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Chapter 4

Deep Learning as Applied to Non-Destructive
Testing and Evaluation

Roberto Miorellzﬂ Anastassios Skarlatos', Caroline
Vienne!, Christophe Reboud' and Pierre Calmon’

4.1 Introduction

The term of Non-Destructive Testing and Evaluation (NDT&E) gathers methods and
techniques aiming at assessing the material properties of media during the industrial
manufacturing process (i.e., quality control, zero-defects production, etc.) of speci-
men and during the exploitation cycle of the manufactured specimen (i.e., integrity
check, the ageing status, etc.). NDT&E is applied to test the integrity of the deployed
structures in industrial domains ranging from energy (e.g., nuclear, oil&gas, power-
line electric, etc.), transportation (e.g., automotive, railways, aeronautic), civil struc-
tures (e.g., bridges, buildings, etc.), manufacturing (e.g., metallurgic, food, chemical
pharmaceutical, etc.) to cite the most prominent ones. The NDT&E methods are
often classified by their type of energy and tha associated propagation mechanisms
in the investigated specimen under testing (SUT): electromagnetic- (i.e., magnetic
flux density testing, eddy current testing, microwave testing, terahertz testing), in-
frared (i.e., infrared thermography testing), X-rays (i.e., radiography, tomography
testing) and ultrasonic- (i.e., acoustic-, elasto-dynamic, guided-wave propagation
regime testing). This chapter focuses on problems dealing with electromagnetic
based methods and techniques.

In the last decade, NDT&E research and development communities have been
trying to develop automatic inspection systems, aiming at assisting or replacing the
human involvement in data analysis and thus at enhancing productivity and reduc-
ing the risk of human errors. Indeed, in NDT&E, the measurements are normally
composed of a large amount of data that can behave as (multimodal-) time-series
and/or (multispectral-) images. Solutions to automatize the diagnostic process or at
least to provide an assistance are currently under active research, as a consequence
of the digitization of manufacturing processes, called “Industry 4.0”. To this end,
the NDT&E community is studying Artificial Intelligence (AI) -based approaches
and machine learning (ML) -based algorithms. Among the most promising ML al-
gorithms, the growing family of Artificial Neural Network (ANN) and in particular
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the Deep Neural Network (DNN) -based algorithms are catching the attention of
scholars and engineers (see Fig. [d.T).

Some constraints make the development and the application of ML algorithms
challenging in the NDT&E context. Indeed, large collections of datasets containing
close-to-reality experimental data are often not available. As a matter of fact, due to
industry confidentiality constraints, collaborative and open development frameworks
are quite rare and bounded on very specific cases. Another limitation is the lack of
normalization of the use of such algorithms. Documents of recommended practices
have been released only very recently and have not been yet applied in the vari-
ous sectors of industry. The proper way of comparing performance between such
solutions and actual inspection procedures still remains an open question in many
sectors.

This book chapter describes the use of ML methods and techniques with a fo-
cus on DL-based methods. It provides an analysis of recent contributions within the
research community. Current and future trends of the application of DL algorithms
are also mentioned. Moreover, even though our analysis is based on the electromag-
netic methods, we think that this contribution may partially apply to the study of
other methods (i.e., ultrasound testing, structural health monitoring, acoustic emis-
sion, visual inspection etc.). Our review considers the most significant research axes
in representative industrial sectors: energy, transportation, the civil engineering and
manufacturing.

This chapter is organized as follows. In Section we provide the principle of
electromagnetic propagation and modelling with particular emphasis on applications
in the quasi-static regime for layered homogeneous conductive media. In addition,
some formal definitions about forward and inverse problems that are often recalled in
the chapter are detailed. In Section[d.3] we review the main categories and challenges
in applying deep learning methods to electromagnetic non-destructive testing signals
analyzing the different kind of signals commonly probed by the most common elec-
tromagnetic methods and techniques. In Section 4.4} we analyze some important
contributions made in the field. The analysis performed has as main purpose to shed
light on the application of deep learning in the main industrial sectors concerned by
electromagnetic inspection methods. In Section[4.5] we provide a brief overview of
two main complementary methods for assessing the integrity of the structures. In
Section an analysis of future trends and open issues on the application of deep
learning algorithms is provided. The last section is devoted to the chapter conclusion
and remarks.

4.2 Principles of electromagnetic NDT&E modeling

A typical scenario for the electromagnetic inspection of a conducting and/or mag-
netic piece is schematically depicted in Fig. The tested piece is interacting with
an incident electromagnetic field produced by a set of inducting coils, and the re-
sulting field is sensed via a number of probes scanning the piece at the region of
interest. The detection probe can be either an induction coil (with or without ferrite
core), which can be designed to adapt to the specific geometrical features of the piece



Running head recto chapter title
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Figure 4.1 Estimated number of papers applying deep and shallow neural
networks methods to electromagnetic NDT&E problems (SourceWeb
Of Science, data updated to February 2022).
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Figure 4.2 NDT&E methods as localized on the electromagnetic spectrum.
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or a magnetic field sensor, like a Hall-effect probe, a Giant Magneto-Resistance
(GMR) sensor or a flux-gate, to mention the most popular ones. The measured signal
carries information about the geometry and the material of the piece and it is the so-
called "measurement” that will be used in the inversion phase to retrieve information
about the piece.

lay X 1€a

scan

scan

(a) (b)

Figure 4.3  Electromagnetic inspection of (a) planar piece, (b) tube, in
driver-pickup mode. One can distinguish the piece, the driver (d) and
pick-up (p) coils and the defect (in red). The eddy-current head
comprising the coils is scanning the piece along the dashed line.

To remain simple with the problem formulation, we shall restrict ourselves in
the context of this article with inspection in the harmonic regime, which is the most
wide-spread, i.e. a harmonic time dependence of the e/®’, with ® being the angu-
lar frequency and j = +/—1, will be assumed from this point forward for all state
variables. Transient signals measurements are also used for particular applications
3L 15016, 17,18, 0]

It is convenient for both the mathematical analysis and signal interpretation pur-
poses to decompose the measured signal into a sum of contributions, each one ex-
pressing a particular effect. Hence, the complete signal is composed of the probe
response in air, the variation owing to the presence of the piece nearby the probe and
finally the small signal variation sensed when scanning a flawed area of the piece. As
these contributions have very different amplitudes and spatial properties, it is often
much more efficient to compute them separately using perturbation approaches.

In case of Fig.[d.3](single receiving coil), the measurement signal is proportional
to the mutual impedance AZrg, where T stands for “transmitter” and R for receiver.

The total impedance can be split in three parts, namely the mutual impedance in air

AZ;‘Q, the impedance change due to the piece AZ(T’;) , referred to usually as the "ge-
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ometry signal” and finally the impedance change owing to the presence of material

defects in the illuminated zone AZ<T12 One can thus write

AZr(rs, ©) = joMD +AZP)(x,, 0) + AZ (x,, 0) (4.1)

where M%g is the mutual inductance in air. Notice that both the geometry and the
defect signals depend on the probe position r;. In the case of a magnetic field sensor,
the previous splitting of the total signal in air, piece and defect contributions also
holds, where this time the complex impedance should be replaced by the magnetic
field component parallel to the sensitivity direction of the magnetic sensor. In the
following, we shall focus on the former case, since coils are the preferred probes
in the majority of practical applications. The analysis is similar for magnetic field
measurements.

From the three parts in @.1)), M(To;e) only depends upon the probe geometry and
does not carry any information on the piece. It is therefore not useful for the purposes
of signal processing. Besides, being constant for all scan positions, it can be easily
removed by calibration. Our primary concern will thus be the calculation of the
remaining two terms, namely the geometry and the defect perturbation signals.

4.2.1 Field solution for the flawless piece and calculation of the
signal geometry AZ%)

Referring to the above introduced air-piece-defect decomposition approach, the next
step in the analysis will be to calculate the response of the flawless piece, i.e. the
scattering field and the probe signal owing to the piece interaction with the coil field.

The treatment of the geometry signal AZ(T’;Q) can provide information about the

piece material and global configuration parameters such as the piece thickness, the
probe lift-off, etc. Since it depends only upon the geometry of the flawless piece, it
can be often calculated by semi-analytical approaches. There is a large number of
articles concerned with this calculation, all stemming in a greater of lesser extent on
the seminal work of Dodd and Deeds in the 60s [[10,|11] and the Auld’s article on the
specialization of the Lorentz reciprocity theorem [12, [13]. This approach has been
greatly enhanced and extended by Theodouldis and Bowler with the introduction
of the Truncated Region Eigenfunctions Expansion (TREE) [14, [15| [16l [17]. The
TREE method has thus permitted the calculation of the geometry signal for canonical
pieces with discontinuities like edges [18] boreholes [19, 20, 21, 22], tubes with
eccentric walls [[23] etc. For more complicated pieces one has to resort to either fully
numerically techniques like the Finite Element Method (FEM) or hybrid analytical-
numerical schemes [24].

