
HAL Id: cea-04307622
https://cea.hal.science/cea-04307622v1

Submitted on 5 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An evaluation of sequencing coverage and genotyping
strategies to assess neutral and adaptive diversity

Badr Benjelloun, Frédéric Boyer, Ian Streeter, Wahid Zamani, Stefan Engelen,
Adriana Alberti, Florian J. Alberto, Mohamed Benbati, Mustapha

Ibnelbachyr, Mouad Chentouf, et al.

To cite this version:
Badr Benjelloun, Frédéric Boyer, Ian Streeter, Wahid Zamani, Stefan Engelen, et al.. An evaluation
of sequencing coverage and genotyping strategies to assess neutral and adaptive diversity. Molecular
Ecology Resources, 2019, 19 (6), pp.1497-1515. �10.1111/1755-0998.13070�. �cea-04307622�

https://cea.hal.science/cea-04307622v1
https://hal.archives-ouvertes.fr


An evaluation of sequencing coverage and genotyping 
strategies to assess neutral and adaptive diversity

Badr Benjelloun1,2,*, Frédéric Boyer1, Ian Streeter3, Wahid Zamani1,4, Stefan Engelen5, 
Adriana Alberti5, Florian J. Alberto1, Mohamed BenBati2, Mustapha Ibnelbachyr6, Mouad 
Chentouf7, Abdelmajid Bechchari8, Hamid R. Rezaei9, Saeid Naderi10, Alessandra Stella11, 
Abdelkader Chikhi6, Laura Clarke3, James Kijas12, Paul Flicek3, Pierre Taberlet1, François 
Pompanon1,*

1Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France

2National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic 
Research, 23000 Beni-Mellal, Morocco

3European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust 
Genome Campus, Hinxton, Cambridge, CB10 1SD UK

4Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, 
Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran

5CEA - Institut de biologie François-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry 
Cedex, France

6National Institute of Agronomic Research (INRA Maroc), CRRA Errachidia, 52000 Errachidia, 
Morocco

7National Institute of Agronomic Research (INRA Maroc), CRRA Tangier, 90010 Tangier, Morocco

8National Institute of Agronomic Research (INRA Maroc), CRRA Oujda, 60000 Oujda, Morocco

9Department of Environmental Sci, Gorgan University of Agricultural Sciences & Natural 
Resources, 41996-13776 Gorgan, Iran

10Environmental Sciences Department, Natural Resources Faculty, University of Guilan, 
49138-15749 Guilan, Iran

11PTP Science Park, Bioinformatics Unit, Via Einstein-Loc. Cascina Codazza, 26900 Lodi, Italy

*Corresponding authors: Badr Benjelloun, François Pompanon, badr.benjelloun@univ-grenoble-alpes.fr francois.pompanon@univ-
grenoble-alpes.fr. 

Data accessibility 
The variant call sets are archived in the European Nucleotide Archive with accession numbers provided in Table S2. The accession of 
the sample in the Biosamples archive, and of the corresponding aligned bam file in the ENA archive are listed in Table S1.

Author contributions 
The study was done within the NEXTGEN project (coordinated by P.T.). F.P. and P.T. designed and supervised the study. B.B., M.I, 
M.B, M.C., A.B, A.C, W.Z., H.R.R. and S.N. collected the samples. A.S. supervised the work of her research group. A.A. and S.E. 
produced whole-genome sequences. B.B., I.S., L.C., S.E., and F.B. contributed to bioinformatic analyses. B.B., F.B., I.S. and W.Z. did 
the analyses. B.B. and F.P. produced the figures and drafted the paper. I.S., F.B., F.J.A., P.T., J.K. and P.F. reviewed and amended the 
paper.

Europe PMC Funders Group
Author Manuscript
Mol Ecol Resour. Author manuscript; available in PMC 2020 August 04.

Published in final edited form as:
Mol Ecol Resour. 2019 November 01; 19(6): 1497–1515. doi:10.1111/1755-0998.13070.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



12Commonwealth Scientific and Industrial Research Organisation Animal Food and Health 
Sciences, St Lucia, QLD 4067, Australia

Abstract

Whole genome sequences (WGS) greatly increase our ability to precisely infer population genetic 

parameters, demographic processes, and selection signatures. However WGS can still be not 

affordable for a representative number of individuals/populations. In this context, our goal was to 

assess the efficiency of several SNP genotyping strategies by testing their ability to accurately 

estimate parameters describing neutral diversity and to detect signatures of selection. We analysed 

110 WGS at 12X coverage for four different species, i.e. sheep, goats and their wild counterparts. 

From these data we generated 946 datasets corresponding to random panels of 1K to 5M variants, 

commercial SNP chips and exome capture, for sample sizes of 5 to 48 individuals. We also 

extracted low-coverage genome re-sequencing of 1X, 2X and 5X by randomly sub-sampling reads 

from the 12X re-sequencing data. Globally, 5K to 10K random variants were enough for an 

accurate estimation of genome diversity. Conversely, commercial panels and exome capture 

displayed strong ascertainment biases. Besides the characterization of neutral diversity, the 

detection of the signature of selection and the accurate estimation of linkage disequilibrium 

required high-density panels of at least 1M variants. Finally, genotype likelihoods increased the 

quality of variant calling from low coverage re-sequencing but proportions of incorrect genotypes 

remained substantial, especially for heterozygote sites. Whole genome re-sequencing coverage of 

at least 5X appeared to be necessary for accurate assessment of genomic variations. These results 

have implications for studies seeking to deploy low-density SNP collections or genome scans 

across genetically diverse populations/species showing similar genetic characteristics and patterns 

of LD decay for a wide variety of purposes.

Keywords

Whole Genome Sequencing; mammals; depth of coverage; SNP chip; population genomics; 
genotyping-by-sequencing

Introduction

Demographic and adaptive processes such as migration, genetic bottlenecks and selection 

are evolutionary forces that have influenced patterns of variation in genomes. Combined 

with genetic processes such as recombination they result in a non-uniform distribution of 

genetic variation across the genome. Since the middle of the last century (Wright, 1931; 

Fisher, 1958), population genetics has been providing theoretical models to infer how these 

processes have shaped evolution by studying genetic variations among individuals, 

populations or species. This has set up a conceptual framework for studying the historical 

role of these processes from the study of current genetic variation. Several metrics allow 

assessing genetic diversity and inferring historical evolutionary processes. Parameters such 

as heterozygosity (observed Ho or expected He), nucleotide diversity (π), allelic richness, 

genotypic richness, linkage disequilibrium (LD) or mutational diversity (θ) and effective 

population size (Ne) are widely used to infer neutral within-population diversity (Hughes, 

Inouye, Johnson, Underwood, & Vellend, 2008). They reflect either the number of alleles or 
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haplotypes within a population and/or the evenness of allele or haplotype frequencies 

(Frankham, Ballou, & Briscoe, 2002). Otherwise, genetic measures such as fixation index 

(Fst) and analogues, genetic distance, e.g. (Nei’s D, D-tajima) or Bayesian ancestry account 

for genetic differences among populations and inferring population structure, e.g. (Nei, 

1973; Weir & Cockerham, 1984; Frichot, Mathieu, Trouillon, Bouchard, & Francois, 2014). 

