

∼
ξ→∞

η∞
3 (ξ) = 3

4 sin(ξ) ξ8 e
√

3ξ .
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Appendix F. Proofs

F.1. Proof of Theorem 2.23
The idea is to prove that K is indeed the reproducing kernel of the RKHS defined in Theorem 2.23. First, it

must be checked that all functions in H are well-defined. For any h ∈ H, there exists (ai)i∈I ∈ ℓ2(I) such that
h(·) =

∑
i∈I ai gi(·) and the convergence of the series must be justified at any point x ∈ X . For this, simply

apply the Cauchy-Schwarz inequality:

∀x ∈ X , |h(x)| =

∣∣∣∣∣∑
i∈I

ai gi(x)

∣∣∣∣∣ ≤

(∑
i∈I

a2
i

)1/2 (∑
i∈I

gi(x)2

)1/2

= ∥(ai)i∈I∥ℓ2

√
K(x, x) < ∞ .

The vector space H from Eq. (2.17) is therefore composed of well-defined functions. The map ⟨·, ·⟩H : H×H → R
defined in Eq. (2.18) is also well-defined:

• The sequences (ai)i∈I and (bi)i∈I used to write h1 and h2 are uniquely defined since the functions (gi)i∈I

are assumed to be ℓ2-linearly independent.

• The series
∑

i∈I aibi is always convergent because the sequences (ai)i∈I and (bi)i∈I belong to ℓ2(I).
From this, it can be easily proved that (H, ⟨·, ·⟩H) is a Hilbert space. In particular, the normed space (H, ∥·∥H)
inherits from the completeness of ℓ2(I). Now, it only remains to prove that K is a reproducing kernel for the
constructed Hilbert space. For any x ∈ X , one has:

K(·, x) =
∑
i∈I

gi(x) gi(·) with ∥(gi(x))i∈I∥2
ℓ2 =

∑
i∈I

gi(x)2 = K(x, x) < ∞ ,

which allows to prove that K(·, x) belongs to H. In addition, the reproducing property is verified:

∀h ∈ H, ∀x ∈ X , ⟨h,K(·, x)⟩H =
〈∑

i∈I

ai gi(·) ,
∑
i∈I

gi(x) gi(·)
〉

H

=
∑
i∈I

ai gi(x) = h(x) .

(H, ∥·∥H) is therefore a Hilbert space for which K is reproducing. By Theorem 2.5, we know that it is the only
one, which ends the proof.

F.2. Proof of Proposition 6.1
Let ϕ ∈ L2([0 , 1]) be an eigenfunction of Tkr

Sob
associated to λ > 0. It must be proved that ϕ ∈ C∞([0 , 1])

and that ϕ is a solution of the ODE recalled below:

λϕ[2r] + (−1)r+1 ϕ = 0 . (Er
λ)

First, let us prove that ϕ has zero mean:∫ 1

0
ϕ(x) dx = 1

λ

∫ 1

0
[Tkr

Sob
ϕ](x) dx =

∫ 1

0

(∫ 1

0
kr

Sob(x, ξ)ϕ(ξ) dξ
)

dx by definition of Tkr
Sob
,

=
∫ 1

0

(∫ 1

0
kr

Sob(x, ξ) dx
)
ϕ(ξ) dξ with Fubini’s theorem,

= 0 as kr
Sob is orthogonal.

Before going further, let us recall a very classical result in differential calculus.
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Theorem F.1 (Leibniz integral rule). Let I ⊆ R be an interval. Let a : I → R and b : I → R be two
continuously differentiable functions. Let h : I × R 7−→ R such that:

• h is continuous on I × R,

• h(·, ξ) is continuously differentiable on I for all ξ ∈ R,

• h(x, ·) is integrable on R for all x ∈ I.
Then, the function defined by:

H : I −→ R

x 7−→
∫ b(x)

a(x)
h(x, ξ) dξ ,

is continuously differentiable on I with:

∀x ∈ I, H ′(x) =
∫ b(x)

a(x)

∂h

∂x
(x, ξ) dξ + b′(x)h(x, b(x)) − a′(x)h(x, a(x)) . (F.1)

The main idea of our proof is to use the Leibniz integral rule to justify that the eigenvalue equation
[Tkr

Sob
ϕ](·) = λϕ(·) is (at least) 2r times differentiable on [0 , 1]. The derivatives λϕ[k] = (Tkr

Sob
ϕ)[k] for all

k ∈ {1, . . . , 2r} can then be computed with the help of Eq. (F.1). To begin, let us revert to the integral
expression of Tkr

Sob
ϕ:

λϕ(x) =
[
Tkr

Sob
ϕ
]

(x) =
∫ 1

0
kr

Sob(x, ξ)ϕ(ξ) dξ

=
∫ 1

0

(
r∑

k=1

Bk(x)Bk(ξ)
(k!)2 + (−1)r+1

(2r)! B2r(|x− ξ|)
)
ϕ(ξ) dξ

=
r∑

k=1

(∫ 1

0
Bk(ξ)ϕ(ξ) dξ

)
Bk(x)
(k!)2 + (−1)r+1

(2r)!

∫ 1

0
B2r(|x− ξ|)ϕ(ξ) dξ

=
r∑

k=1

βk

(k!)2 Bk(x) + (−1)r+1

(2r)!

[∫ x

0
B2r(x− ξ)ϕ(ξ) dξ +

∫ 1

x

B2r(ξ − x)ϕ(ξ) dξ
]

= GA(x) + (−1)r+1

(2r)! GB(x) . (F.2)

Of course, GA ∈ C∞([0 , 1]). Because of the recursive formula ruling the differentiation of Bernoulli polynomials
(see Appendix A.1.3), the derivatives of GA can be expressed as follows:∀ p ∈ {1, . . . , r}, G

[p]
A (x) =

r∑
k=p

βk

k!(k − p)! Bk−p(x) ;

∀ p > r, G
[p]
A (x) = 0 .

(F.3)

Regarding GB , it is a bit more complicated. It must be noted that Theorem F.1 applies to both integrals. In
particular, ϕ is continuous on [0 , 1] because λ > 0 (according to Theorem 2.18). As a consequence, the functions
ξ 7→ B2r(x − ξ)ϕ(ξ) and ξ 7→ B2r(ξ − x)ϕ(ξ) verify all the assumptions of Theorem F.1. Therefore, GB is
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continuously differentiable on [0 , 1] and one has:

G′
B(x) = 2r

∫ x

0
B2r−1(x− ξ)ϕ(ξ) dξ +B2r(0)ϕ(x) − 2r

∫ x

0
B2r−1(ξ − x)ϕ(ξ) dξ −B2r(0)ϕ(x)

= 2r
[∫ x

0
B2r−1(x− ξ)ϕ(ξ) dξ −

∫ 1

x

B2r−1(x− ξ)ϕ(ξ) dξ
]
.