In the case of a symmetric piece, the signal geometry is also constant, and can
be thus separated from the flaw signal by a simple-baseline removal.
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4.2.2  Defect response: calculation of the flaw signal AZ(TLQ

We assume that the flawless piece is homogeneous and isotropic in the region of
interest with a “base” electrical conductivity o}, and magnetic permeability t,. The
presence of material defects is translated to a local variation of the piece electric and
magnetic properties, do(r) and S u(r), respectively. The material coefficients in the
piece with the flaw can be thus written in the following way

o(r) = op+00(r) 4.2)
(r) = Wy + S u(r). (4.3)

The interaction of the driving (primary) electric and magnetic field E,,H,, with
the material inhomogeneities owing to the flaw, can be seen as the effect of an equiv-
alent electric and an equivalent magnetic source, which superposed to E,,H,, will
yield the total field according the expressions [25] 26} 27,28, 29]]

B(r) = E(r) — jop, [ G(r.x')-So(r') Elr)aV’
f
_ i / G™(r,r') - Su(r) H(r') dV’ 4.4)
\%4
H(r) = H”(r _~_/Gfr rr) 56( ) (/)dV'
~ joc, / G""(x,r') - Sup(r') H(K') dV". 4.5)

where E“, Eme, Eem, G™" stand for the Green’s dyads of the host medium. The
integration is carried out over the defect(s) support V.

The G and G™ dyads are defined as the electric and magnetic field response
with a unit Dirac electric current source satistfying the Helmholtz equation [25] [29]

VxVxG“(r,r') + joucG”(r,r') =I5(r —r') (4.6)
VxVxG"(r,Y) + joucG"™(r,Y') =V x [15(r—')] 4.7

where 8(r—1') is the delta function, and T stands for the unit tensor. G and
G are defined in a similar way, as the corresponding magnetic and electric field
response under magnetic current excitation, and they satisfy the same equations @
and {.7)), respectively.

Note that the two palrs are interrelated via the duahty pr1n01p1e ie., they can be
interchanged in (#.6) and ([@.7) using the following rule G« G™" and G™ > G™"
which together with the 1nterchanges E < H, 0 +» —jou produce the same set of
equations. The duality transformation constitutes hence a symmetry of (@.6) and
(7). The detailed derivation of the Green’s dyads in planar and cylindrical stratified
media is given in [25, 29].
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The mutual impedance variation owing to the flaw is calculated using the above
solution in an elegant way by application of the reciprocity theorem

AZ(T[Q(rS) = —ﬁ/ [60(r') Er(r;ry) - ER(r';xy)
2

— jodu(r)Hr(r';r) - HR(r';xs) ] aV’ (4.8)

where Ef and HY, stand for the electric and magnetic field in the flawless medium
that would be produced is the receiver coil would be fed with current Ig. Er,Hr is
the field solution obtained by (4.6) and with the transmitting coil being active
and fed with current I7. Notice the functional dependence of the field terms from the
probe position ry denoting that one has to consider a different field solution per scan
point. The angular frequency dependence of all variables is implied.

In case of direct magnetic field observations, (4.8) should be replaced by a cal-
culation of the magnetic field at the probe position, namely using the suitable
expressions for the Green’s dyads G and G™"F]

Conductive, non-magnetic medium with volumetric flaws

Eqs. (@.4)-(@.8) address the most general case of a defect inside a conducting and
magnetic medium. However, in practical applications this general case concerns only
ferritic steels since steel is the only ferromagnetic material of industrial interest. For
the rest of workpieces the magnetic contribution due to the permeability difference
is negligible, i.e., 6y = 0 and {@.4)-(4.8) specialize to the following relations for the
state equation

B(r) = B/(r) — jouy, [ G (r.r')-80(x') E() aV! (49)
Vy

and the reciprocity theorem

1
AZ(T‘Q(I'S) = —E/5G(r/) ER(r';x,) -Er(r';xy) dV'. (4.10)
Vr

Magnetic medium with volumetric flaws

This case concerns magnetic pieces with a local variation of the permeability value,
the same time that its conductivity remains constant (i.e. 60 = 0,6u # 0, and the
problem reduces to ({.3)) with solely magnetic contributions. Practically this case
is met in the inspection of ferromagnetic specimens using static magnetic fields,
a technique known as Magnetic Flux Leakage (MFL). Since @ — O in this limiting
case (4.5) does not provide an adequate description any more. Indeed (4.3)) is derived
using the Faraday induction law. To address the static problem one must devise an
alternative integral equation derived by the magnetostatic equations.

2For a multilayer medium, like the ones considered in this class of problems, the Green’s dyads expres-
sions are different when source r’ and r are located in different layers. This is the case for the observation
equation, where the source (defect) lies in the medium whereas the observation is carried out in the air.
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A similar problem arises when calculating the magnetic flux concentration in
inductors with ferrite cores. This time is the base conductivity that goes to zero
o), — 0 since ferrites are electrical insulators, and the integral term in (#.5) vanishes
requiring again special formulation valid for the magnetostatic regime. A treatment
of the core problem using a dedicated integral equation formalism can be found in
[27]. The case of a pure magnetic flaw will not be examined any further.

Conductive, non-magnetic medium with thin flaws

In non-magnetic media, a further simplification is also possible, when the thickness
of the defect is negligible with respect to the other dimensions and with respect to the
skin-depth in the material. This is the case of thin cracks, which is a very common
category of material defects comprising the Stress-Corrosion Cracking (SCC) and
the Fatigue Crack (FC) mechanisms. The appropriate formalism for the modelling
of cracks in infinite medium has been introduced by Bowler ef al. [30,31}132}1331134]
and has been extended in the recent literature by Theodoulidis and Miorelli et al. [35]
36, 37]]. Further developments have addressed the cases of finite media accounting
end-effect such as plate edges by Theodoulidis and Bowler [38]], boreholes by Pipis
et al., Skarlatos and Theodoulidis [22}39] and tube edges [40].

Using the fact that the normal current component at the surface of the crack must
vanish, which in its turn is translated to vanishing normal electric field, @D reduces
to

n-E°(r) =jou, / n-G“(r,r') -n p(r')ds’ (4.11)
Sy

where S is the crack surface and p expresses the electric dipole distribution over Sy,
defined as

p(r) = Alig()SG(r)n-E(r)Ax (4.12)

with Ax the crack opening and n the unit normal to Sy.

Notice the simplification achieved when moving from @.9), which is a vector
Fredholm integral equation of the second kind, with @D a first order scalar Fred-
holm equation. The reciprocity relation is also simplified accordingly

1
AZ(TdR)(rS) =%k /n-EI’;(r/;rs) pr(r';ry) dS'. (4.13)
Sy

The interpretation of the T, R indices remains the same as above.

4.2.3  Examples

The application of the integral method approach for the calculation of the defect
response will be illustrated via two examples.

The first example deals with the signature of a circumferential defect in a fer-
romagnetic tube obtained using a Remote-Field Eddy-Current (RFEC) probe. The
problem configuration is depicted in Fig. .4p.
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Figure 4.4 Eddy-current inspection of a ferromagnetic tube using a REFC probe.
(a) Piece geometry and probe. The red ring stands for the defect. (b)
Comparison of the simulation results obtained using the integral
method approach and the FEM method with measurements
(experimental data courtesy of Chen et al. [41] 142]) (Copyright IEEE).

The probe consists of a 15 mm long transmitting coil and an axial gradiometer
with two coils connected in differential mode. Both receiving coils have 5 mm thick-
ness and are located in the remote field region. The considered defect is a 50% thick
(percentage with respect to the tube wall) and 5 mm wide inner groove. The results
of the integral method presented above are compared against FEM simulations and
measurements in Fig. f.4] The illustrated curves stand for the complex plane repre-
sentation of the gradiometer signal as function of the probe position. This is a very
common representation in Eddy Current Testing (ECT) applications since the form
and the angle of the curves provide direct information about the defect features.