Contrary to demographic effects that similarly impact neutral loci across the genome, 

selection acts on specific (i.e.,‘outlier’) loci causing varying behavior (Luikart, England, 

Tallmon, Jordan, & Taberlet, 2003). Selection studies exploit this property by identifying 

outlier loci using either traditional metrics such as Fst (Luikart et al., 2003), or LD 
variations, e.g. XP-EHH (Sabeti et al., 2007), or specifically developed metrics, e.g. XP-

CLR (Chen, Patterson, & Reich, 2010), HapFLK (Fariello, Boitard, Naya, SanCristobal, & 

Servin, 2013). Generally, these metrics are effective in quantifying the impacts of 

demographic processes on populations and predicting their evolution under various 

ecological scenarios, with applications in conservation biology, agronomy or medicine 

(Jorde, Watkins, & Bamshad, 2001; Hughes et al., 2008).

Thus, a mandatory prerequisite of evolutionary studies has been the design of panels of 

molecular markers representative of genome variations (Goodwin, McPherson, & 

McCombie, 2016). This step has always been challenging. Until the last decade, the 

efficiency of molecular markers was mainly limited by technical issues. Co-dominant 

markers such as microsatellites give access to allelic frequencies and are informative for 

inferring demographic processes (e.g. Di Rienzo et al., 1998; Pritchard, Seielstad, Perez-

Lezaun, & Feldman, 1999) but a maximum of a few dozen markers were usually genotyped. 

Other markers such as Amplified Fragment Length Polymorphism (AFLP) are more 

representative of whole genome variations, as a few hundred can be genotyped 

simultaneously, but they are dominant and do not allow for the estimation of allelic 

frequencies. Even co-dominant markers that can be genotyped across the whole genome 

such as Single Nucleotide Polymorphisms (SNPs) were first revealed in limited numbers, 

e.g. (Holloway et al., 1999). Due to these limitations, there was a strong risk for 

misestimating whole genome variations and linkage disequilibrium (Jones et al., 2013), and 

to infer incorrect assumptions about past demographic and selection signatures.

Recent technological developments have made possible the typing of very large numbers of 

co-dominant markers, mostly SNPs, which have considerably increased genome coverage 

and lead to the development of population genomics approaches (Black, Baer, Antolin, & 

DuTeau, 2001; Goldstein & Weale, 2001; Jorde, Watkins, & Bamshad, 2001; Luikart, 

England, Tallmon, Jordan, & Taberlet, 2003). So far, genome wide genotyping using SNPs 

has essentially been limited to model organisms because of the need for whole genome 

reference data. Today, methods that overcome this challenge have been developed (Davey et 

al., 2011; Everett, Grau, & Seeb, 2011), and it is possible to manage whole genome data (in 

terms of both computation capacity and cost) on nearly any studied species (Goodwin et al., 

2016). Moreover, references genomes are now increasingly produced and improved for 

many species (Howe et al., 2013; Dong et al., 2013; Bennetzen et al., 2012; Carneiro et al., 

2014). Nevertheless, producing reference genomes and setting up population genomic 

studies by re-sequencing whole genomes of several individuals at sufficient coverage 
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remains both costly and computationally time consuming (Fuentes-Pardo & Ruzzante, 

2017).

In this context, several strategies have been developed in order to reduce these costs while 

aiming to keep reliable and representative information of genome-wide variation. One 

strategy is to reduce the depth of coverage of the WGS data to obtain information on the 

whole genome (Fuentes-Pardo & Ruzzante, 2017). A few studies have promoted the use of 

low to medium coverage shotgun WGS (Jansen et al., 2013; Bizon et al., 2014; Dastjerdi, 

Robert, & Watson, 2014; Therkildsen & Palumbi, 2017). Nevertheless there is a strong risk 

of losing accuracy in variant calling and individual genotyping. These problems can be 

overcome by sequencing key individuals or increasing the number sequenced individuals, 

e.g. (Y. Li, Sidore, Kang, Boehnke, & Abecasis, 2011; Pasaniuc et al., 2012; Alex Buerkle & 

Gompert, 2013; Han, Sinsheimer, & Novembre, 2014), or by imputing genotypes from 

genotype likelihoods inferred with dedicated algorithms such as ANGSD (Korneliussen, 

Albrechtsen, & Nielsen, 2014) or ngsTOOLS (Fumagalli, Vieira, Linderoth, & Nielsen, 

2014).

A second strategy to reduce the costs is to avoid whole genome sequencing and genotype a 

panel of a limited number of variants. For instance, commercial DNA chips or arrays for 

SNP typing are already available for several species (e.g. human, cattle, sheep, chicken) and 

can be designed for the purpose of any species. The Restriction-site Associated DNA 

sequencing (RAD-seq) method reduces genome complexity by re-sequencing stretches of 

genomic DNA adjacent to restriction endonuclease sites (M. R. Miller, Dunham, Amores, 

Cresko, & Johnson, 2007; Baird et al., 2008). The RNA-seq method gives access to the 

transcriptome by sequencing the complementary DNA (cDNA) (Wilhelm et al., 2008; 

Mudge et al., 2011). Genome enrichment methods allow the extraction of targeted regions of 

the genome, and one main application is the exome capture used for sequencing protein-

coding regions (Ng et al., 2009; Choi et al., 2009; Teer & Mullikin, 2010; Cosart et al., 

2011), which can be used in population genomics studies (Mascher et al., 2013; Campbell et 

al., 2013). However, when using these approaches we face the key question of their ability to 

produce representative genotypes (Fountain, Pauli, Reid, Palsbøll, & Peery, 2016). The panel 

of genotyped variants should reliably represent genome variations for all studied individuals 

to avoid the ascertainment bias that results in the misestimating of genetic parameters 

(Clark, Hubisz, Bustamante, Williamson, & Nielsen, 2005). Only a few studies evaluated the 

accuracy of such genotyping approaches, and these have demonstrated an impact of 

ascertainment bias on measures of population diversity for SNP data (Nielsen, Hubisz, & 

Clark, 2004; Clark et al., 2005; Albrechtsen, Nielsen, & Nielsen, 2010), and for RAD-seq 

data (Arnold, Corbett-Detig, Hartl, & Bomblies, 2013; Fountain et al., 2016; Lowry et al., 

2016). Moreover, to our knowledge, no study has evaluated empirically the impact of 

subsampling panels of variants compared to WGS data generated using High-Throughput 

Sequencing Technologies, when studying genome diversity, population genetic structure and 

genes under selection.