This suggests that G′
B is also continuously differentiable and G′′

B can be obtained in the same way. In fact, a
simple proof by induction (not given here for conciseness) allows to show that GB is (at least) 2r − 1 times
continuously differentiable on [0 , 1] with:

∀ 1 ≤ p ≤ 2r − 1, G[p]
B (x) = (2r)!

(2r − p)!

[∫ x

0
B2r−p(x− ξ)ϕ(ξ) dξ + (−1)p

∫ 1

x

B2r−p(ξ − x)ϕ(ξ) dξ
]
. (F.4)

The key arguments are the Leibniz integral rule, the derivatives of Bernoulli polynomials (see Appendix A.1.3)
and the boundary values of Bernoulli polynomials (see Appendix A.1.4). For p = 2r − 1, Eq. (F.4) becomes:

G
[2r−1]
B (x) = (2r)!

[∫ x

0
B1(x− ξ)ϕ(ξ) dξ −

∫ 1

x

B1(ξ − x)ϕ(ξ) dξ
]
.

Hence, G[2r−1]
B is continuously differentiable on [0 , 1] and G

[2r]
B can be computed with Eq. (F.1):

G
[2r]
B (x) = (2r)!

[∫ x

0
ϕ(ξ) dξ +B1(0)ϕ(ξ) −

(∫ 1

x

ϕ(ξ) dξ −B1(0)ϕ(x)
)]

= (2r)!
[∫ 1

0
ϕ(ξ) dξ − ϕ(x)

]
= −(2r)!ϕ(ξ) since B1(0) = −1

2 and ϕ has zero mean.

Finally, the eigenvalue equation [Tkr
Sob

ϕ](·) = λϕ(·) can be differentiated 2r times and one has:

λϕ[2r](x) = (Tkr
Sob

ϕ)[2r](x) = G
[2r]
A (x) + (−1)r+1

(2r)! G
[2r]
B (x) = (−1)rϕ(x) ,

which justifies that ϕ is indeed a solution of (Er
λ). Besides, the equality λϕ[2r] = (−1)rϕ allows to prove that ϕ

is infinitely smooth since:

ϕ ∈ C2r([0 , 1]) =⇒ ϕ[2r] ∈ C2r([0 , 1]) =⇒ ϕ ∈ C4r([0 , 1]) =⇒ ϕ[2r] ∈ C4r([0 , 1]) =⇒ . . . =⇒ ϕ ∈ C∞([0 , 1]) .



60 NEW INSIGHTS INTO THE FEATURE MAPS OF SOBOLEV KERNELS

Remark F.2. Eq. (F.3) and (F.4) will be very useful in the proof of Theorem 6.3 since they provide an integral
expression of the first 2r − 1 derivatives of ϕ. In short, one may write:

∀ p ∈ {0, . . . , 2r − 1}, λ ϕ[p](x) = G
[p]
A + (−1)r+1

(2r)! G
[p]
B

=
r∑

k=p

βk

k!(k − p)! Bk−p(x) . . .

+ (−1)r+1

(2r − p)!

[∫ x

0
B2r−p(x− ξ)ϕ(ξ) dξ . . .

+ (−1)p

∫ 1

x

B2r−p(ξ − x)ϕ(ξ) dξ
]

. (F.5)

Note that the first term is equal to zero as soon as p > r.

F.3. Proof of Theorem 6.3
Let ϕ ∈ L2([0 , 1]) and λ > 0. It must be proved that the two following statements are equivalent:

(i) ϕ is an eigenfunction of the integral operator Tkr
Sob

with eigenvalue λ.

(ii) ϕ is a solution of the boundary value problem defined by:

λϕ[2r] + (−1)r+1 ϕ = 0 with


ϕ[r](0) = ϕ[r](1) = 0

∀ 0 ≤ p ≤ r − 2, (−1)r+p
(
ϕ[p](1) − ϕ[p](0)

)
= ϕ[2r−p−1](0)

∀ 0 ≤ p ≤ r − 2, ϕ[2r−p−1](0) = ϕ[2r−p−1](1)

. (Br
λ)

For convenience, specific labels are used to distinguish the three different types of boundary conditions:
(C1) ϕ[r] = ϕ[r](1) = 0 ;

(C2) ∀ 0 ≤ p ≤ r − 2, (−1)r+p(ϕ[p](1) − ϕ[p](0)) = ϕ[2r−p−1](0) ;

(C3) ∀ 0 ≤ p ≤ r − 2, ϕ[2r−p−1](0) = ϕ[2r−p−1](1) .

First, let us prove that (i) =⇒ (ii) .

As ϕ is an eigenfunction of Tkr
Sob

with λ > 0, Theorem 6.1 states that it is a solution of the ODE (Er
λ).

Then, the integral formula given in Eq. (F.5) to express the first 2r − 1 derivatives of Tkr
Sob

ϕ can be used to
demonstrate that ϕ verifies all the boundary conditions.
Boundary conditions (C1)

• λϕ[r](0) = βr

r! + (−1)2r+1

r!

∫ 1

0
Br(ξ)ϕ(ξ) dξ = βr

r! − βr

r! = 0 .

• λϕ[r](1) = βr

r! + (−1)r+1

r!

∫ 1

0
Br(1 − ξ)ϕ(ξ) dξ = βr

r! + (−1)r+1

r!

∫ 1

0
(−1)rBr(ξ)ϕ(ξ) dξ = βr

r! − βr

r! = 0 .

As a result, λϕ[r](0) = λϕ[r](1) = 0 and this leads to (C1) since λ > 0.
Boundary conditions (C3)
For any q ∈ {r + 1, . . . , 2r − 1}, one has:
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• λϕ[q](0) = (−1)r+1

(2r − q)! (−1)q

∫ 1

0
B2r−q(ξ)ϕ(ξ) dξ = (−1)r+q+1

(2r − q)! β2r−q .

• λϕ[q](1) = (−1)r+1

(2r − q)!