The second example concerns a fastener inspection affected by a narrow crack.
This is a application in the aeronautical industry, namely the eddy-current testing
of fuselage fasteners. Notice that the riveted structures are regions prone to the ap-
pearance of cracks owing to mechanical stress concentrations there. The considered
set-up is shown in

In this specific configuration, the fastener hole can be either considered as a large
defect which is addressed by means of the integral equation (£.9), a solution proposed
in [43], or alternatively as integrated part of the geometry, in which case one needs
to construct the appropriate Green’s dyad that takes into account all interfaces of the
piece (horizontal interfaces and hole surface) as done in [39]]. In the former case,
the Green’s dyad calculation is more straightforward, however the discretisation of
the defect has a negative impact to the computational burden. The latter approach
is computationally more efficient, yet one has to cope with the construction of the
appropriate Green’s function, which is a hard problem.
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Figure 4.5 ECT of fastener with a narrow crack. (a) Problem geometry. (b)
Simulation vs experimental results (real part). The signal asymmetry is
due to the presence of the crack (Copyright IEEE).

4.2.4  Inverse problems by means of optimization and machine
learning approaches

In the previous sections we provided an overview of some computational methods
that can be used to address the direct problem, that is to calculate the probe response
for a given configuration of inspection. This forward model will from now on cor-
respond to a function f(x|r;) that calculates the measured signals with respect to the
probe position rg, with x being some set of parameters representing the features of
the geometry which we wish to estimate (conductivity, permeability, crack dimen-
sions, crack position, etc.).

In a typical optimization approach, the forward model f is evaluated in a loop
and compared with measurements y to recover an estimate of X by solving a mini-
mization problem [44],

Sy = argmax mis { f(x|r,) ,y} +R(x) (4.14)

where mis: Y x Y — R is an appropriate measure of discrepancy in the data domain,
and R : X — R™ is a regularization functional that incorporates our prior knowledge
of x. For a nonlinear inverse problem, (4.14) is usually solved by iterative meth-
ods, and in some cases it can be converted to an approximate direct inversion model.
The minimizer of is the solution provided by the objective function approach.
Some typical implementations of the misfit function comprise the L? norm of the
(normalised) difference between simulated and measured data or some kind of en-
ergy functional.

Alternatively, machine learning algorithms can be used for solving inverse prob-
lems in NDT&E. The learning approach consists first in collecting a sufficiently large
amount of measured data y, or synthetic data f(x|r;) and the corresponding values
of parameters x, forming a so-called training set of N pairs {(x,yn)}, n=1,...,N.
This training set is then used to fit a ML model .%g (y) able to estimate x, with 6 € @
the specific parameters of the ML model. In case of deep learning methods, %y (y)
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corresponds to the architecture employed for solving the problem parametrized by
0 € ©. The deep learning architectures parameters are fitted to the training set dur-
ing the so-called training phase (or stage) that is performed off-line by solving the
optimization problems [44]

N
1 (y) == Fo(y),withO beingargmin Y mis{Fg (yn) %} +R(6) (4.15)
0cO® ;=1

where mis: X x X — R is a suitable measure of the mismatch in the parameter
space and R : ® — R™ is used to regularize the solution and enhance the model
generalization capabilities (i.e., avoid overfitting). Different metrics can be used to
assess model mismatch depending on the learning task objective (e.g., classification
or regression tasks) and the architecture employed [45]]. The minimization of @.13)
is obtained through back-propagation algorithms by using a broad set of efficient
minimizers (e.g., Adam, AdaGrad, RMSProp, SGD) [45]. Therefore, prediction
(also called test phase) can be performed in almost real time just by evaluation of
the model on an unknown set of measurements y.; such that K. = Fg (Yrest)-
It is worth mentioning that deep learning approaches can also be used to perform
forward modelling tasks: in this case the model learns to generate signals y from a

set of parameters X.

4.3 Applications of deep learning approaches for forward and
inverse problems in NDT&E

In NdT&E research and development community, numerical simulations have been
historically used to design probes, inspection set-ups and assess inspection perfor-
mance minimizing as much as possible time-consuming and expensive experiments.
More recently, simulations have been widely exploited in order to carry out very
computational demanding calculations involving statistical and sensitivity analysis
studies. In this framework, ML algorithms have been employed in order to build sur-
rogate models (also called metamodels) to speed-up otherwise computationally in-
feasible studies. NDT&E scholars refer to such ML paradigm as model- or physics-
driven approach in contrast to the data-driven approach where ML algorithms are fit
directly to measured data.

In NDT&E, model-driven ML approaches exploit the knowledge on the prob-
lem coming from simulations in order to design a suitable numerical experiment to
be used for training supervised classification and regression algorithms. Once the
algorithm is trained, then its performance is evaluated on a meaningful test set. De-
pending on the situation, the test set can be purely numerical, experimental or a
mix of the two. The performance of such a ML schema on the experimental test
set can be affected by the level of agreement between experimental acquisitions and
simulated data. Such an agreement depends on two main uncertainty factors, the
epistemic and the aleatoric uncertainties [46} 47]]. The epistemic uncertainty factor
can be reduced by designing a suitable ML schema or by increasing the number of
simulated samples. The aleatoric uncertainty cannot be reduced since it is intrinsic to
the experimental set-up. Common sources of aleatoric uncertainty, one can mention
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experimental noise, probe ageing and misplacement, lack of knowledge on speci-
men characteristics and defect(s) morphology, etc. These uncertainties may greatly
impact the ability of a trained ML model to be applied to real experimental data.

Data-driven approaches are widely employed by ML signal and image process-
ing communities as it has access to large of real (e.g., recorded audio signals, images,
etc.) open access datasets counting, very often, more than hundred of thousand of
samples. Unfortunately, in developing model-based ML strategies tackling NDT&E
inspection problems for forward and inverse tasks, one needs to face two main issues.
First, very few open access experimental datasets are available, thus it is difficult to
establish common benchmarks to test and improve the state-of-the-art of ML-based
strategies developed. Secondly, probed data are very often inspection and case de-
pendent. Indeed, even in a pure data-driven approach, the aleatoric uncertainties on
a given inspection problem may lead to poor generalization capabilities of the ML
algorithms developed on unseen test samples (i.e., same inspection problem but an
unseen experimental set-ups). Furthermore, in NDT&E acquisitions, the large ma-
jority of probed signals and/or images concerns healthy specimens, whereas to detect
flaws one need to have a lot of signals coming from flawed specimen to learn from.
In classification tasks, imbalanced datasets between healthy and unhealthy speci-
mens or between falw types is very common and must be properly handled in the
training phase. In addition, training data are often partially labelled or not at all la-
belled, which means that signals are available but not the corresponding information
(we have the y data but not the corresponding values of x like the probe(s) position,
the defect(s) geometry, the specimen characteristics, etc..). This limits the options of
algorithms to so-called semi-supervised ones, which have lower performance than
their supervised counterparts.

The NDT&E research community has attempted to mitigate the drawbacks asso-
ciated to model-driven and data-driven ML schema by adopting different strategies.
The NDT&E researchers have tried to inject physics-based knowledge in order to tai-
lor a specific ML schema. Toward this end, specific features engineering techniques
have been applied on probed signals in order to promote descriptors minimizing the
aleatoric uncertainty contribution and thus enhancing the ML model generalizations
performance. Furthermore, the joint use of synthetic data (which are cheaper to gen-
erate and are always labelled) and experimental data (which are similar to the test
data that will be used in the end) in training sets is currently a hot research topic.

In electromagnetic NDT&E one can distinguish two main categories of probed
data. The first category gathers signals that behave like time-series signals such as
scanning signal with respect to probe(s) displacement (e.g., eddy current testing ac-
quisitions in 2D symmetrical problems) or time (e.g., pulsed eddy current testing
signals for a given probe position). The second category collects all signals that can
be seen as 2D cartographies (e.g., eddy current testing acquisitions in 3D problems)
or 1D probe(s) displacement and a succession of time steps (e.g. a pulsed eddy
current acquisition). For both categories, very often, probed signals are complex-
valued and both real and imaginary parts are analyzed since the informative contents.
Furthermore, multi-static probe arrays and multi-frequency acquisitions have to be
considered to fulfill the inspection protocols, so the images analysed can be seen as
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multi-spectral ones. That is, typical electromagnetic NDT&E acquired signals be-
have as tensors with typical orders between 2 to 4. It is worth to be mentioned that,
thanks to the high flexibility in designing DL architecture, different source and/or
different extractions (also called ways in the signal processing community) of the
same data can be merged, mixed or exploited smoothly, making the use of DL meth-
ods a very convenient and flexible tool for features extraction and fusion in NDT&E.