In this context, our study aimed at assessing the accuracy of low to medium coverage whole 

genome sequences as well as different variant subsampling methods for describing whole 

genome diversity. We produced 110 WGS at 12X coverage for four mammal species: sheep 
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(Ovis aries), goat (Capra hircus) and their closely related wild species, the Asiatic mouflon 

(Ovis orientalis) and the Bezoar ibex (Capra aegagrus). From these WGS data we extracted 

lower re-sequencing coverages associated to genotype likelihoods (GLs) to evaluate the 

impact of sequencing depth on the assessment of whole genome diversity. We also extracted 

panels of genomic variants corresponding to different genome sampling strategies (i.e., 

exome capture, commercial SNP chips or random panels) in order to evaluate the impact of 

variants subsampling on the estimation of genome diversity and on the detection of a 

selection signature. This allowed defining appropriate sampling of genome-wide markers to 

describe neutral diversity and to detect selection signatures in population genomic studies.

Materials and Methods

Sampled individuals

Tissue samples were collected for 48 sheep (Ovis aries) and 30 goats (Capra hircus) widely 

spread across the Northern half of Morocco (North of latitude 28°) between January 2008 

and March 2012 (Table S1). Tissues from the distal part of the ear were collected and placed 

in alcohol for one day, before transfer into silica-gel tubes until DNA extraction. Tissues 

from 15 Asiatic mouflon (Ovis orientalis) and 20 Bezoar ibex (Capra aegagrus) were 

collected in Iran, either from captive or recently hunted animals and conserved in silica-gel 

after one day in alcohol, or from frozen corpses or tissues archived in alcohol by the Iranian 

local Department of Environment and transferred in silica-gel until extraction.

DNA extraction and re-sequencing

DNA extraction was done at Parco Tecnologico Padano (Lodi, Italy) using the Puregene 

Tissue Kit from Qiagen® following the manufacturer’s instructions. Then, 500ng of genomic 

DNA were sheared to a 150-700 bp range using the Covaris® E210 instrument. Sheared 

DNA was used for Illumina® library preparation by a semi-automatized protocol. Briefly, 

end repair, A tailing and Illumina® compatible adaptors (BiooScientific) ligation were 

performed using the SPRIWorks Library Preparation System and SPRI TE instrument 

(Beckmann Coulter), according to the manufacturer protocol. A 300-600 bp size selection 

was applied in order to recover most of the fragments. DNA fragments were amplified by 12 

cycles PCR using Platinum Pfx Taq Polymerase Kit (Life Technologies®) and Illumina® 

adapter-specific primers. Libraries were purified with 0.8x AMPure XP beads (Beckmann 

Coulter). After library profile analysis by Agilent 2100 Bioanalyzer (Agilent 

Technologies®) and qPCR quantification, the libraries were sequenced using 100 bp length 

read chemistry in paired-end flow cell on the Illumina® HiSeq2000.

Read mapping, SNP calling and filtering

Illumina paired-end reads of Ovis were mapped on the sheep reference genome (OAR v3.1, 

GenBank assembly GCA_000317765.1, Jiang et al., 2014) and those of Capra on the goat 

reference genome (CHIR v1.0, GenBank assembly GCA_000317765.1, Dong et al., 2013) 

using BWA mem (H. Li & Durbin, 2009). 99.4% (± 0.1%), 99.3% (± 0.2%), 98.9% (± 

0.1%) and 98.8% (± 0.4%) of the reads were mapped on the reference assembly for sheep, 

mouflon, goats and bezoar, respectively. The BAM files produced were then sorted using 

Picard SortSam and improved using Picard MarkDuplicates (http://picard.sourceforge.net), 
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GATK RealignerTargetCreator, GATK IndelRealigner (DePristo et al., 2011) and Samtools 

calmd (H. Li et al., 2009).

As described by Benjelloun et al. (Benjelloun et al., 2015), variant sites were initially called 

using three different algorithms: Samtools mpileup (H. Li et al., 2009), GATK 

UnifiedGenotyper (McKenna et al., 2010) and Freebayes (Garrison & Marth, 2012). Variants 

were called for each group independently: sheep, mouflon, goat, and Bezoar ibex. Note that 

a larger dataset than that used in this study was used for variant discovery in domestic 

groups (160 sheep and 161 goats from Morocco; for European Nucleotide Archive ID, see 

Table S2). Then we ran two successive rounds of filtering variant sites. Filtering stage 1 

merged together calls from the three algorithms, whilst filtering out the lowest-confidence 

calls. A variant site passed if it was called by at least two different calling algorithms with 

variant phred-scaled quality > 30. An alternate allele at a site passed if it was called by any 

one of the calling algorithms, and the genotype count > 0. Filtering stage 2 used Variant 

Quality Score Recalibration by GATK. First, we generated a training set of the highest-

confidence variant sites where (i) the site is called by all three variant callers with variant 

phred-scaled quality > 100; (ii) the site is biallelic; (iii) the minor allele count is at least 3, 

counting only samples with genotype phred-scaled quality > 30. The training set was used to 

build a Gaussian model using the tool GATK VariantRecalibrator using the following variant 

annotations from UnifiedGenotyper: QD, HaplotypeScore, MQRankSum, 

ReadPosRankSum, FS, DP, Inbreeding Coefficient. The Gaussian model was applied to the 

full data set, generating a VQSLOD (log odds ratio of being a true variant). Sites were 

filtered out if VQSLOD < cutoff value. The cutoff value was set for each population by the 

following: Minimum VQSLOD = {the median value of VQSLOD for training set variants} - 

3 * {the median absolute deviation VQSLOD of training set variants}. Measures of the 

transition/transversion ratio of SNPs suggest that this chosen cut-off criterion gives the best 

balance between selectivity and sensitivity.

Genotypes were improved and phased by Beagle 4 (Browning & Browning, 2013), and then 

filtered out where the genotype probability calculated by Beagle is less than 0.95. The 

genotype call sets generated at this stage constituted the WGS datasets used for within-

population analyses. For cross-populations comparisons and validation of the identified 

WGS surrogates that were performed in each genus (i.e. Capra and Ovis), we generated a set 

of filtered variant sites per genus by merging the positions of filtered bi-allelic SNPs called 

in the different groups. For each sample, genotypes were called at each SNP position using 

GATK UnifiedGenotyper using the option GENOTYPE_GIVEN_ALLELES. Genotypes 

were improved and phased by Beagle 4 (Browning & Browning, 2013), and then filtered out 

where the genotype probability calculated by Beagle is less than 0.95.