∫ 1

0
B2r−q(1−ξ)ϕ(ξ) dξ = (−1)r+1

(2r − q)!

∫ 1

0
(−1)2r−qB2r−q(ξ)ϕ(ξ) dξ = (−1)r+q+1

(2r − p)! β2r−q .

When p ∈ {0, . . . , r − 2}, note that q = 2r − p − 1 ∈ {r + 1, . . . , 2r − 1}. After operating the associated index
shift, one has λϕ[2r−p−1](0) = λϕ[2r−p−1](1) for any p ∈ {0, . . . , r − 2} and this leads to (C3) since λ > 0.
Boundary conditions (C2)
For any p ∈ {0, . . . , r − 2}, one has:

• λϕ[p](0) =
r∑

k=p

βk

k!(k − p)! Bk−p(0) + (−1)r+p+1

(2r − p)! β2r−p .

• λϕ[p](1) =
r∑

k=p

βk

k!(k − p)! Bk−p(1) + (−1)r+p+1

(2r − p)! β2r−p .

Because of the boundary values of Bernoulli polynomials (see Appendix A.1.4), the difference of the two terms
above can be expressed very simply:

λ (ϕ[p](1) − ϕ[p](0)) =
r∑

k=p

βk

k!(k − p)! (Bk−p(1) −Bk−p(0)) = βp+1

(p+ 1)! .

To compute ϕ[2p−r−1](0), the formula obtained at the previous step can be applied since 2r − p− 1 ∈ {r + 1, . . . , 2r − 1}:

ϕ[2p−r−1](0) = (−1)3r−p

(p+ 1)! βp+1 = (−1)r+p βp+1

(p+ 1)! .

As a result, (−1)r+p λ (ϕ[p](1) − ϕ[p](0)) = λϕ[2r−p−1](0) and this leads to (C2) since λ > 0.
As a conclusion, ϕ verifies both the ODE and the boundary conditions, hence verifies (Br

λ).

Now, let us prove that (ii) =⇒ (i) .

For this, ϕ is assumed to be a solution of (Br
λ). This means that ϕ verifies the equality λϕ[2r] = (−1)rϕ and

all the boundary conditions. Under these assumptions, it must be proved that ϕ is an eigenfunction of Tkr
Sob

with eigenvalue λ. To begin, it can be proved that ϕ has zero mean since:∫ 1

0
ϕ(ξ) dξ = (−1)r λ

∫ 1

0
ϕ[2r](ξ) dξ = (−1)r λ

(
ϕ[2r−1](1) − ϕ[2r−1](0)

)
= 0 .

The final equality is provided by the boundary values of ϕ[2r−1] in (C3). Coming back to the main objective, the
key idea of our proof is to write [Tkr

Sob
ϕ](·) = (−1)r λ [Tkr

Sob
ϕ[2r]](·) and to transform Tkr

Sob
ϕ[2r] by repeating

integration by parts in order to demonstrate that ϕ verifies the eigenvalue equation Tkr
Sob

ϕ = λϕ. Before doing
this, let us introduce the following notation:

∀ g : [0 , 1] → R, g(1) − g(0) = [g(t)]1t=0 .

This will be notably useful to summarize the result of an integration by parts. The integral expression of
Tkr

Sob
ϕ[2r] is now splitted into three terms:

[Tkr
Sob

ϕ[2r]](x) =
∫ 1

0
kr

Sob(x, ξ)ϕ[2r](ξ) dξ =
∫ 1

0

 r∑
j=1

Bj(x)Bj(x′)
(j!)2 + (−1)r+1

(2r)! B2r(|x− ξ|)

 ϕ[2r](ξ) dξ
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=
r∑

j=1

(∫ 1

0
Bj(ξ)ϕ[2r](ξ) dξ

)
Bj(x)
(j!)2 . . .

+ (−1)r+1

(2r)!

[∫ x

0
B2r(x− ξ)ϕ[2r](ξ) dξ +

∫ 1

x

B2r(ξ − x)ϕ[2r](ξ) dξ
]

=
r∑

j=1

Ij

(j!)2 Bj(x) + (−1)r+1

(2r)! [ J−(x) + J+(x) ] . (F.6)

Whether for Ij , J−(x) or J+(x), the integrand is the product of ϕ[2r] by a Bernoulli polynomial. Therefore,
after repeating integration by parts as many times as necessary, these integrals can be calculated, or at least
transformed into expressions where integration only concerns ϕ.

Integration by parts to transform Ij

It can be shown that:

∀ 1 ≤ j ≤ r, ∀ 1 ≤ k ≤ j, Ij =
k−1∑
l=0

(−1)l j!
(j − l)!

[
Bj−l(t)ϕ[2r−l−1](t)

]1

t=0
. . .

+ (−1)k j!
(j − k)!

∫ 1

0
Bj−k(ξ)ϕ[2r−k](ξ) dξ .

(F.7)

The proof (by induction) relies on the formula of the derivatives of Bernoulli polynomials (see Appendix A.1.3).
Then, taking k = j in Eq. (F.7) yields:

∀ 1 ≤ j ≤ r, Ij =
j∑

l=0
(−1)l j!

(j − l)!

[
Bj−l(t)ϕ[2r−l−1](t)

]1

t=0
. (F.8)

Integration by parts to transform J−(x)
It can be shown that:

∀ 1 ≤ k ≤ 2r, J−(x) =
k−1∑
l=0

(2r)!
(2r − l)!

[
B2r−l(x− t)ϕ[2r−l−1](t)

]x

t=0
. . .

+ (2r)!
(2r − k)!

∫ x

0
B2r−k(x− ξ)ϕ[2r−k](ξ) dξ .

(F.9)

Once again, the proof (by induction) relies on the formula of the derivatives of Bernoulli polynomials. Then,
taking k = 2r in Eq. (F.9) yields:

J−(x) =
2r−1∑
l=0

(2r)!
(2r − l)!

[
B2r−l(x− t)ϕ[2r−l−1](t)

]x

t=0
+ (2r)!

∫ x

0
ϕ(ξ) dξ . (F.10)

Integration by parts to transform J+(x)
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It can be shown that:

∀ 1 ≤ k ≤ 2r, J+(x) =
k−1∑
l=0

(−1)l (2r)!
(2r − l)!

[
B2r−l(t− x)ϕ[2r−l−1](t)

]1

t=x
. . .

+ (−1)k (2r)!
(2r − k)!