4.3.1 Most relevant deep learning architecture in NDT&E

A deep learning architecture [45] consists in a chain of mathematical operations
established between inputs and outputs, the so-called layers. That is, the layers per-
form transformation on inputs in order to extract the most meaningful features to
perform the final tasks (e.g., regression, classification, etc.). Each layer is composed
by arithmetic units, called neurons, that enable the mathematical transformations. In
the most common deep learning architecture, the output of one layer is fed to the
the next layer neuron through a linear combination of weights and biases 0 (i.e.,
see {@.13)). On these linear operations is applied an element-by-element non-linear
transformation through the use the so called activation functions (or layer) aiming at
handling non-linear behaviour in mapping two successive layers. The most common
activation functions are the sigmoid, Rectified Linear Unit (ReLu), Leaky-ReLU,
softmax, etc. The use of a particular activation function depends on the task associ-
ated to the layer to which it is attached.

From a general point of view, the connections between two layers identifies
the architecture type, e.g., Fully Connected Neural Network (FCNN), Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN), Long Short Time Mem-
ory Recurrent Neural Network (LSTM- RNN) just to cite the most prominent ones.
Furthermore, provided a given family of layers (e.g., CNN, FCNN, etc.), different
architectures topologies (e.g., encoder-decoder, U-Net, etc.) can be obtained by con-
necting the different layers together in order to solve the problem at the hand. Fur-
thermore, the deep learning architecture can be also classified with respect to the
machine learning task to be handled. That is, one can divide the architectures by
considering supervised, semi-supervised and unsupervised learning paradigms. The
most used DL architectures that we will study in this chapter belong to the super-
vised learning framework aiming at solving regression and classification tasks based
on labelled datasets. Nevertheless, unsupervised learning (i.e., no labels are attached
to the data) based on the use of use generative models such as Variational AutoEn-
coder (VAE), Generative Adversarial Network (GAN), etc. is becoming more and
more common to solve specific tasks in the NDT&E research community. The semi-
supervised learning approach is also studied to enhance the DL model accuracy when
a small amount of labeled data is available.

4.4 Application of deep learning to electromagnetic NDT&E

One of the first attempts in using machine learning algorithms based on the shallow
neural network in the context of eddy current testing can be goes back to the mid-
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dle of the nineties [48, 149, 150, |51} 52} 53] |54, 55} I56]. Meanwhile, researchers in
NDT&E studied the use of kernel machines such as support vector machines, kernel
ridge regression, Gaussian process regression, etc., algorithms along with the use
of feature extraction and feature selection techniques such as principal component
analysis, partial least square, locally-linear embedding, etc. [57, 58] 159, 160, |61]].
More recently, pushed by the large leap forward in performance of deep learning
methods obtained in image and signal processing, the NDT&E community is ac-
tively developing and adapting deep learning architectures to handle classification
and regression problems based on NDT&E inspected signals (see Fig. [.T)).

The actual research of ML tools applied to electromagnetic NDT&E is trying to
propose solid and reliable solutions to support and automatize the decision processes
(i.e., defect(s) detection, localization, sizing, remaining useful life (RUL), etc.) dur-
ing acquisitions. In NDT&E, different levels of automation are envisaged. The in-
tegration of decisions between human supervision and machine learning algorithms
is performed based on different contributions on the final outcomes. Referring to
(62,163} 164, 65]], the automation levels of NDT&E inspection systems can be divided
into five levels where the increasing contribution of ML algorithms impact the final
decision ranging from a mild NDT&E operator assistance to a fully automatic sys-
tem (see Fig.[4.6). The higher the level the most involved and complex the ML algo-
rithms are. The complexity of the algorithm developed should also be accounted for,
in view of deploying the algorithms on embedded measurements systems that need
to fulfill CPU efficiency constraint and traceability of the deployed algorithm, too.
In the following, we provide a systematic analysis of deep learning methods applied
to industrial sectors where electromagnetic-based NDT&E is widely employed.
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4.4.1 Deep learning in electromagnetic NDT&E applied to the
energy sector

The energy sector gathers a very broad set of industrial sectors ranging from the
nuclear energy to the renewable energies (e.g., eolian, solar, etc.) and the oil&gas.
For all these industrial sectors, electromagnetic NDT&E is widely employed. In
nuclear industry periodic inspection of Nuclear Power Plants (NPP) Steam Gener-
ation Tubes (SGTs) is carried out with eddy current testing methods, by means of
different probe(s) arrangements and inspection protocols depending on the inspected
part under test (e.g., U-bended SGT part, straight part, transition zone, near support
plate, etc.). The use of Al and ML based analysis of inspection data is actually a
very active research topic in order to speed-up the analysis of the very large quantity
data acquired (e.g., a typical NPP is composed of hundreds of SGTs). The perspec-
tive, in the near future, of deployment of new array probes for these applications will
increase considerably the amount of data to be analyzed, forcing the current orga-
nization, partly or exclusively based on manual analysis by experts, to adapt. This
makes this topic quite strategic. In this context, the development of support tools for
helping NDT&E engineers decisions are under study for reducing as much as possi-
ble the human analyses errors (e.g., the so-called human factor) when repetitive and
long analysis are performed.

The use of deep convolutional neural network for defect detection has been pro-
posed by Zhu et al. [66] based on multi-frequency ECT acquisitions performed in
SGT. The data-driven schema developed involves the use of robust principal com-
ponent analysis to properly detect the regions of interest. Thus, the Convolutional
Neural Network (CNN) model proposed computes both the probability associated
to the tested samples along with the epistemic uncertainty associated to the detected
class (see Fig. £.7). Such an approach is supposed to be widely exploited by the
NDT&E community in the near future along with the possibility to embed the ex-
plainability of a deep learning method. In [67], the authors studied the performance
of a deep neural network for defect classification based on the use of two different
ECT probes (i.e., pancake coil and +Point probe) signals. The analysis performed
showed that the neural network schema adopted was able to classify, with good per-
formance, the longitudinal, circumferential and no-defect classes. Li ef al. [68]]
proposed a first attempt to crack profile reconstruction based on the use of multi-
frequency ECT signals. In particular, a C-scan ECT signal was used as input to a
tailored the encoder-decoder deep neural network developed for this purpose loosely
inspired by deep convolutional generative adversarial network architectures devel-
oped by the image and signal processing communities. The results obtained, based
on numerical datasets only were quite promising in view of an extension to more
challenging problems, e.g., involving experimental signals. In [69]], a set of deep
residual convolutional neural networks has been tested for crack depth classification
based on massive set of acquisitions performed on steel plate containing 20 machined
slot defects. The study showed that the architectures considered were capable to dis-
tinguish the different defects classes with good accuracy.

In Oil and Gas (O&G) and petrochemical industries, the use of ECT method,
based on both time-harmonic excitation and Pulsed Eddy Current Testing (PECT), is
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Figure 4.7 Deep convolutional neural network architecture for defect detection in
SGT tube based on ECT signals enabling prediction uncertainty
estimations [|66|] (Copyright Elsevier).

widely used for inspecting the presence of corrosion in pipelines. Detection, local-
ization and sizing (mainly in term of corrosion thickness) are the main outcomes ex-
pected by the analysis of the data acquired. The use of machine learning algorithms
is expected to provide many advantages in data analysis. For instance, in PECT the
interaction of a broadband signal (e.g., pulse wave form) with the SUT produces
specific signatures in time and space (i.e., probe position). Unlike more common
time-harmonic excitation ECT, the analysis of PECT signals needs to account for the
time dimension since a certain amount of information (e.g., material characteristics,
defect properties, etc.) is embedded in the SUT feedback when the PECT excita-
tion decay. However, a time dimension composed of hundred or even thousand of
samples adds to 2D mechanical scan, making the problem computationally more de-
manding from the learning perspective. In order to efficiently handle such large size
of data, a feature extraction of probed signals has been performed based on principal
component analysis [70]. Based on an experimental dataset, the extracted features
were employed as input to a deep neural network able to account for the variations
due to different acquisitions temperatures. The outcomes of the architecture have
been used to predict both probe position and defect geometrical characteristics (see
Fig.[@R). In [71]], a 1D convolutional neural network has been designed in order to
perform defect classification and regressions (i.e., defect height estimation) simul-
taneously based on a set of A-scan PECT experimental acquisitions. The obtained
results have been compared with state-of-the-art machine learning algorithms (i.g.,
Gaussian process, support vector machine, decision tree, etc.) showed a great im-
provements obtained by the deep learning schema proposed. In the noteworthy work
[72], Dang et al. authors proposed a deep neural network + involving CNN and
long-short time memory architectures for characterizing the multiphase flow (e.g.,
oil and water percentage) for industrial applications showing the capability to accu-
rately measure the volume fraction of water and the total flow velocity.

