Base-modified nucleic acids as a powerful tool for synthetic biology and biotechnology
Résumé
The ability of various nucleoside triphosphate analogues of deoxyguanosine and deoxycytidine with 7-deazadeoxyadenosine (A1) and 5-chlorodeoxyuridine (T1) to serve as substrates for Taq DNA polymerase was evaluated. The triphosphate set composed of A1, T1, and 7-deazadeoxyguanosine with either 5-methyldeoxycytidine or 5-fluorodeoxycytidine was successfully employed in the polymerase chain reaction (PCR) of 1.5 kb fragments as well as random oligonucleotide libraries. Another effective combination of triphosphates for the synthesis of a 1 kb PCR product was A1, T1, deoxyinosine, and 5-bromodeoxycytidine. In vivo experiments using an antibiotic-resistant gene containing the latter set demonstrated that the bacterial machinery accepts fully modified sequences as genetic templates. Moreover, the ability of the base-modified segments to selectively protect DNA from cleavage by restriction endonucleases was shown. This approach can be used to regulate the endonuclease cleavage pattern.