∫ 1

x

B2r−k(ξ − x)ϕ[2r−k](ξ) dξ .

(F.11)

The proof (by induction) is similar to what was done for J−(x). Then, taking k = 2r in Eq. (F.11) yields:

J+(x) =
2r−1∑
l=0

(−1)l (2r)!
(2r − l)!

[
B2r−l(t− x)ϕ[2r−l−1](t)

]1

t=x
+ (2r)!

∫ 1

x

ϕ(ξ) dξ . (F.12)

The summation of Eq. (F.10) and (F.12) leads to:

J−(x) + J+(x) =
2r−1∑
l=0

(2r)!
(2r − l)!

([
B2r−l(x− t)ϕ[2r−l−1](t)

]x

t=0
. . .

+(−1)l
[
B2r−l(t− x)ϕ[2r−l−1](t)

]1

t=x

)
+
∫ 1

0
ϕ(ξ) dξ (F.13)

=
2r∑

k=1

(2r)!
k!

([
Bk(x− t)ϕ[k−1](t)

]x

t=0
+ (−1)2r−k

[
Bk(t− x)ϕ[k−1](t)

]1

t=x

)
(F.14)

=
2r∑

k=1

(2r)!
k!

(
−Bk(x)ϕ[k−1](0) + (−1)k Bk(1 − x)ϕ[k−1](1)

)
. . .

+
2r∑

k=1

(2r)!
k!

(
Bk(0)ϕ[k−1](x) − (−1)k Bk(0)ϕ[k−1](x)

)
= S1(x) + S2(x) . (F.15)

To switch from Eq. (F.13) to Eq. (F.14), one needs to perform the index shift k = 2r− l and to remember that
ϕ has zero mean. In addition:

• With (C1) and the symmetry properties of Bernoulli polynomials (see Appendix A.1.4), the sum S1(x)
can be simplified:

S1(x) =
r∑

k=1

(2r)!
k!

(
ϕ[k−1](1) − ϕ[k−1](0)

)
Bk(x) . (F.16)

• With the boundary values of Bernoulli polynomials (see Appendix A.1.4), one can see that the sum
S2(x) is actually composed of only one non-zero term:

S2(x) = −(2r)!ϕ(x) . (F.17)

After bringing together Eq. (F.6), (F.8), (F.15), (F.16) and (F.17), one has:

[
Tkr

Sob
ϕ[2r]

]
(x) =

r∑
k=1

Ik

(k!)2 Bk(x) + (−1)r+1
r∑

k=1

1
k!

(
ϕ[k−1](1) − ϕ[k−1](0)

)
Bk(x) + (−1)r ϕ(x)
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=
r∑

k=1

1
k!

[
Ik

k! + (−1)r+1
(
ϕ[k−1](1) − ϕ[k−1](0)

)]
Bk(x) + (−1)r ϕ(x)

=
r∑

k=1

αk

k! Bk(x) + (−1)r ϕ(x) .

The next step is to demonstrate that α1 = . . . = αr = 0.

Nullity of αr

Given the definition of αr, it follows that:

αr = Ir

r! + (−1)r+1
(
ϕ[r−1](1) − ϕ[r−1](0)

)
=

r−1∑
l=0

(−1)l

(r − l)!

(
Br−l(1)ϕ[2r−l−1](1) −Br−l(0)ϕ[2r−l−1](0)

)
. . .

+ (−1)r
(
ϕ[r−1](1) − ϕ[r−1](0)

)
+ (−1)r+1

(
ϕ[r−1](1) − ϕ[r−1](0)

)
(F.18)

=
r−2∑
l=0

(−1)l

(r − l)!

(
Br−l(1)ϕ[2r−l−1](1) −Br−l(0)ϕ[2r−l−1](0)

)
. . .

+ (−1)r−1
(
B1(1)ϕ[r](1) −B1(0)ϕ[r](0)

)
(F.19)

=
∑

0≤l≤r−2
r−l=2l′

(−1)l

(r − l)!

(
Br−l(1)ϕ[2r−l−1](1) −Br−l(0)ϕ[2r−l−1](0)

)
. . .

+
∑

0≤l≤r−2
r−l=2l′+1

(−1)l

(r − l)!

(
Br−l(1)ϕ[2r−l−1](1) −Br−l(0)ϕ[2r−l−1](0)

)
= 0 . (F.20)

Note that:
• Eq. (F.18) is obtained after replacing Ir by the sum given in Eq. (F.8). Then, the term indexed by l = r

is taken out of the sum and it is exactly the opposite of the last term.

• Eq. (F.19) is obtained after taking the term indexed by l = r − 1 out of the sum. In fact, this term is
equal to zero because of (C1).

• In Eq. (F.20), the sum indexed by even integers is equal to zero for two reasons. Firstly, all the associated
Bernoulli polynomials have equal boundary values (see Appendix A.1.4). Secondly, all the functions
ϕ[2r−l−1] have equal boundary values according to (C3).

• In Eq. (F.20), the sum indexed by odd integers is equal to zero because all the associated Bernoulli
polynomials have zero boundary values (see Appendix A.1.4).

Nullity of αk with k ∈ {1, . . . , r − 1}
Given the definition of αk, it follows that:

αk = Ik

k! + (−1)r+1
(
ϕ[k−1](1) − ϕ[k−1](0)

)
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=
k−1∑
l=0

(−1)l

(k − l)!

(
Bk−l(1)ϕ[2r−l−1](1) −Bk−l(0)ϕ[2r−l−1](0)

)
. . .

+ (−1)k
(
ϕ[2r−k−1](1) − ϕ[2r−k−1](0)

)
+ (−1)r+1

(
ϕ[k−1](1) − ϕ[k−1](0)

)
(F.21)

=
k−2∑
l=0

(−1)l

(k − l)!

(
Bk−l(1)ϕ[2r−l−1](1) −Bk−l(0)ϕ[2r−l−1](0)

)
. . .

+ (−1)k−1
(
B1(1)ϕ[2r−k](1) −B1(0)ϕ[2r−k](0)

)
+ (−1)r+1

(
ϕ[r−1](1) − ϕ[r−1](0)

)
(F.22)

=
∑

0≤l≤r−2
k−l=2l′

(−1)l

(k − l)!

(
Bk−l(1)ϕ[2r−l−1](1) −Bk−l(0)ϕ[2r−l−1](0)

)
. . .

+
∑

0≤l≤r−2
k−l=2l′+1

(−1)l

(k − l)!