Deep neural network have also been applied to magnetic flux leakage (MFL)
acquisitions in large pipeline loop, where artificial natural corrosion defects were
present in a pipe [73,74]]. The dataset obtained from in-situ measurements has been
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Figure 4.8 Deep neural network schema proposed in [|70|] to perform a regression
task based on pulsed eddy current signals.

augmented by simulations based on rectangular shaped artificial defects. After that,
both the datasets have been used for training a specific type of CNN, called visual
transformation convolutional neural network (VT-CNN), for estimation of defect
length, width and depth. The results obtained by the VI-CNN showed an higher
accuracy compared to CNN without VT layer, provided a minor computational bur-
den in training and testing phases. Sun et al. [[75], proposed a physics-informed deep
neural network architecture, called DfedResNet, to tackle the problem of estimation
of defect(s) size parameters based on MFL acquisitions. The main features of such a
deep CNN were the possibility of combining engineered features associated to MFL
acquisitions (i.e., the physics-informed part [46| 47]) along with the spatial patterns
of MFL images. Furthermore, saliency maps analysis has been also investigated for
enhancing the interpretability of the deep learning schema proposed. The regres-
sion results obtained by the DfedResNet showed large improvements compared to
support vector machine and VI-CNN schema. In [76] Le ef al. proposed a convo-
lutional neural network based surrogate model aiming at speeding up the computa-
tional time of magnetic field distribution based on the exploitation of finite element
simulations. Toward this end, a U-Net like convolutional neural network was de-
signed considering as input two images represented by the permeability and current
distributions versus the magnetic field maps (x- and z- components). The results
obtained showed the capability of the deep neural network architecture to accurately
predict the numerical model test data in a wide set of scenarios (e.g., different flaw
type, permeability values and current distributions).

4.4.2 Applications to the transportation and civil infrastructures
sectors

Eddy current testing methods and techniques have been widely used in the past for
detecting defects in aeronautic and aerospace industrial sectors thanks to the possi-
bility to inspect rapidly (i.e., without needing to remove coating and/or fasteners)
large airplane parts, fastener sites and bolt holes. Typically, corrosion like defects
and micro cracks nearby fastener sites are the most critical defects to be detected
in order to extend the operational life of airplanes without harming the residual life
of the structure. The application of deep neural network in such industrial domain
started in the beginning of this century. The use of two hidden layers feed forward
neural network applied to defect classification based on PECT signals exploiting dif-
ferent feature engineering methods was studied in [50}[77]]. Further studies on the use
of ML algorithms for defect detection in multilayered metallic structures based on
time domain (pulsed) ECT have been presented in [[78] for detection of second-layer
crack(s). More specifically, C-scan PECT data have been acquired on a structure
composed by bolt hole with and without defect(s), bolt hole with counter sink with
and without defect(s), hole with titanium and ferrous fastener with and without de-



18  Running head verso book title

fect(s). The detection performance of established machine learning algorithms such
as random forest, gradient boosting and support vector machine have been assessed
against deep learning methods based on long-shot term memory (LSTM) recurrent
neural network (RNN) and multilayer perceptron (MLP) algorithms [45]]. The results
obtained showed that random forest and gradient boosting have an edge in perfor-
mance compared to deep neural network methods once applied on raw PECT data.
In [[79]], time harmonic ECT has been used to for defect classification based on exper-
imental measurements in titanium plate based on tailored CNN network architecture
dealing with the small amount experimental data available. The promising classifi-
cation results obtained by the CNN architecture have been also compared with more
established learning algorithms such as deep belief network, stacked autoencoder
and support vector machine, showing that CNN was able to achieve the best results
based on the test data.

The use of ECT method coupled with deep learning has been also proposed for
detecting anomalies on railways in order to exploit the strength of ECT compared
to visual inspection methods (e.g., robustness with respect to environmental condi-
tions, high speed acquisitions, etc.). In [80], the alternating current field measuring
technique has been used in order to perform experimental measurements on a cali-
bration block containing clusters of cracks and a two hidden layers multilayer per-
ceptron neural network have been used along a Bayesian regularization method for
back-propagation schema. Simulations have been used to build the training set. The
results obtained showed a good generalization capability on the studied DL schema
in retrieving the equivalent length of the cluster of cracks on both simulated and ex-
perimental test sets. In [81]], a data driven convolutional neural network architecture
has been developed in order to exploit the ECT acquisitions post-processed through
wavelet-based algorithms (i.e., continuous wavelet transform) and perform classifi-
cation of surface breaking and superficial anomalies in rails (i.e., weld, squat and
joint anomalies). The CNN architecture has been trained with data processed by
wavelet power spectrum transform and the obtained classification results have been
compared with a large set of classification methods involving logistic regression, en-
semble methods, quadratic discriminant analysis, etc. The CNN results showed an
edge in performance compared to the other ML methods studied.

In et al. [82], a Deep Belief Network (DBN) [45] composed by a set of stacked
restricted Boltzman machines trained in an unsupervised fashion (i.e., see Fig.
has been applied in order to extract the most meaningful set of features from ECT
signals measured on titan plates where slots and holes machined defects were em-
bedded. The features extracted by DBN in an unsupervised way have been fed to
vector valued Least Square Support Vector Machine (LS-SVM) algorithm in order
to perform the defect characterization (i.e., defect(s) sizing) tasks. Thanks to the use
of the DBN, the proposed method do not require any feature engineering stage before
providing data to LS-SVM algorithms. The results obtained by the proposed learn-
ing schema have been compared with principal component analysis and Boltzman
machine feature extraction algorithms. These comparisons showed that the higher
accuracy was obtained by the DBN and LS-SVM approach. In [83], the use of two
chained artificial neural network architectures has been developed in order to per-
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Figure 4.9 Deep belief network schema developed for unsupervised feature
extraction based on ECT measurements in titanium plates [82|]] (CC BY
4.0 license).

form classification of defect depth and width based on MFL experimental measure-
ments on steel wire ropes. The developed schema was based on the use of engineered
features extracted from acquisitions. The obtained results showed the capability of
the developed methodology to diagnose defects in wire ropes with good accuracy.
In civil infrastructures industrial sectors Ground Penetrating Radar (GPR) is
widely applied to detect, classify and possibly localize buried objects under the soils
or pavements, in reinforced concrete structures and masonry (e.g., landmines, pipes,
voids, cracks, rebars). Deep convolutional neural network for detecting buried explo-
sives based on GPR B-scans measurements has been proposed in [84]. The schema
proposed is based on a pre-processing step aiming at detecting and selecting a suit-
able region of interest from the original B-scan before performing the training phase.
The results obtained, compared with different the state-of-the-art algorithms for
anomalies detection, showed that the CNN approach has the capability to outperform
other traditional post-processing algorithms. In [85], experimental B-scan images
have been decomposed into smaller patches containing buried landmine signatures
(i.e., echos hyperbolas) and ground signatures before training a convolutional neural
network targeting landmines detection. High detection accuracy in detecting land-
mine has been observed on the test set data for the three tested architectures compare
to histogram oriented gradients detection procedure. In [86, [87, |88]], different 3D
convolutional neural network architectures have been developed in order to jointly
use the information contents of B-, C- and D- scans GPR experimental acquisitions
targeting objects detection. The results obtained showed an enhanced accuracy in
classification results compared to classical approaches based on the use of B-scans
only training input data. Automatic GPR signatures detection have been studied by
several scholars for identify and classify echos hyperbolas in measured data. More
into details, mask and faster Region-based Convolutional Neural Network (R-CNN)
based architectures have been employed to detect hyperbolas performing semantic
segmentation of echoes in B-scan measurements [89) 190} 91, 192} |93]]. In [94 93]
different versions of YOLO architectures have been studied to tackle the hyperbolas
identification and defect localization tasks based on B-scans acquisitions. A wor-
thy mention on the use of deep learning methods applied to GPR data, is about the
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Figure 4.10 Convolutional neural network used for predicting ground permittivity
characteristics based on GPR B-scan signals [98|] (Copyright IEEE).

estimation of permittivity characteristics and electromagnetic waves velocity esti-
mations in complex soils. Researchers are investigating the use of of deep gen-
erative models in order to perform a pixel-wise reconstruction of electromagnetic
characteristic of soils based on encoder-decoder, U-Net like and generative adversar-
ial network architectures [96]]. Furthermore, tailored convolutional neural network
architectures proposed in [97, 198,199, [100] showed high capability in retrieving per-
mittivity characteristics as well as velocity of electromagnetic in complex soils (i.e.,
see Fig. F10). It is worth to be mentioned that the previously cited works rely on
simulated results for 2D problems only and that the performance of the DNN model
developed is directly linked to the number of training samples considered, i.e., a
large or very large training set is needed. Furthermore, a noteworthy result target-
ing forward and inverse modelling based on the use of deep fully connected neural
network has been shown in [101} [102]]. In these works Giannakis ef al. employed
DL schemas to infer rebars positions and size in concrete based on the use of fully
numerical training sets.