Quality control of WGS data

To further assess the quality of the filtered WGS datasets, a subset of the sequenced 

individuals were genotyped using commercial SNP Chips by Laboratorio Genetica e Servizi 
(Cremona, Italy). 29 sheep and 8 Asiatic mouflon were genotyped with the Illumina® ovine 

50K SNPs BeadChip, and 27 goats and 8 Bezoar ibex with the Illumina® caprine 50K SNPs 

BeadChip. In order to establish the concordance between WGS and chip data the 
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coordinates of the SNPs on the chips were obtained by mapping the probes used for chip 

design onto the corresponding reference genome (OAR v3.1 or CHIR v1.0) using BWA aln 

and BWA samse (Li & Durbin, 2009). The raw data in Plink format (Purcell et al., 2007) 

were updated for SNP coordinates and were filtered for each group by applying the 

following inclusion criteria: SNPs in a known chromosome (from our mapping); minor 

allele frequency (MAF) > 0.02, genotype call rate (SNPs) > 0.95, genotype call rate 

(Animals) > 0.95 and identity-by-state (Animals) < 0.95. The filtered datasets were 

converted to harmonize the reference alleles with the reference genomes using a script based 

on the programs PlinkSeq v 0.08 (http://atgu.mgh.harvard.edu/plinkseq/index.shtml) and 

Plink v 1.07 (Purcell et al., 2007) which was necessary for the quality control of the re-

sequencing data. After removing the positions corresponding to short indels and tri-allelic 

variants, which are incorrectly genotyped by the BeadChips, the number of SNPs both 

genotyped with the Chip and by whole genome sequencing was 47,122 for sheep, 49,467 for 

goats, 37,779 for Asiatic mouflon and 41,751 SNPs for Bezoar ibex. The comparison of the 

ovine and caprine 50K BeadChips genotyping data with the WGS data was performed. The 

average (± s.d.) genotype concordance between the ovine/caprine 50K BeadChips and the 

WGS was 99.9% (± 0.1%) in sheep, 99.7% (± 0.0%) in goats, 99.7% (± 0.1%) in Asiatic 

mouflon and 98.5% (± 0.3%) in Bezoar ibex.

Setting up datasets of variants

From the individuals sequenced, we defined different groups depending on the question 

addressed. First, to evaluate the impact of sampling panels of variants and reducing the WGS 

coverage on the estimation of genetic parameters we designed four groups corresponding to 

30 sheep, 30 goats, 14 Asiatic mouflon and 18 Bezoar ibex. In order to assess the effect of 

individual sample size, each analysis was performed for the whole groups and for two 

random subsets corresponding approximately to one third and two thirds of the total (i.e. 

respectively 10 and 20 sheep and goats, 5 and 10 Asiatic mouflon and 8 and 13 Bezoar 

ibex). Second, for detecting a signal of selection associated to the RXFP2 locus (Kijas et al., 

2012) and related to the presence/absence of horns, we had to consider additional sheep to 

constitute 2 contrasted groups of 15 horned and 15 polled individuals (Figure 1; Table S1).

For each group of individuals, a 12X WGS dataset was composed of all the SNPs called (see 

'Read mapping, SNP calling and filtering' section) and used for within population analyses. 

Note that for cross-populations comparisons we only kept the variants found polymorphic in 

both groups considered, in order to prevent from any possible biased calling or filtering 

error. Then, variant panels were extracted from the 12X WGS datasets. Random panels were 

extracted using GATK SelectVariants (McKenna et al., 2010) consisting in 5 independent 

replicates for each of the 8 following numbers of variants: 1K, 5K, 10K, 50K, 100K, 500K, 

1M and 5M. We also created non-random panels simulating the data obtained with 

commercial BeadChips or through exome capture. BeadChip data were obtained by calling 

variants at the Illumina® 50K Ovine or Caprine BeadChip SNP coordinates. We successfully 

extracted 42,117 variants for sheep, 47,245 variants for goats, 26,141 variants for Asiatic 

mouflon and 33,951 variants for Bezoar ibex. The combined datasets used for cross-

population analyses included 30,870 variants for Ovis and 38,641 variants for Capra. In 

sheep, the High Density BeadChip genotyping was simulated by calling WGS variants at the 
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coordinates of the Illumina® ovine HD BeadChip. This gave 601,456 variants for sheep and 

of 444,169 variants for Asiatic mouflon. The combined dataset had 419,041 variants.

We simulated an exome capture only for Ovis because of the annotation of the goat genome 

was insufficiently advanced. The exome annotation was obtained from the sheep genome 

annotation that was available in ENSEMBL database by the time of analysis (25th 

September 2013) (ftp://ftp.ensembl.org/pub/pre/) and corresponded to 224,871 exons in 

45,972 genes. The number of variants from these regions extracted from 12X WGS was 

278,568 for sheep and 155,236 for Asiatic mouflon. The 93,409 variants polymorphic in 

both groups constituted the combined dataset. Thus, for the identification of potential 

surrogates for the WGS, the genotypes produced for the different variant panels and the 

different groups of individuals constituted a total of 946 datasets of which 516 were used for 

estimating within-group genetic diversity and 430 for cross-populations comparisons (Figure 

1). Furthermore, to validate the ability of some SNP panels to represent genome variations in 

other independent populations, a set of random 10K variants defined in sheep was extracted 

from WGS of Asiatic mouflon. The same approach was followed to test a random 10K 

markers defined in goats on bezoars.

Moreover, we simulated a ddRad-seq experiment with the Ovis genome. We located 

potential restriction site for the Sbfl (5’ CCTGCA|GG 3’) and MspI (5’ C|CGG 3’) enzymes 

using the 'seqkit locate' command (Shen, Le, Li, & Hu, 2016) on the Oar_v3.1 genomic 

sequence. Outputs were then processed using a custom R script in order to select DNA 

fragments harbouring cut on each end by a different enzyme and within the range of 

250-350 bp and 250-500 bp. This resulted in two bed files corresponding to the positions on 

the ovis genomes of the potential ddRadseq fragments. The number of fragments was 8,895 

for the range 250-350 bp and 18,979 for the range 250-500 bp. This experiment resulted in 

datasets of 45,485 and 118,395 variants in sheep and 30,241 and 79,134 variants in Asiatic 

mouflons respectively for the range 250-350 bp and 250-500 bp.

Extracting low-coverage re-sequencing data

The 12X WGS data were subsampled to simulate the output of a sequencing experiment 

with fewer reads were generated. For each of the 30 sheep and the 30 goats groups, three 

sub-sampled WGS datasets were generated comprising (i) 15 million, (ii) 30 million, (iii) 75 

million paired reads, corresponding approximately to a 1X, 2X, and 5X sequencing coverage 

of the genome, respectively. Paired reads were randomly chosen from the full sequencing 

data using Picard Downsample, in such a way that all reads had an equal probability of 

being chosen, including duplicate or unaligned ones. Next, Picard MarkDuplicates was used 

to tag reads that appeared as duplicates in the sub-sampled datasets.

Variant calling and filtering were done using two different approaches. The first one was 

based on the approach used for 12X coverage datasets. Thus, for each variant of the list 

generated for the 12X WGS, genotypes were called using GATK UnifiedGenotyper with the 

option GENOTYPE_GIVEN_ALLELES. Genotypes were improved and phased with 

Beagle 4, and filtered at the individual level when the genotype probability was less than 

0.95. Average depths (± standard deviation) obtained for the initially called variants were: 
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1.61±0.01; 2.35±0.03 and 5.07±0.09 in sheep and 1.62±0.01; 2.37±0.02 and 5.12±0.07 in 

goats respectively for the targeted coverages 1X, 2X and 5X.