(
Bk−l(1)ϕ[2r−l−1](1) −Bk−l(0)ϕ[2r−l−1](0)

)
= 0 . (F.23)

Note that:
• Eq. (F.21) is obtained after replacing Ij by the sum given in Eq. (F.8). Then, the term indexed by l = r

is taken out of the sum. This term is always equal to zero because of (C1) when k = r − 1 and because
of (C3) when 1 ≤ k ≤ r − 2.

• Eq. (F.22) is obtained after taking the term indexed by l = r− 1 out of the sum. The entire expression
in the second line of Eq. (F.22) is equal to zero because of (C2) and (C3).

• In Eq. (F.23), the sum indexed by even integers is equal to zero for two reasons. Firstly, all the associated
Bernoulli polynomials have equal boundary values (see Appendix A.1.4). Secondly, all the functions
ϕ[2r−l−1] have equal boundary values according to (C3).

• In Eq. (F.23), the sum indexed by odd integers is equal to zero because all the associated Bernoulli
polynomials have zero boundary values (see Appendix A.1.4).

As a conclusion, having α1 = . . . = αr = 0 finally leads to Tkr
Sob

ϕ[2r]=(−1)r ϕ and then to Tkr
Sob

ϕ = λϕ.

F.4. Proof of Proposition 7.3
F.4.1. Sum of kernels

In this proof, a fundamental theorem regarding the RKHS induced by the sum of two kernels is required.

Theorem F.3. Let X ⊆ R be an interval. Let K1 : X × X → R and K2 : X × X → R be two kernels with
respective RKHSs denoted by H1 and H2. The RKHS H12 induced by the kernel K1 +K2 is:

H12 = H1 + H2 =
{
h ∈ R[0,1]

∣∣∣∣∣ h = h1 + h2 with
h1 ∈ H1

h2 ∈ H2

}
.

If H1 ∩ H2 = {0}, one must write H12 = H1 ⊕ H2 and the inner product is:

⟨·, ·⟩H12
: H12 × H12 −→ R

(f = f1 + f2 , g = g1 + g2) 7−→ ⟨f1, g1⟩H1
+ ⟨f2, g2⟩H2

.
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F.4.2. A few more details on the sub-kernel decomposition
The unanchored Sobolev space (of order r) is the RKHS obtained when Hr([0 , 1]) is equipped with the inner

product ⟨·, ·⟩Hr
Sob

defined in Eq. (3.6). This RKHS is denoted by Hr
Sob and its reproducing kernel is:

Kr
Sob(x, x′) = 1 + kr

Sob(x, x′) = 1 +
r∑

k=1

Bk(x)Bk(x′)
(k!)2 + (−1)r+1

(2r)! B2r(|x− x′|) = 1 + kr
A(x, x′) + kr

B(x, x′) .

Preliminary results on the two kernels kr
A and kr

B need to be stated.

Lemma F.4. For any r ≥ 1, the following statements are true:
(a) kr

A and kr
B are orthogonal kernels.

(b) The RKHS Fr
A induced by kr

A is:

Fr
A =

{
f ∈ R[0,1]

∣∣∣∣∣ f(·) =
r∑

k=1
ak B̃k(·) with (ak)1≤k≤r ∈ Rr

}
,

with inner product:

⟨·, ·⟩Fr
A

: Fr
A × Fr

A −→ R(
f1(·) =

r∑
k=1

ak B̃k(·) , f2(·) =
r∑

k=1
αk B̃k(·)

)
7−→

r∑
k=1

ak αk .

(c) The RKHS Fr
B induced by kr

B is:

Fr
B =

{
f ∈ R[0,1]

∣∣∣∣∣ f(·) =
∞∑

k=1
pk c̃

r
2k(·) + qk s̃

r
2k(·) with

(pk)k≥1 ∈ ℓ2(N∗)
(qk)k≥1 ∈ ℓ2(N∗)

}
,

with inner product:

⟨·, ·⟩Fr
B

: Fr
B × Fr

B −→ R(
f1(·) =

∞∑
k=1

pk c̃
r
2k(·) + qk s̃

r
2k(·) , f2(·) =

∞∑
k=1

πk c̃
r
2k(·) + ρk s̃

r
2k(·) 7−→

∞∑
k=1

pk πk + qk ρk .

(d) Fr
A ∩ Fr

B = {0}.

Proof. The statement (a) can be proved very easily by using the zero-mean property of Bernoulli polynomials
(see Appendix A.1.6). As regards the statements (b) and (c), they are direct consequences of Theorems 2.23
and 2.21 respectively. Only the statement (d) deserves further clarifications. For any f ∈ Fr

A ∩ Fr
B , it must be

proved that f = 0. Since f ∈ Fr
A, one can write:

f(·) =
r∑

i=1
ai
Bi(·)
i! with (ai)1≤i≤r ∈ Rr .

Now, let us see why all coefficients are zero. First, let us assume that a1 ̸= 0 for the sake of contradiction.
It is said in Appendix A.1.4 that B1(1) = −B1(0) = 1/2 and Bk(1) = Bk(0) for all k ≥ 2 and this leads to
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f(1) − f(0) = a1 ̸= 0. Therefore, f cannot belong to Fr
B because it only contains 1-periodic functions. Since

there is a contradiction with f ∈ Fr
B , it must be that a1 = 0. Then, let us write f in the formalism of Fr

B :

f(x) =
r∑

j=2

aj

j! Bj(x) since a1 = 0 ,

=
r∑

j=2

aj

j!

(
−2 (j!)

∞∑
k=1

cos (2kπx− jπ/2)
(2kπ)j

)
with the Fourier series expansion of Bj ,

=
r∑

j=2

∞∑
k=1

aj

(2kπ)j
ϵk(x) with ϵk :=


−c2k if j = 0 mod 4
−s2k if j = 1 mod 4
c2k if j = 2 mod 4
s2k if j = 3 mod 4

=
∞∑

k=1

 r∑
j=2

aj (2kπ)r−j

 ϵk(x)
(2kπ)r

=
∞∑

k=1
γk

ϵk(x)
(2kπ)r

.

The question is now to examine which conditions (on a2, . . . , ar) are required so that the sequence (γk)k≥1 is
square summable. A simple factorization allows to see that:

γk =
r∑

j=2
aj (2kπ)r−j = (2kπ)r−2

r−2∑
l=0

al+2

(2kπ)l
∼

k→∞



a2 (2kπ)r−2 if a2 ̸= 0
a3 (2kπ)r−3 if a2 = 0 but a3 ̸= 0
...