4.4.3 Applications to the manufacturing and agri-food sectors

The Industry 4.0 paradigm, roughly consisting in global digitization and exploita-
tion of data coming from manufacturing processes, for the next generation produc-
tion and manufacturing plants aim at bringing the third industrial revolution in our
society. This production paradigm is expected to extensively exploit the emerging
technologies boosted by the most recent Al advances. In this regard, the wide use of
robotics and numerically controlled procedures will be used for enhancing the pro-
duction outcomes, lowering the production time and costs and increasing the produc-
tion quality (i.e., the so-called zero-defects production). Toward this end, production
chains are becoming more and more connected through a broad variety of possibly
heterogeneous sensors aiming at collecting the largest set of information to control
the productions factors (e.g., quality of manufactured specimens, devices, etc.). The
integration, connection and exploitation of such heterogeneous set of information is
among the highest challenges of Al-based algorithms for the next decade.
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Microwave-based NDT&E method is applied in different manufacturing sectors
for checking the quality of products during the fabrication process for dielectric of
weakly conductive materials. In [[103}/104], a convolutional neural network approach
aims at retrieving the moisture density in porous foam inspected by a microwave to-
mography system. Toward this end, numerical simulations have been used in order
to generate the training, validation and test sets. The real and imaginary parts of
S-parameters have been fed to a CNN composed by two CNN blocks and a fully
connected layer that, once reshaped, provided a vertical slice of the moisture density
and/or the permittivity map(s). Microwave non-destructive testing and shallow neu-
ral networks have been jointly applied more than twenty years ago in the agri-food in-
dustrial sector [103]] to establish the moisture content in wheat. More recently, [106]]
proposed a deep neural network architecture aiming at handling multi-frequency
sweep microwaves measurements in order to predict the moisture measurement of
sweet corn. A noteworthy end-to-end experimental set-up, exploiting both CPU or
FPGA hardware, based on the use of microwaves and deep neural network learning
schema has been developed for detecting contaminant in food jars [107]. Microwave
inversion of dielectric rods in complex geometry in a fully data-driven approach
exploiting convolutional neural network and recurrent neural network have been re-
cently proposed by Ran et al. [108][109]] successfully comparing the obtained results
with the state-of-the-art microwave imaging techniques. In [110], Wu et al. proposed
a deep convolutional neural network architecture, called VMFNet (i.e., see @,
aiming at performing damage detection on curved radar absorbing materials (RAM).
The designed network exploits the inputs coming from visual and microwave images
of curved RAMs through two distinct backbone convolutional neural network, thus
the extracted features have concatenated in order to perform detection. The results
obtained by the proposed network showed large improvements in detecting cracks
compared to state-of-the art algorithms in computer vision (e.g., YOLOv4, Faster
R-CNN, EfficientNet). Rohkohl et al. [[111] studied a deep learning schema aiming
at perform weld inspection of electric contact in battery cell manufacturing based
on eddy current testing. In particular, the authors proposed to train DNN model
based on ECT signals in order to predict results from a reference method such as
radiography testing in order to enhance the interpretation of ECT acquisitions. A
convolutional neural network with U-Net like architectures has been developed in
order to encode ECT into RT tomography map. Generated results based on the ECT
tests are converted to cone beam tomography results that can be easily interpreted by
humans without performing any expensive and time consuming ionizing RT tomog-
raphy acquisitions.

Automatic characterization of magnetic properties and the design of innovative
materials based on the used of machine learning are catching the interest of academic
researchers and development engineers in the manufacturing industry. In [113], El-
man neural network was used for the identification of non-linear hysteresis model
parameters. More recently, in [[114] a recurrent neural network model was used to ac-
curately predict the behavior of the hysteresis loops in ferromagnetic materials under
a limited amount of measurement data available. In Maciusowicz et al. [115], mag-
netic Barkhausen noise measurements have been exploited in order to predict grain
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Figure 4.11 Deep convolutional neural network applied to defect detection in
radar absorbing materials based on visual and microwave features
exploitation [[I10]. (CC BY 4.0 license)
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orientation in a ferrosilicon alloy for electrical steel. More into details, short-time
Fourier transform has been applied on magnetic Barkhausen noise measurements,
then the obtained signal maps have been fed to a specifically designed convolutional
neural network. The obtained results showed the possibility to correctly classify the
grains orientation angles for the experimental set-up considered.

4.5 Applications to higher frequency NDT&E methods

Accordingly to the schema displayed in Fig. the highest frequencies of the elec-
tromagnetic spectrum are taken by three widely used NDT&E methods: Infrared
Thermography Testing (ITT), Terahertz waves Testing (TT) and Radiography Test-
ing (RT). Compared to lower-frequency methods, the interaction phenomena be-
tween source and inspected media is very different from low-frequency electromagnetic-
based NDT&E method. ITT, TT and RT measurements are widely used methods
along with electromagnetic NDT&E such as ECT or MFL testing. It is believed
that this section can provide some alternative point of views of deep learning in
NDT&E and suggest possible data hybridization and fusion across the different
NDT&E methods treated in this work. In the following we provide an overview
on how deep learning is applied to ITT, TT and RT.

4.5.1 Infrared thermography testing and terahertz wave testing

Infrared thermography testing is a NDT&E method that exploits thermal signatures
of the SUT interacting with a controllable external excitation thermal source (eddy
current induction, lamp flash, laser, etc.). In ITT, the interactions between thermal
source and SUT are ruled by the convection and conduction equations that make
ITT a complementary method to ECT and MFL. Indeed, ITT is one among the best
suited methods for fast inspection of composite material and surface breaking defects
in conducting media, masonry and concrete structures [116].

The thermal signature emitted by the SUT is collected by infrared cameras and
lenses sensing rays within the infrared spectrum. Depending on the considered prob-
lem, ITT collected signals behaves as order-1 tensor if pixel-wise time-dependent
measurements are considered. Order-2 and order-3 tensors are considered when ac-
quisitions behave as images or video sequences, respectively. In this framework,
deep learning techniques issued from image and signal processing communities have
been adapted to ITT data. In particular, for order-1 tensor data are exploited when
a limited amount of data is available. In [117, [118} [119]], temperature time series
signals are analyzed employing recurrent neural networks, where the temperature
signatures were processed by employing a long-short memory recurrent neural net-
work (LSTM-RNN) to classify different defects that typically affect carbon fiber
reinforced plastic (CFRP) material in assembled structures. In [120, [121], a data-
drive approach has been used to train a 1D CNN architecture in order to perform
pixel-wise pristine vs. damage classification of CFRP material based on temperature
signature with respect to time. The prediction results were subsequently concate-
nated in order to obtain an binarized image of the whole specimen under testing.
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Figure 4.13 Example of spatial and/or time feature based deep neural networks
applied to ITT. A defect detection schema based an deep neural
network architecture based on fully-connected network, VGG
architecture and LSTM-RNN is displayed [|[23]] (Copyright Elsevier).

The classification results have been compared with classic ITT signal processing
state-of-the-art techniques showing promising improvements.

In Xie et al. [122], an autoencoder (AE) -based architecture has been studied
in order to extract the meaningful set of hidden features associated to an experiment
temperature time-series back-wall cracks; the proposed methodology showed to be
able to enhance the quality of ITT images. Deep neural network architectures based
on CNN and/or LSTM-RNN have been developed based on order-2 and order-3 ten-
sor ITT inputs signals in order to gather and mix both spatial and temporal features
(12311241 [123] (i.e., see Fig.[4.13] Subsequently, the joint exploitation of both spa-
tial and temporal features information allowed to increase the classification and re-
gression performance compared to state-of-the art approaches. Deep neural network
architecture has been also used in ITT to provide fast and reliable image segmenta-
tion [126l [127] to improve the image analysis stage. In [126], authors proposed a
DNN architecture based on convolutional layers and Inception modules chained for
tackling the problem of automatic segmentation of cracks profile in concrete struc-
tures. The inputs to the network are composed by hyper-spectral image gathering
both visible and infrared spectra information the classification outputs obtained can
be also interpreted in terms of probabilities being concrete or crack pixels.