The second approach, more suitable for low coverage data, was based on genotype 

likelihoods (GLs). For each sequencing depth we used ANGSD v0.921 (Korneliussen et al., 

2014) to call variants using the GATK likelihood model implemented in ANGSD. We 

applied a significance probability threshold of 1.0 × 10−6 to call variants. Then, genotypes 

were improved and phased with Beagle 4.

The variants called using genotype likelihoods that were present in the 12X coverage 

datasets were quantified. Then, for each of the simulated coverages, the genotype at each 

variant position was compared to that obtained for the 12X coverage and classified as 

matching, un-matching or missing, for homozygotes and heterozygotes separately. 

Additionally, the individual observed heterozygosity was inferred for each coverage using 

the whole sets of the identified variants and used to estimate (i) Pearson correlation, (ii) 

Spearman correlation with 12X inferences. Slope values (b) were estimated for each depth 

and calling/filtering approaches by setting the intercept to 0. Furthermore, Site Frequency 

Spectra (SFS) were drawn and compared between the datasets implemented using GLs and 

the 12X datasets.

Description of genome diversity

Genetic diversity within groups—Using Vcftools (Danecek et al., 2011) we estimated 

the observed heterozygosity (Ho) and inbreeding coefficient (F) with polymorphic 

autosomal bi-allelic SNPs, and the nucleotide diversity (π) by taking the averaged 

nucleotide diversity over all autosomal variants. Furthermore, we estimated site frequency 

spectra (SFS) directly from vcf files using the R script vcf2sfs developed by Liu et al. (Liu, 

Ferchaud, Grønkjaer, Nygaard, & Hansen, 2018). Correlations between inferred spectra 

from different sequencing depth were made using Pearson’s rank correlations (r). Otherwise, 

pairwise SNPs linkage disequilibrium (r2) was also estimated with Vcftools on all bi-allelic 

non-rare variants (SNPs and indels with MAF>=0.05) for 5 segments of 2Mbp selected on 5 

chromosomes (physical positions between 1 Mbp and 3 Mbp on chromosomes 5, 10, 15, 20 

and 25). The extent of the linkage disequilibrium was assessed by the physical distance 

corresponding to r 2 = 0.15 (r20.15), i.e. the average distance between 2 markers with a 

coefficient of determination r2=0.15.

Genetic differentiation and structure—The genetic structure and differentiation was 

measured between domestics and wilds, as representative of population having diverged 

about 10,000 years ago (i.e., at the time of domestication). The averaged Fst (Weir & 

Cockerham, 1984) was estimated for bi-allelic variants with Vcftools. Additionally, genetic 

structure was investigated through the Bayesian clustering approach sNMF (Frichot, 

Mathieu, Trouillon, Bouchard, & Francois, 2014) using bi-allelic variants. This method was 

specifically developed to estimate individual admixture coefficients on large genomic 

datasets.

Detection of a selection signature—We targeted the genomic region surrounding the 

Relaxin/insulin-like family peptide receptor 2 gene (RXFP2; Chr 10: 29,454,677 – 
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29,502,617bp), which already showed a signature of selection related to polledness in sheep 

(Kijas et al., 2012; Dominik, Henshall, & Hayes, 2012) and also in wild bighorn sheep 

(Kardos et al., 2015). We extracted variants between positions 20 Mb and 40 Mb on 

chromosome 10 for 15 horned and 15 polled sheep and searched for selective sweeps in this 

region using two methods: (i) A standard Fst test by estimating genome-wide single 

nucleotide Fst (Weir & Cockerham, 1984) and choosing as outliers the top 0.1% values of 

Fst, and (ii) XP-CLR (Chen, Patterson, & Reich, 2010). For the later method, we estimated a 

constant recombination rate for this region based on the random 1M variants dataset, using 

the PAIRWISE program of LDhat v2.2 (Auton & McVean, 2007) with recommended 

parameters. XP-CLR scores were calculated for each grid point placed along the segment 

considered with a spacing of 5Kb. A maximum of 300 bi-allelic variants was considered in a 

sliding window of 0.5cM around the grid point and we down-weighted contributions of 

highly correlated SNPs (r2>0.99).

Results

Variant calling was done using 12X coverage whole genome sequencing data for each 

species. It allowed the discovery of 29.96, 29.04, 21.71 and 17.32 million polymorphic 

variants for sheep, Asiatic mouflon, goats and Bezoar ibex, respectively (see Table 1), which 

correspond mostly to SNPs but also to small indels (i.e., 6% to 10% of the variants). We 

created both non-random (i.e., exome and SNP BeadChips) and random variant panels 

across a wide range of densities by subsampling SNPs from this WGS data, and assessed the 

potential of each panel to accurately represent genome diversity in domestic and wild 

animals. Lastly, low-coverage re-sequencing data were generated by randomly sampling 

various fixed percentages of reads from the raw 12X re-sequencing data (see 'Material and 

Methods' section) and genotypes were compared to the 12X WGS variants.

Description of genome diversity

We assessed the effect of variant subsampling on estimating genetic diversity by comparing 

the observed heterozygosity (Ho), inbreeding coefficient (F), nucleotide diversity (π) and 

Linkage disequilibrium (r2 0.15) for both the WGS dataset and variant panels (see Table 1). 

Even at low-densities, random panels returned diversity metrics similar to those derived 

from WGS. Accurate estimates were obtained with all random panels of 5K or more markers 

for inbreeding (F), nucleotide diversity (π), and site frequency spectra (SFS) (Figures 2, 3, 

S1, S2, S3, S4, S5, S6) and with random panels of 10K or more markers for observed 

heterozygosity (Ho) (Figure S7). Furthermore, estimates from the random panel of 10K 

markers defined in sheep and applied on Asiatic mouflon approximate WGS inferences in 

this population in terms of diversity parameters (Figures 4, S8) and site frequency spectra for 

which Pearson’s rank correlations with WGS=0.95 (Figure S9). Similar results were 

obtained for the random panel of 10K SNP defined in goats and used to infer genetic 

statistics in bezoar for which Pearson’s rank correlations of SFS with WGS=0.97 (Figures 

S10, S11, S12). On the contrary, non-random panels of variants generated strongly biased 

estimations. The ovine 50K SNP and HD BeadChips and the caprine 50K SNP BeadChip 

from Illumina® showed considerable ascertainment biases by overestimating the diversity in 

all groups and datasets (Figures 2-5, S8, S10). For example, in the 30 sheep there was an 
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overestimation of 129%, 108% and 194% for π and 61%, 47% and 102% for Ho for these 

three panels, respectively. This ascertainment bias did not affect the estimation of the 

inbreeding coefficient (F) (Figures 5, S11). Whatever the bias, the ranking of individual Ho 
and F were not affected by the panel of variants used (Figure 5), but for π, the wilds even 

appeared less diverse than the domestics while WGS data showed the opposite (Figure 4, 

S10). Similarly, SFS inferred from SNP chips were quite different than those inferred from 

12X WGS data (Pearson’s rank correlations ranging from -0.377 for the caprine beadchip in 

goats to 0.339 for the HD beadchip in sheep), except for the Asiatic mouflon (correlations of 

0.706 for the 50K beadchip and 0.807 for the HD array) (Figures 3, S4, S5, S6). The dataset 

simulating exome capture underestimated π and Ho (e.g., underestimation of 20% and 6% 

for π and 8% and 5% for Ho in sheep and mouflon, respectively). The underestimation of 

the inbreeding coefficient (F) was higher in domestic but not in wild animals. Inversely, site 

frequency spectra were highly correlated to 12X WGS inferences (r~0.99 for different 

groups and population sizes). Otherwise, we did not detect any sample size effect on π 
inference.