...
ar if a2 = . . . = ar−1 = 0 but ar ̸= 0
0 if a2 = . . . = ar−1 = ar = 0 .

The only way to make (γk)k≥1 be square summable is thus to take a2 = . . . = ar = 0. This leads to f = 0 . □

Knowing (a), one has R∩ Fr
A = {0} and R∩ Fr

B = {0}. Since (d) also ensures that Fr
A ∩ Fr

B = {0}, the sum
of the three sub-RKHSs is direct. With the help of Theorem F.3, it is then straightforward to obtain:

Hr([0 , 1]) = R ⊕ Fr
A ⊕ Fr

B . (F.24)

F.4.3. Proof of the main result
It must be proved that the system (gr

k)k defined by Eq. (7.9) is truly ℓ2-linearly independent. Let us consider
a square-summable sequence (γk)k which is rearranged in the following way:

(γk)k :=
{

(ak)0≤k≤r ; (pk)k≥1 ; (qk)k≥1
}
.

This rearrangement allows for a better matching of the coefficients in (γk)k and the functions in (gr
k)k. Assuming

that (γk)k is square summable amounts to assuming that the subsequences (pk)k≥1 and (qk)k≥1 are both in
ℓ2(N∗). Note that the series defined as:

S(·) = a0︸︷︷︸
∈R

+
r∑

k=1
ak B̃k(·)︸ ︷︷ ︸
∈Fr

A

+
∞∑

k=1
pk c̃

r
2k(·) + qk s̃

r
2k(·)︸ ︷︷ ︸

∈Fr
B

= a0 + fr
A(·) + fr

B(·)

belongs to Hr([0 , 1]) in virtue of Eq. (F.24).
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Now, let us assume that the square-summable sequence (γk)k is such that S = 0. As the zero function
belongs simultaneously to R, Fr

A and Fr
B , one can write:

S(·) = 0 + 0 + 0 = a0 + fr
A(·) + fr

B(·)

Because of the direct sum, the decomposition of S into a sum of three sub-functions belonging respectively to
R, Fr

A and Fr
B is unique. This leads to:

a0 = 0 ,

fr
A(·) =

r∑
k=1

ak B̃k(·) = 0 , (F.25)

fr
B(·) =

∞∑
k=1

pk c̃
r
2k(·) + qk s̃

r
2k(·) = 0 . (F.26)

Eq. (F.25) implies a1 = . . . = ar = 0 because the polynomials (B̃k)1≤k≤r are linearly independent. Furthermore,
after turning back to the definition of the sinusoidal features, Eq. (F.26) may be rewritten in the following way:

∞∑
k=1

pk

(2kπ)r
c2k(·) + qk

(2kπ)r
s2k(·) = 0 . (F.27)

Remember that the system {1 ; (c2k)k≥1 ; (s2k)k≥1} is the Fourier basis of L2([0 , 1]) and is therefore ℓ2-linearly
independent (because of Parseval’s identity). Additionally, as the sequences with general terms pk/(2kπ)r and
qk/(2kπ)r are in ℓ2(N∗), Eq. (F.27) cannot be verified unless pk = 0 and qk = 0 for all k ≥ 1. Finally, (γk)k is
only composed of zero coefficients. This proves that the system (gr

k)k is ℓ2-linearly independent.

F.5. Additional details for Section 7.3
Let K : X × X → R be a Mercer kernel, let ν be a probability measure with support X and let TK be the

integral operator built from K and ν. Just as in Theorem 2.18, (λi)i≥1 and (ϕi)i≥1 respectively denote the
eigenvalues of TK and an ONB of L2(X , ν) only composed of eigenfunctions of TK . In addition, let us assume
that there also exists a series expansion of K based on a system (gi)i≥1 of non-orthogonal but ℓ2-linearly
independent features. In light of these assumptions, K can be decomposed in two different ways:

∀x, x′ ∈ X ,K(x, x′) =
∑
i≥1

λi ϕi(x)ϕi(x′) =
∑
i≥1

gi(x) gi(x′) . (F.28)

Theorem 2.21 and Theorem 2.23 ensure that (
√
λi ϕi)i≥1 and (gi)i≥1 are two possible ONBs of H. However, as

the functions (gi)i∈I are not mutually orthogonal (in the L2-sense), they cannot be eigenfunctions of TK . The
difference between the two families of basis functions can be summarized by the following inequality:

∥TK∥2
HS =

∑
i≥1

λ2
i ≥

∑
i≥1

∥gi∥4
L2 ,

with equality holding if and only if the system (gi)i≥1 is L2-orthogonal. Let us demonstrate this result.
For the first equality, just write the Hilbert-Schmidt norm of TK with the ONB of eigenfunctions (ϕi)i≥1:

∥TK∥2
HS =

∑
i≥1

∑
j≥1

|⟨TK ei , ej⟩L2 |2 =
∑
i≥1

λ2
i .
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Then, remember that it was stated in Eq. (2.10) that ∥TK∥2
HS = ∥K∥2

L2 . If using the second decomposition in
Eq. (F.28), ∥K∥2

L2 can be computed differently:

∥K∥2
L2 =

∥∥∥∥∥∥
∑
i≥1

gi ⊗ gi

∥∥∥∥∥∥
2

L2

=
〈∑

i≥1
gi ⊗ gi,

∑
j≥1

gj ⊗ gj

〉
L2

=
∑
i≥1

∑
j≥1

⟨gi ⊗ gi, gj ⊗ gj⟩L2 with the dominated convergence theorem,

=
∑
i≥1

∑
j≥1

⟨gi, gj⟩2
L2 by definition of the inner product in L2(X 2, ν⊗2),

≥
∑
i≥1

∥gi∥4
L2 by only taking the terms such that i = j.

Before using Lebesgue’s dominated convergence theorem (to switch from the first to the second line), it must
be proved that the absolute value of the integrand belongs to L1(X 2, ν⊗2):

∫
X ×X

∑
i≥1

gi(x) gi(ξ)

2

dν(x) dν(ξ) ≤
∫

X ×X

∑
i≥1

gi(x)2

∑
i≥1

gi(ξ)2

 dν(x) dν(ξ)

=
∫

X ×X
K(x, x)K(ξ, ξ) dν(x) dν(ξ) =

(∫
X
K(x, x) dν(x)

)2
< ∞ .