The use of deep learning methods applied to ITT is also raising the interest of the
experimental physics research community historically involved in numerical simu-
lations of highly complex problems in a vast set of research domains. Very recently,
the use of DL algorithms has been extensively used in order to model complex in-
teractions between plasma and confinement barriers in fusion reactors. That is, ITT
is used for in-service monitoring of plasma facing components to detect unexpected
hot points to be handled instantaneously in order to avoid fusion reactor damages.
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Simulated heat flux images have been used to predict plasma parameters based on
a set of six different deep neural networks involving feed-forward neural network
to deep Inception ResNet [128]]. In [129], a generative adversarial network frame-
work has been developed for enhancing the defect detection capabilities based on
ITT measurements performed on composite fibre reinforced plastic plate. In [130]],
deep residual network have been used for deblurring purposes based on ITT image
acquisitions.

Terahertz wave testing is used in NDT&E to perform contactless measurements
of millimiter an submillimeter electromagnetic waves interacting with the SUT. The
use of TT is gaining particular attention in NDT&E research community for inspect-
ing dielectric materials such as glass fiber reinforced plastic, glass fiber composite,
ceramics, plastic materials and in food industry. In [131], Wang et al. proposed an
experimental validation of two different deep learning architecture for pixel-wise
defect depth classification. That is, a bidirectional LSTM-RNN and a 1D-CNN
were fed with time-domain signals or spectral signals and the results obtained by
the two different architectures as well as the different input signals have been com-
pared showing an edge in performance by the 1D-CNN regarding the input signals
considered. In Zhang et al. [132]], time domain TT measurements have been used
in order to perform air gap thickness measurements in insulation equipment. Dif-
ferent ML classification methods have been trained and tested and compared on the
experimental signals. That is, the performance results have been studied based on a
deep learning schema composed by a chain of combination of CNN, residual shrink-
age network and fully connected blocks as backbone for Terahertz waveform feature
extraction purpose with a classification block provided by a Bayes classifier, a soft-
max layer or a support vector machine. The best results were obtained by using
the support vector machine layer. Very recently, the use of deep learning for super-
resolution purposes based on terahertz imaging images is attracting the attention of
many researchers in the NDT&E field. In particular, in [133}[131}[134] tailored deep
convolutional neural network architectures have been proposed to enhance the res-
olution of Terahertz images based on measurements performed on different kind of
structures. In [135] [136]], the super-resolution task have been tackled by consider-
ing generative adversarial network adapted to a dataset of experimental Terahertz
images.

4.5.2 Radiographic testing

X-rays are a form of electromagnetic radiation of extremely short wavelength, rang-
ing from 1072 to 10~® meter, that have the ability to penetrate the matter. The
inspection of the internal structure of an object through X-ray testing consists in
passing an X-ray beam through this object and recording its attenuation on a recep-
tor. With digital radiography, a 2D grey-level projection image is acquired from the
transmitted X-ray beam. Due to the similarities between the X-ray images and the
visual ones, all modern computer vision techniques have been naturally applied to
X-ray testing [[137]. In particular, DL approaches have been employed to target real-
time detection and automatic classification of encountered flaws, contaminants or
threats for different industrial applications such as quality control of welds, inspec-
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Figure 4.14 Deep neural network architecture as applied to Terahertz testing
acquisitions. On the left a bidirectional LSTM-RNN and 1D-CNN
architecture are sketched, respectively [I31]] (Copyright Elsevier).

tion of automotive and aeronautics parts, and food products or baggage screening. In
this section, we present the most relevant applications of DL algorithms to RT data in
different industrial sectors (defect detection in welds and casting parts, contaminants
in food industry, threats in baggage screening).

Defects detection in weld inspection, casting and assembled parts

X-ray quality inspection of welds (e.g., pipes in NPP), casting light-alloy parts (e.g.,
wheel rims, steering knuckles and steering gear boxes) and assembled (e.g., compos-
ite structures) parts is commonly used in the nuclear, naval, chemical, automotive and
aeronautical industries for ensuring the safety and the quality of the parts. Tradition-
ally, radiographic images are manually inspected by human experts in order to detect
and characterize potential defects. However, this task requires experienced inspec-
tors and is time-consuming. In order to avoid the effect of human factors, to cope
with the throughput of the production and analysis pipeline and to improve detection
accuracy, fully automated inspection systems are deployed.

In the last decades, several works have focused on the automatic detection and
identification of the most common welding defects and deep learning approaches
have recently been applied to this task. In [138], the implementation of the au-
tomatic defect detection relies on three steps: the segmentation of the weld area,
the application of a classification model on patches of the image and the detection
of defects in the entire weld area using a sliding window algorithm. The classi-
fication model is constructed by stacking several sparse auto-encoders performing
unsupervised learning and one softmax classifier using supervised learning. The
proposed algorithm is applied on the public database GDXray [[139] that includes a
weld dataset of 88 images taken by the BAM Federal Institute for Materials Research
and Testing. Several experiments are implemented including extracting the features
using SAE and examining the classification accuracy under different parameters of
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the model. The overall method is illustrated in Fig.[d.15] With this approach, defects
can be accurately detected but not classified.

Fine-tune

l Deep neural network

Figure 4.15 Illustration of the method proposed in [|[38]] for defect detection in
weld images (CC-BY 3.0 license).

Wang et al. [140] propose a method to identify three types of welding defects
(blowhole, underfill or incomplete penetration) and their locations in X-ray images
by using a pre-trained RetinaNet-based CNN and develop a dataset constituted of
6714 labelled images. Mean average precision (mAP) ratings are 0.76, 0.79, and
0.92 for the defect types. Yang et al. [141]] proposed an improved CNN model based
on LeNet-5, whose architecture consists of 7 layers (excluding the input layer), in
which the layers 1, 3 and 5 are convolution layers, and the 2 and 4 are down-sampling
layers. The CNN X-ray input is fed with 60 x 60 patches taken from the radiographic
images and is shown to outperform LeNet-5, ANN, and SVM methods in terms of
recognition accuracy.

Ferguson et al. [142] investigate the potential of different CNN architectures
to localize casting defects in X-ray image. By decoupling the feature extraction
layer from the object detection architecture, they studied three object detection ar-
chitectures, namely Faster R-CNN, R-FCN (Region-based Fully Convolutional Net-
works [143]) and SSD (Single Shot Multibox Detector) with different feature ex-
tractors (VGG-16 and ResNet-101). Using an adapted version of the Faster R-CNN
architecture, they achieve a mAP value of 0.921 on the GDXray dataset, constituted
of 2727 X-ray images. For a similar use case, Du et al. [144] proposed Feature Pyra-
mid Network (FPN) as the defect detection framework, which proved to be better
suited for detecting small defects than Faster R-CNN, with a 40.9% improvement of
the mAP. In the final regression and classification stage, RoIAlign (see Fig. .16) in-
dicated apparent accuracy improvement in bounding boxes location compared with
Rol pooling, which could increase accuracy by 23.6% under Faster R-CNN.

In general the proposed detection techniques cannot classify a lot of defect types
with high accuracy, and do not consider the scale variation among different defect
categories. Moreover, a lack of datasets, especially due to the lack of defective radio-
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Figure 4.16 Faster R-CNN with RolAlign applied to defect detection in X-ray
images of casting parts [144|] (Copyright Elsevier).

graphic images, is noted and justifies to investigate specific data augmentation tech-
niques, transfer learning approaches and Generative Adversarial Networks (GAN).

Contaminants and threats detection in food industry and baggages

Ensuring contaminant-free products is a major concern in food industry, especially
with the development of high-speed and fully automated production lines. X-ray
inspection offers today the most effective way to detect and eliminate products con-
taining foreign elements such as glass fragments, stones, metal pieces or organic
external elements such as insects or wood chips. For the task of contaminants de-
tection, unsupervised learning approaches could be preferred because they can learn
only with contaminant-free images, much easier to record in industrial environment.
However, because defective product images in the context of contaminant detec-
tion are only slightly different from legitimate ones, they cannot be well separated
through one-class classification (OCC). For this reason, object class segmentation
(OCS) is more commonly used for industrial flaw detection.

Bergmann et al. [1435] propose a multi-object, multi-defect dataset of RGB cam-
era images for anomaly detection and an evaluation of multiple OCS methods for
unsupervised anomaly detection. Based on their results, Kim ez al. [146] found OCS
method not suitable for the contaminants detection in heterogeneous food items and
proposed a supervised learning approach with a reduced dataset of industrial abnor-
mal data. This database was augmented in a cut-paste manner using 500 images of
different food product to create various backgrounds and fifty images of three types
of contaminant without background (see Fig. .17). The test data were constructed
from defective product X-ray images collected in the field. By predicting the test data
with the object detection network YOLOV4 (see Fig.[#.18)), trained on the augmented
data, normal and defective products were classified with at least 94% accuracy for
all foods.