At least 1M random markers in sheep and 500K random markers in the other groups were 

necessary to have an estimation of LD (r2
0.15) similar to that obtained with the WGS dataset. 

Smaller random panels and non-random panels biased this estimation (Figures S13, S14). 

Exome capture especially biased the LD estimation in sheep (but not in Asiatic mouflon 

with 10 individuals and more). Moreover, in all groups, decreasing the number of 

individuals increased r2
0.15. In particular, Asiatic mouflon had an r2

0.15 of 4.52Kb for 14 

individuals and of 79.4Kb for 5 individuals (Figure S14).

We also assessed the influence of the variant panels on two methods describing the genetic 

differentiation of wild versus domestic populations. First, we estimated the Weir & 

Cockerham (Weir & Cockerham, 1984) differentiation index (Fst), which was rather high 

between wild and domestic animals (Fst = 0.105 in Ovis and Fst = 0.087 in Capra from 

WGS data; Figures 6, S15). Independently of the number of variants used, there was a strong 

sampling effect due to the individuals selected for estimating Fst. For a given set of 

individuals the number of random variants did not influence greatly the mean Fst values 

compared to that obtained with WGS data. The smallest random panels (from 1K to 50K) 

increased the variance in Fst estimates among marker-set replicates for a given set of 

individuals (Figures 6, S15). The caprine 50K SNP BeadChip Illumina® overestimated Fst 
values by 28% on average (Figure 6) and the ovine 50K and HD SNP BeadChips, and the 

exome capture slightly underestimated the Fst (2 to 13%). However, all non-random panels 

kept the ranking found with the WGS datasets for Fst estimated with different sets of 

individuals (r always > 0.98). Except for the caprine 50K BeadChip, the effect of the 

subsampling strategy on the Fst estimation was lower than that of the sample size. Second, 

we used the clustering method implemented in sNMF (Frichot et al., 2014) to estimate 

individual ancestry coefficients. The estimations depended neither on the number of markers 

used nor on the number of individuals in the sample. For the most likely number of clusters 

(K=2 for Ovis and Capra from the sNMF cross-validation values (Frichot et al., 2014)), all 

variant panels led to similar results (Figure S16).
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Finally, we assessed the effect of the panel of SNPs used on the ability to detect a signature 

of selection. By contrasting 15 horned and 15 polled sheep, a standard Fst test and the XP-

CLR method (Chen et al., 2010) applied on the WGS dataset allowed detection of the signal 

of selection previously reported on the Relaxin/Insulin-Like Family Peptide Receptor 2 gene 

RXFP2 (Kijas et al., 2012). This signal could also be clearly detected with random panels of 

100K markers and more, with the ovine 50K and HD BeadChips and with the exome 

capture. (Figure 7, Figure S17). A slight signal was also seen when using the random 50K 

SNP panel (Figure S17). However, the intensity of the signal decreased progressively with 

the density of markers. Therewith, another non-previously reported sweep was detected with 

the XP-CLR method only for the WGS dataset with random panels of 5M and 1M variants. 

This signal was located in the region of the Neurobeachin NBEA and Mab21-like 1 

MAB21L1 genes on chromosome 10 (positions 26,007,917-26,592,574 and 

26,231,353-26,232,432 on OAR v3.1, respectively).

Difference between random and non-random panels

One major difference in the design of random panels of variants and the BeadChips relies on 

the distribution of variants across the genome. Figure S18 illustrates this in showing the 

distributions of the physical distances between adjacent variants in various panels for sheep 

and goats. The random 50K variants as well as the random 500K variants and the HD ovine 

BeadChip showed a similar L-shaped curve indicating that variants were evenly distributed 

across the genomes. On the other hand, as it might be predicted, the caprine 50K BeadChip 

displayed an almost complete lack of SNPs separated by less than around 30Kb, while for 

the ovine 50K BeadChip the lack of SNPs in these categories is less drastic, at most around a 

half of the expected distribution for the shorter distances. The exome capture simulation 

displayed a very high occurrence of distances lower than 200 bp and a quasi absence of 

distance larger than 10kb, which might be expected (Figures S18, S19).

Otherwise, our simulations of RAD-seq have revealed that the datasets resulting from these 

experiments make it possible to obtain the same results of SFS as with random datasets of 

equivalent marker densities (Pearson’s rank correlations of SFS with WGS>0.999; Figures 

S20, S21).

Reliability of low-coverage re-sequencing

1X, 2X and 5X whole genome sequencing coverage were simulated by randomly sampling 

reads in the 12X WGS data, and used for inferring genotype likelihoods (GLs) and calling 

genotypes in 30 goats and 30 sheep. The 12X WGS allowed genotyping at 31,775,474 

variant sites (31,735,229 at which more than 95% of individuals had genotypes called) for 

goats and 43,478,084 for sheep (43,105,056 at which more than 95% of individuals had 

genotypes called), and decreasing the coverage strongly reduced the number of variants that 

could be genotyped using similar algorithms for calling genotypes (missing genotypes, Table 

2), while the number of variants wrongly genotyped remained rather low (mis-matching 

genotypes, Table 2). Heterozygous genotypes were more affected than homozygous ones. 

Moreover, the decreasing coverage resulted in an increasing underestimation of Ho (around 

1.2, 3 and 6 times for 5X, 2X and 1X, respectively), and in a decreasing preservation of the 

relative ranking of Ho values among individuals (Table 2). This ranking was better preserved 
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in sheep than in goats. Using genotype likelihoods, the numbers of called variants were 

substantial (from 18.3M for 1X in goats to 44.7M for 5X coverage in sheep; Table 2). 

However, whatever the coverage, no more than 56.8% of the variants discovered in sheep 

and 59.8% in goats were also in the 12X WGS dataset. The percentage of correctly 

genotyped heterozygotes at variant sites shared with 12X data ranged from 50% for 1X data 

to 88% for 5X data. These proportions ranged from 88% for 1X data to 99% for 5X data at 

homozygous sites shared with the 12X data. The estimations of Ho using the whole sets of 

variants were substantially improved using GLs. Pearson’s rank correlations with 12X data 

ranged from 0.88 (for 1X in goats) to 0.99 for 5X in sheep, and the Spearman correlation 

coefficients from 0.69 (1X in sheep) to 0.81 (obtained with 5X data in sheep; Table 2). 