The first line is obtained by applying the Cauchy-Schwarz inequality in ℓ2(N∗). The two equalities in the second
line stem from Eq. (F.28) and Fubini’s theorem. The final quantity is indeed finite because K is a Mercer kernel.
Eventually, one has ∥TK∥2

HS =
∑

i≥1 λ
2
i = ∥K∥2

L2 ≥
∑

i≥1∥gi∥4
L2 .

F.6. Proof of Proposition 8.1
It must be proved that:

(a) The sequence (kr
A)r≥1 converges uniformly to the continuous kernel k∞

A =
∑

k≥1 B̃k ⊗ B̃k.

(b) The sequence (kr
A)r≥1 converges uniformly to k∞

B = 0.
For the two convergence results, the idea of the proof is the same. The difference between the reproducing
kernel of order r and the proposed asymptotic kernel must be uniformly bounded on [0 , 1]2 by a constant C(r)
converging to zero as r tends to ∞. This may be summarized by:

∀x, x′ ∈ [0 , 1], |kr
⋆(x, x′) − k∞

⋆ (x, x′)| ≤ C(r) −−−→
r→∞

0 ,

where ⋆ is either A or B.

Proof of (a)
First, it must be checked that the series k∞

A is convergent for any point (x, x′) ∈ [0 , 1]. This can be easily
achieved with the help of Eq. (8.3):

|k∞
A (x, x′)| =

∣∣∣∣∣
∞∑

k=1

Bk(x)Bk(x′)
(k!)2

∣∣∣∣∣ ≤
∞∑

k=1

(
M+

k

k!

)2

≤ 16
∞∑

k=1

(
1

2π

)2k

= 16
4π2 − 1 < ∞ .
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The function k∞
A is thus well-defined everywhere on [0 , 1]2. In addition, the remainder of the series can be

uniformly bounded:

|k∞
A (x, x′) − kr

A(x, x′)| =

∣∣∣∣∣
∞∑

k=r+1

Bk(x)Bk(x′)
(k!)2

∣∣∣∣∣ ≤
∞∑

k=r+1

(
M+

k

k!

)2

≤ 16
4π2 − 1

(
1

2π

)2r

−−−→
r→∞

0 . (F.29)

This justifies that (kr
A)r≥1 uniformly converges to k∞

A on [0 , 1]2. It is trivial to see that k∞
A is a kernel because

it is expressed as a convergent series of symmetric and separable functions. More precisely, kr
A is a continuous

kernel because of the uniform limit theorem.

Proof of (b)
The same kind of reasoning must be applied but it is even simpler because there is only one single Bernoulli

polynomial to bound:

|kr
B(x, x′)| = 1

(2r)! |B2r(|x− x′|)| ≤ M+
2r

(2r)! ≤ 4
(

1
2π

)2r

−−−→
r→∞

0 .

This justifies that (kr
B)r≥1 uniformly converges to the zero kernel on [0 , 1]2.

F.7. Proof of Proposition 8.2

First, it must be noted that the series
∑

k≥0 ak B̃k(·) is uniformly convergent for any sequence (ak)k≥0 ∈ ℓ2(N).
Indeed, with the Cauchy-Schwarz inequality and the same upper bounding technique as in Eq. (F.29), one has:∣∣∣∣∣

r∑
k=0

ak B̃k(x) −
∞∑

k=0
ak B̃k(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=r+1
ak B̃k(x)

∣∣∣∣∣ ≤

( ∞∑
k=r+1

a2
k

)1/2( ∞∑
k=r+1

B̃k(x)2

)1/2

≤ ∥(ak)k≥0∥ℓ2

[ ∞∑
k=r+1

(
M+

k

k!

)2 ]1/2

≤ ∥(ak)k≥0∥ℓ2
4√

4π2 − 1

(
1

2π

)r

−−−→
r→∞

0 .

Now, let us assume that there exist a sequence (ak)k≥0 ∈ ℓ2(N) such that S(·) :=
∑

k≥0 ak B̃k(·) = 0. Under
this assumption, the mean value of the function S : [0 , 1] → R is equal to zero. The zero-mean property of
Bernoulli polynomials (see Appendix A.1.6) leads to:

0 =
∫ 1

0
S(x) dx =

∫ 1

0

( ∞∑
k=0

ak B̃k(x)
)

dx =
∞∑

k=0
ak

(∫ 1

0
B̃k(x) dx

)
= a0 . (F.30)

In the above equation, the integral over [0 , 1] and the summation over N are freely interchanged because the
series converges uniformly on [0 , 1]. With Eq. (F.30), one has a0 = 0. Let us now explain why all remaining
coefficients (ai)i≥1 are also zero. As S is a uniformly convergent series of polynomials (defined on a bounded
interval), it can be easily justified that S ∈ C∞([0 , 1]). In addition, the derivatives of S can be computed
through term-by-term differentiation:

∀ i ≥ 1, S[i](·) =
∞∑

k=0
ak B̃

[i]
k (·) =

∞∑
k=i

ak B̃k−i(·) =
∞∑

k=0
ak+i B̃k(·) = 0 .
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Just as for Eq. (F.30), the mean value of S[i] (for any i ≥ 1) is equal to zero and this yields ai = 0. Therefore,
the nullity of

∑
k≥0 ak B̃k(·) implies the nullity of the coefficients (ak)k≥0. This proves that the system (B̃k)k≥1

is ℓ2-linearly independent.
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Appendix G. Supplementary material

G.1. Proof of Theorem 5.1
It only remains to prove that

[
Tk1

Sob
ck

]
(·) = ck(·)/(kπ)2 for any k ≥ 1. This can be done by simply calculating

the integral
[
Tk1

Sob
ck

]
(x) for a given point x ∈ [0 , 1]. This is not particularly difficult but the calculations are

tedious and they must be carried out patiently. The main calculation steps are provided below. First, one has:[
Tk1

Sob
ck

]
(x) =

∫ 1

0
k1

Sob(x, ξ) ck(ξ) dξ

=
∫ 1

0

(
B1(x)B1(ξ) + 1

2 B2(|x− ξ|)
)
ck(ξ) dξ

=
√

2
(
x− 1

2

)∫ 1

0

(
ξ − 1

2

)
cos(kπξ) dξ + 1√

2

∫ 1

0

[
(x− ξ)2 − |x− ξ| + 1

6

]
cos(kπξ) dξ

=
√

2α
(
x− 1

2

)
+ 1√

2
β(x) after denoting by α and β(x) the two integrals. (G.1)

It can be proved that α = 1
(kπ)2

[
(−1)k − 1

]
.