Another use of industrial X-ray imaging concerns baggage screening, largely
deployed for maintaining security at airports and other public spaces. In this field,
screening is still very often realized by a human operator but due to the complexity
of the image, containing lots of items overlapping, and the limited decision time,
the performance of the control is not optimal. For this reason, several works have
been dedicated to automatic threat detection. A thorough survey of this literature
is reported in [[147] based on 213 relevant references, among which 36 were identi-
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Figure 4.17 Augmentation of the dataset by merging contaminants alone images
in different backgrounds [[I146l] (CC-BY 4.0 license).
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[

Figure 4.18 Basic architecture of YOLOV3 applied to food package analysis
in [[I46)] (CC-BY 4.0 license).

fied as using deep-learning algorithms and categorized as supervised (classification,
detection and segmentation) and unsupervised (anomaly detection) approaches.

The performances of different supervised approaches, applied on a same input
X-ray image, are illustrated in Fig.[4.19] For more details on the algorithms pipelines
implemented in these different works, we refer the reader to [[147].

., L
o < 'ﬂ/ > B £

Figure 4.19  Results of DL tasks applied to X-ray baggage screening, the detection
is performed with YOLOvS5 on the GDXray dataset.
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Overall, despite promising results, the automated X-ray baggage screening re-
mains an open question with a main limitation due to the lack of large unbiased
datasets. There is also a lower detection accuracy in highly complex scenes and with
thin objects such as sharps or knives with a critical role played here by multi-view
X-ray systems, because there is a higher probability to have uninformative views
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of the threat with such objects. However, modern X-ray detection systems provide
two orthogonal views or even four different angles of the same object, potentially
offering clearer perspectives of an object occluded in the first view. Here again, the
datasets of multi-view X-ray imagery are scarce. Unsupervised anomaly detection
approaches exhibit lower performances and could be improved.

4.6 Future trends and open issues for deep learning algorithms
as applied to electromagnetic NDT&E

The broad survey performed in this chapter shed some light on the future trends in
the application of DL algorithms in NDT&E. Active reach efforts are currently fo-
cused on hybridization of numerical solvers and deep learning algorithms, on the
possibility to perform data fusion of NDT&E acquisitions for enhancing predictions
accuracy, in the assessment and propagation of uncertainties in predictions, the in-
terpretability and the explainability of deep learning decisions in the NDT&E.

Embedding the physics knowledge in deep learning architecture for
electromagnetic NDT&E

The use of full data-driven approaches makes the deep learning methods behave like
black-box models. In the context of NDT&E, the possibility to add either physical
meaning or explainability to the DL model developed is an active field of study and
research. Toward this end, the use of numerical solvers is envisaged in order to
hybridize data-driven and physics-driven approaches or by conditioning the learning
process by injecting the physics knowledge directly into the DL architecture [148}
1491 193] 1150} [1511 [152]. In both cases, the main goal is to end up with gray-box
DL models that allow to better understand the (trained) models characteristics and
discard unrealistic solutions from the physical point of view. Furthermore, the use of
numerical solvers can be exploited to enhance the generalization capabilities of DL
models when measurement data are subject to uncertainties.

Embedding explainability and interpretability in deep learning decision for
electromagnetic NDT&E

The possibility to explain the ML models and the DL models specifically, also called
explainable artificial intelligence (XAI), is a very active topic within the deep learn-
ing research community [153} 1154, [155]. The XAl it will be one of the most active
research field in NDT&E. Indeed, the possibility to link the prediction performed by
the DL algorithms to the input features can lead, from the empirical point of view,
to a better understanding and interpretation of the DL model mechanisms. In this
framework, model-agnostic XAl algorithm are among the most suitable candidates
(156l [157].

Quantify and propagate the uncertainties in deep learning based model for
electromagnetic NDT&E

The application of DL to NDT&E acquisitions needs to account requirements in
terms of prediction accuracy and robustness with respect to the test data provided
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in the online phase. That is, the estimation of probabilities in predictions (e.g.,
classification classes) as well as the uncertainties associated to the predictions need
to be considered [46l 47]. Bayesian inference applied to deep learning exploiting
deep Bayesian Neural Network (BNN) architectures, can be used to estimate the DL
model uncertainties also called epistemic uncertainties 66} [158]. The identification
of the epistemic uncertainties enables as a consequence to estimate the aleatoric un-
certainties linked to the intrinsic variability expressed by the measured data (e.g.,
measurement noise, uncertainties on probe position, probe ageing, specimen charac-
teristics).

Data fusion based on deep learning algorithms applied to electromagnetic
NDT&E

Deep learning methods are suitable to handle multiple structured input features dur-
ing the learning process (e.g., multi-spectral images). In the context of electromag-
netic NDT&E, such a feature allows, for instance, to handle directly complex valued
signals in ECT. In the same manner researchers in NDT&E are trying to improve
the prediction performances through the fusion of features coming from multiple
channels data (e.g., multi-static probe signals, multiple frequencies). In wiev of
deployment of DL algorithms in interconnected manufacturing systems, such a ho-
mogeneous data fusion process is supposed to be extended to non-electromagnetic
NDT&E methods targeting an heterogeneous data fusion process. In this sense, a
noteworthy result has been recently proposed in the biomedical context [[159].

Open issues about the application of deep learning algorithms to
electromagnetic NDT&E

It is well known that, in order to achieve good performance in terms of accuracy and
robustness, DL algorithms need a suitable amount of data that often is larger than
the one needed for other ML-based algorithms e.g., kernel machines. In NDT&E
research community, due to secrecy and security issues, the availability of open
dataset containing close-to-reality labelled data for developing and benchmark DL
algorithms on a statistically meaningful set of samples is is very scarce. In fact, most
of the available acquisitions have been performed on specimen that do not account
realistic inspection set-up or defect typologies, thus the direct use of these datasets
for training DL algorithms can be applied by the whole community on narrow and
case dependent scenarios. Nevertheless, the joint use of numerical simulations and
a small amount of labelled experimental data is believed to mitigate such systematic
lack of realistic data through the use of semi-supervised and generative deep learning
models.

Certification of NDT&E algorithins

Another great challenge to tackle in order to largely deploy such solutions in industry
is the certification of DL based algorithms and their inclusions in the norms ruling its
various sectors. Many aspects have indeed to be taken into considerations. First, the
metrics used to compare performance between such diagnostic algorithms and exist-
ing procedures should be established, depending on the level of autonomy given to
the algorithm: assistance of the operator to highlight suspect regions of the analyzed
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data, proposition of diagnostic based on classification or fully automatic diagnostic.
Then, when considering algorithms that update their learning with respect to incom-
ing data, the question of how to ensure that the performance level is at least the same
when adding some data should be answered to. Finally, another point is to manage
the robustness of such algorithms (and possibly their recertification) to changes in
the inspection conditions, like changes in environmental factors or replacement of
parts of the acquisition chain due to some failures.

4.7 Conclusion and remarks

In this chapter, we analyzed some applications of deep learning methods to electro-
magnetic NDT&E and tried to show how deep neural networks can be adapted to
different scenarios involving electromagnetic probing waves ranging from the quasi-
static regime to microwave. In particular, CNN have been deeply exploited when
the treated signals behave “as images” such as in the case of ECT and MFL in-
spections where real and imaginary parts of the impedance variation as well as the
magnetic flux density are probed. Furthermore, time domain signals as in PECT
or GPR measurements have been addressed, too, by employing LSTM-RNN and/or
through CNN explicitly adapted for the purpose (e.g., pixel-wise inversion). Our
analysis underlined that specifically tailored deep neural architectures have obtained
a better prediction performances than pre-trained networks based on state-of-the-art
architectures. In fact, the systematic lack of large shared datasets containing labelled
measurements of realistic acquisitions make it difficult to properly benchmark and
improve such backbone architectures. Moreover, the difficulties in collecting la-
belled measurements for defect parameters (e.g., the defect geometry) downsize the
practical applications of deep learning models mostly to classification problems.
The survey performed in this chapter has also highlighted that the application of
deep learning in NDT&E is also going toward the acceleration of numerical forward
solvers for NDT&E modeling and simulations in a fully model-driven approach. It is
believed that the ability of DL methods to handle problems having large cardinality
(e.g., NDT&E parameters such as large number of defect classes, defect geometry
description, etc.) will boost the research and its application to time consuming sta-
tistical studies (see, e.g., [160, [161]]). Moreover, our analysis showed that the use
of numerical solvers proves useful in designing the most suitable DL schemas as
well as in improving the prediction accuracy when a low amount of measurements is
available. Finally, a large amount of works in the literature showed that exploitation
of deep learning algorithms directly on embedded systems (e.g., FPGA hardware) is
already possible without an appreciable degradation in prediction performance.
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