Interestingly, inferences from 5X data from classical algorithms showed even slightly higher 

correlations with 12X data than 5X data from GLs (Table 2). Site frequency spectra show a 

relative discordance with 12X data with an overrepresentation of variants displaying allele 

frequencies close to 0.5 and a lower representation of rare variants (Figure S22, S23).

Discussion

A wide range of methods are used for assessing the diversity of genomes, from whole 

sequencing of individual genomes, e.g. (Kidd et al., 2012; Altshuler et al., 2012) to the 

genotyping of a panel of variants randomly chosen or specifically designed, e.g. (Kijas et al., 

2012). Because the choice of the methods (e.g., commercial DNA chip, low/high coverage 

whole genome sequencing, random panel of SNPs) might not be straightforward depending 

on the goal of the study, we set up this study to test the ability and robustness of low and 

medium WGS coverages and a wide range of genome sampling strategies to (i) assess 

genome variability, (ii) infer population genetic structure and (iii) detect genome regions 

under selection. We applied this benchmark analyses on four different wild and domesticated 

groups representing different levels of diversity and linkage disequilibrium (Table 1).

Effect of sequencing coverage on the assessment of whole genome variations

Overall, the genotypes inferred from the 12X WGS were highly reliable according to the 

high concordance between 12X re-sequencing data and the 50K SNP BeadChips 

genotyping.

The extraction of 1X, 2X and 5X WGS datasets from the 12X WGS confirmed the 

sensitivity of population genetics inferences to the sequencing coverage without using 

genotype likelihoods methods (e.g. Jansen et al., 2013; Alex Buerkle & Gompert, 2013), and 

helped to depict the effect of reducing the coverage. As might be expected, we found that 

homozygote genotypes were more correctly called than heterozygote ones whatever the 

coverage. This is due to the fact that more reads should be mapped at a position for calling 

the two alleles of an heterozygote than for calling the unique allele of an homozygote. 

Additionally, the filtering process for variant calling induced a higher percentage of missing 

data for heterozygotes because it discarded any heterozygous genotype for which one allele 

was under or over-represented.

Thus, the decrease in WGS coverage first resulted in a decrease in variant density 

(increasing proportion of missing data). The density of reliable variants obtained when 

Benjelloun et al. Page 13

Mol Ecol Resour. Author manuscript; available in PMC 2020 August 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



decreasing the coverage (> 250k for 1X and > 3M from 2X, see Table 2) would still have 

been sufficient to allow accurate estimation of population genetics parameters and detection 

of selection signatures (see below 'effect of the density of variants'). However, the trend is 

combined to a bias that strongly affected the estimations. This bias concerned both missing 

and erroneous genotyping (Figure 8), which affected mostly heterozygotes (even more when 

the coverage decreases) where the erroneous genotyping mostly produces homozygotes. 

This resulted in an underestimation of heterozygosity (Ho). However, the values obtained for 

the 5X coverage appeared to be just as accurate as those inferred from the 12X WGS (highly 

correlated values of Ho, and thus of F), for the studied species. This result is coherent with 

the findings of Li et al. (2011) who showed that in association studies, genotyping 3,000 

individuals at 4X depth provided similar power to 30X sequencing of about 2,000 

individuals. A way to overcome the concerns due to low-coverage sequencing is to analyse 

the data with adapted methods that use genotype likelihoods, e.g. (Korneliussen et al., 2014). 

Using this approach increased substantially the numbers of SNPs discovered (> 18.2M for 

1X and > 23.6M for 2X, see Table 2), and in sheep the number of called variants from 5X 

GLs was even higher than for 12X data. It also increased the proportions of correctly 

genotyped heterozygote and homozygote sites (>50% of congruence with 12X data for all 

datasets). However, substantial numbers/proportions of polymorphic variants discovered 

with this approach were not shared with 12X data (ranging from 43 to 45% in sheep and 

from 40 to 41% in goats; Numbers of shared variants with 12X in Table 2), suggesting false 

positive discoveries. Yet, heterozygosity estimates using genotype likelihoods for low 

coverages (1X and 2X) were correlated but not fully congruent with 12X data estimates. For 

5X coverage using GLs, the correlations were slightly lower than when using classical 

discovery and filtering algorithms (Table 2). This is explained by Site Frequency Spectra 

inferred from GLs datasets in comparison with 12X data (Figures S22, S23). Distributions of 

allele frequencies represented by these datasets suggest an over-representation of variants 

with allele frequencies close to 0.5 at the expense of rare variants. This fits more a 

probabilistic distribution as described by Fuentes-Pardo & Ruzzante (2017). This is 

consistent with the findings of Hendricks et al. (Hendricks et al., 2018) who reported that 

RAD-seq data of coverage 1X, 2X, 5X, and 10X called using genotype likelihoods led to 

inconsistent affiliation of four North American passerine subspecies.

Effect of the density of variants

When assessing the effect of the density of variants for various sample sizes, we generally 

observed a sample size effect on the estimation of summary statistics. This was observed 

whatever the species and the panel of variants, and the effect was especially strong when 

measuring population differentiation and linkage disequilibrium, even greater than the effect 

of variant density. Our findings disagree with Nazareno et al. (Nazareno, Bemmels, Dick, & 

Lohmann, 2017) who showed that accurate estimates of Fst between two Violaceae 

populations could be obtained with down to two individuals and about 1,500 SNPs. In our 

case the sample size effects reported could also be associated to the fine-scale structure of 

wild samples (i.e., sub-structures in Asiatic mouflon and Bezoar ibex groups that do not 

correspond to true populations) illustrated by high inbreeding between some individuals 

(Table 1) and sNMF results (Figure S16).

Benjelloun et al. Page 14

Mol Ecol Resour. Author manuscript; available in PMC 2020 August 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Many population genetics studies that infer demographic processes still rely on just a few 

dozens to a few hundreds of genetic markers aiming to be representative of all genome 

variations (Alhaddad et al., 2013; Olson, Whittaker, & Rhodes, 2013; Garza et al., 2014; 

Huang, Wang, Li, Wu, & Chen, 2014). We could, in fact, get a representative view of the 

whole genome variations by using a relatively small set of variants if they are randomly 

sampled across the genome (Figure 8). Low-density random panels of variants (i.e. 5K or 

10K corresponding to 1 variant every ~300 or ~600Kb) gave estimates of summary statistics 

similar to those calculated from 12X WGS data whatever the species and its demographic 

history. The assessment of population structure through calculation of coefficients of 

ancestry was reliable whatever the panel density, while the estimations of Fst required at 

least 100K variants in the different populations/species. Furthermore, the estimation of LD 
and the detection of signatures of selection required higher variant densities: around one 

variant every 3 to 6Kb, which gave similar estimates to 12X WGS data with roughly one 

variant every 100 to 200bp.