Then, the integral β(x) may be divided into three terms:

β(x) =
∫ 1

0

[
(x− ξ)2 − |x− ξ| + 1

6

]
cos(kπξ) dξ

=
∫ 1

0
(x− ξ)2 cos(kπξ) dξ −

∫ 1

0
|x− ξ| cos(kπξ) dξ + 1

6

∫ 1

0
cos(kπξ) dξ

= β2(x) − β1(x) + 1
6 β0 after denoting by β0 and β1(x) and β2(x) the three integrals. (G.2)

It can be proved that β2(x) = 2
(kπ)2

[
(−1)k (1 − x) + x

]
and β0 = 0 .

To eliminate the absolute value in the integral expression of β1(x), one may write:

β1(x) =
∫ 1

0
|x− ξ| cos(kπξ) dξ

=
∫ x

0
(x− ξ) cos(kπξ) dξ +

∫ 1

x

(ξ − x) cos(kπξ) dξ

= β−
1 (x) + β+

1 (x) after denoting by β−
1 (x) and β+

1 (x) the two integrals. (G.3)

It can be proved that β−
1 (x) = 1

(kπ)2 [1 − cos(kπx)] and β+
1 = 1

(kπ)2

[
(−1)k − cos(kπx)

]
.

With the analytical expressions of α, β0, β−
1 (x), β+

1 (x) and β2(x), Eq. (G.1), (G.2) and (G.3) yield:[
Tk1

Sob
ck

]
(x) =

√
2α
(
x− 1

2

)
+ 1√

2

(
β2(x) − β−

1 (x) − β+
1 (x) + 1

6 β0

)
= 1

(kπ)2 ck(x) .
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G.2. Additional details for Section 5.2.2
It only remains to prove that

[
Tk2

Sob
B1

]
(·) = gA(·) + gB(·) as stated in Eq. (5.4). This can be done by

simply calculating the integral [Tk2
Sob
B1](x) for a given point x ∈ [0 , 1]. This is not particularly difficult but the

calculations are very tedious. To save time, most integrals were computed with the online integral calculator
proposed by Wolfram|Alpha15. First, one has:

[Tk2
Sob
B1](x) =

∫ 1

0
k2

Sob(x, ξ)B1(ξ) dξ

=
∫ 1

0

(
B1(x)B1(ξ) + 1

4 B2(x)B2(ξ) − 1
24 B4(|x− ξ|)

)
B1(ξ) dξ

= B1(x)
∫ 1

0
B1(ξ)B1(ξ) dξ + 1

4B2(x)
∫ 1

0
B2(ξ)B1(ξ) dξ − 1

24

∫ 1

0
B4(|x− ξ|)B1(ξ) dξ

= αB1(x) + 1
4 β B2(x) − 1

24 γ(x) after denoting by α and β and γ(x) the three integrals.
(G.4)

It can be proved that α = 1
12 and β = 0 .

Then, the integral γ(x) may be divided into four terms:

γ(x) =
∫ 1

0
B4(|x− ξ|)B1(ξ) dξ =

∫ 1

0

[
(x− ξ)4 − 2 |x− ξ|3 + (x− ξ)2 − 1

30

]
B1(ξ) dξ

=
∫ 1

0
(x− ξ)4 B1(ξ) dξ − 2

∫ 1

0
|x− ξ|3 B1(ξ) dξ +

∫ 1

0
(x− ξ)2 B1(ξ) dξ + 1

30

∫ 1

0
B1(ξ) dξ

= γ4(x) − 2 γ3(x) + γ2(x) + 1
30 γ0 after denoting by γ0, γ2(x), γ3(x) and γ4(x) the four integrals.

(G.5)

It can be proved that γ4(x) = 1
30 ( − 10x3 + 15x2 − 9x+ 2) , γ2(x) = 1

12 (1 − 2x) and γ0 = 0 .

To eliminate the absolute value in the integral expression of γ3(x), one may write:

γ3(x) =
∫ 1

0
|x− ξ|3 B1(ξ) dξ

=
∫ x

0
(x− ξ)3 B1(ξ) dξ +

∫ 1

x

(ξ − x)3 B1(ξ) dξ

= γ−
3 (x) + γ+

3 (x) after denoting by γ−
3 (x) and γ+

3 (x) the two integrals. (G.6)

It can be proved that γ−
3 (x) = 1

40
[
2x5 − 5x4] and γ+

3 (x) = 1
40
[
2x5 − 5x4 + 10x2 − 10x+ 3

]
.

15https://www.wolframalpha.com

https://www.wolframalpha.com
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With the analytical expressions of α, β, γ0, γ2(x), γ−
3 (x), γ+

3 (x) and γ4(x), Eq. (G.4), (G.5) and (G.6) yield:[
Tk2

Sob
B1

]
(x) = αB1(x) + 1

4 β B2(x) − 1
24

[
γ4(x) − 2 (γ−

3 (x) + γ+
3 (x)) + γ2(x) + 1

30 γ0

]
= gA(x) + gB(x) .
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(a) Histogram of the estimated eigenvalues.

(b) Curves of the estimated eigenfunctions.

Figure 1. Estimation of the eigenvalues and eigenfunctions involved in the Mercer
decomposition of the kernel k1

Sob. The KFA method is performed with n = 500 sample points.
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(a) Estimation of the decay rate for the kernel k1
Sob after a logarithmic transformation.

(b) Estimation of the decay rate for the kernel k2
Sob after a logarithmic transformation.

Figure 2. Regression-based eigendecay analysis for the kernel kr
Sob (with r ∈ {1, 2}).

The eigenvalues are first estimated by KFA (with n = 500 points).
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(a) Histogram of the estimated eigenvalues.

(b) Curves of the estimated eigenfunctions.

Figure 3. Estimation of the eigenvalues and eigenfunctions involved in the Mercer
decomposition of the kernel k2

Sob. The KFA method is performed with n = 500 sample points.
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(a) Curves of the estimated eigenfunctions.

(b) Approximation of the theoretical eigenfunctions.

Figure 4. Brute-force estimation of the eigenfunctions involved in the Mercer decomposition
of the kernel k5

Sob. The KFA method is performed with n = 3000 sample points.
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