The adequate densities of variants required for a reliable description of genomic variations 

depend on the pattern of LD decay across the genome. In the four studied species, those 

patterns represent a wide range of variation, with r 2 dropping below 0.15 within 4.5Kb in 

Asiatic mouflon and within more than 10Kb in sheep while excluding rare variants (Table 

1). Consequently, we needed 500k to 1M variants to accurately estimate LD decay. All 

panels of fewer than 100K variants (~1 variant per 30kb) produced incorrect estimations of r 
2 for small distances (until 50Kb depending on the panel). The same orders of magnitude of 

variant densities would be required in species characterized by similar patterns of LD decay 

such as true ungulates (Meadows, Chan, & Kijas, 2008; Wade et al., 2009; Villa-Angulo et 

al., 2009; Ai, Huang, & Ren, 2013; Veroneze et al., 2013; McCue et al., 2012) or even other 

mammals with similar genetic characteristics (e.g., Cathy Laurie et al., 2007). However, 

genomic patterns of LD decay depend on the demographic histories of populations, and 

reflect the changes in effective population sizes.

Selective sweeps, when they occur, increase LD in regions of several Kb surrounding the 

selected allele. This signature is then reduced by recombination, and the older the selective 

sweep the smaller will be the region still influenced around the selected allele (Stephens et 

al., 1998; Kim & Nielsen, 2004). In the case of the selective sweep that has occurred in the 

RXFP2 gene, the signal is still extending ~350Kb and required at least a random panel of 

100K variants in order to be detected, even if the signal was also present when using the 

random 50K SNP panel (Figure S17). Therefore, higher density random panels would be 

needed to detect any weaker selective sweep (i.e. associated to lower LD).

Ascertainment bias in non-random panels

The estimation of almost all population genetics parameters was biased when using variants 

from commercial SNP BeadChips or exome (Figure 8). Measurements both of genome 

diversity and of population differentiation were affected. This might be expected knowing 

that SNPs included in the design of the commercial panels were intentionally chosen 

according to their high level of polymorphism in several breeds (mainly European 

industrials, Alhaddad et al., 2013). This is because these panels were designed to deploy 
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breeding programs in connection with genomic selection and genome wide association 

studies, for which an accurate estimate of true population genetic diversity is irrelevant. The 

resulting ascertainment bias led to an overestimation of the genomic diversity. The ovine HD 

BeadChip suffered less from this bias compared to the 50K ovine BeadChip due to the 

inclusion of high, medium and low frequency SNPs (James W. Kijas et al., 2014). The 

exome capture data, while representing highly conserved regions, logically underestimated 

genetic diversity.

The biased estimation of genetic diversity and genetic differentiation would be less 

problematic as long as the ranking of estimated values is preserved (e.g., the most variable 

individuals are actually those with the highest measured diversity). For example, when 

estimating animal genetic resources, this will allow finding the more diverse populations/

breeds. However, we showed that this ranking was inverted when comparing the diversity of 

wilds and domestics with the ovine and caprine SNP Beadchips, which should be used with 

caution when comparing well-differentiated populations. Otherwise, this inversion is 

explained by differences in site frequency spectra (SFS) inferred in domestics and wilds 

using SNP chips. In domestics, SFS of these arrays were less correlated to SFS of the WGS 

variants, e.g. Figure 3 for sheep and Figure S4 for Asiatic mouflons.

Several ways have been suggested to correct for such ascertainment bias already reported in 

humans (Nielsen et al., 2004; Clark et al., 2005; Albrechtsen, Nielsen, & Nielsen, 2010) and 

chicken (Malomane et al., 2018). The approach of Albrechtsen, Nielsen, & Nielsen, 

(Albrechtsen et al., 2010) is based on the estimation of the ascertainment scheme by 

modelling the underlying distribution of allele frequencies in the population using re-

sequencing data. However this study cautioned there is little hope to use inferred procedures 

for correcting bias in populations far from the ones they studied. Another strategy suggested 

by Malomane et al. (Malomane et al., 2018) uses LD-based pruning to partially account for 

ascertainment bias. It is based on calculating LD from 50 SNPs windows, and from a pair of 

SNPs in LD (using variance inflation factor VIF = 1/(1-r2) threshold of 2) the SNP with 

lower MAF is removed, the window is shifted 5 SNPs forward and the procedure is 

repeated.

Distribution of variants across the genome

Besides the effects of variant density and ascertainment bias, the distribution of variants 

across the genome also impacts the reliability of the characterization of the genome. For 

similar numbers of variants, the ovine and caprine 50K BeadChips were less accurate than 

random panels for estimating the LD decay over short distances. This is not surprising given 

the underrepresentation of close adjacent SNPs (<6Kb in ovine and <30Kb in caprine 

BeadChips, Figure S18) and differences in site frequency spectra in these Beadchips. 

Moreover, the local density of BeadChip SNPs varied across the genome with some regions 

being far well covered than others. This explains why, like (Kijas et al., 2012), we were able 

to detect the signal of selection associated to the RXFP2 gene with the ovine 50K SNP 

BeadChip but such signal was not as clear with 50K variants random panels. The 

commercial BeadChip has four SNPs in a 148 Kb window centred on the RXFP2 gene, 

which appeared to be enough for detecting selection, while the random 50K panel used had 
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no variant in that window. Similarly, the NBEA signal was detected by XP-CLR with 1M 

variants or more. This illustrates our expectation that medium and low SNPs densities are 

limiting for detecting less intense selective events as shown by Lowry et al. (Lowry et al., 

2016) for RAD-seq data, despite the fact that the latter study has made conclusions about the 

approach RAD-seq in general and has been criticized by other studies (Catchen et al., 2017; 

McKinney, Larson, Seeb, & Seeb, 2017). Our conclusions are mainly related to the required 

density of markers for detecting a selection signature and not to the RAD-seq approach per 
se. Inversely, we found that RAD-seq experiments allowing for appropriate SNP densities 

would give similar results as our random datasets of similar densities (Figures S20, S21).

The distribution of variants across the genome obviously determines the ability to detect 

selection signatures, and high-density variant panels are required to detect selected regions. 

One needs variants from regions under selection to find the associated signature, which is 

not necessarily assumed by low and medium-density panels of variants. This is more 

limiting when studying populations characterised by low overall linkage disequilibrium and 

old or low-intensity selection signatures.

Consequences for population genomics analyses

Outcomes of this study (Figure 8) might help setting up genotyping strategies to accurately 

infer population genetics statistics and test hypotheses on the structure and evolution of 

study populations. They should be useful to study species/populations with similar genetic 

characteristics (i.e., ungulate species and even other mammals). When measuring population 

genetic diversity, we show that the studied commercial SNP panels could invert the ranking 

of populations. The bias induced by especially medium-density chips was also substantial 

when assessing inter-populations differentiation. Fst could be either overestimated (e.g. in 

caprine) or underestimated (e.g., in ovine). Similarly, random panels of less than 50K SNPs 

could lead to inaccurate estimates but the bias due to low sample size clearly exceed that due 

to low SNP density. Furthermore, if a commercial SNP panel was able to detect a strong 

selective sweep, this was related to its design (i.e. number of SNPs in the region of interest) 

and, as shown by random panels, medium and low SNP densities (10K SNPs and lower) are 

shown to be inadequate in several cases. More resolution in detecting selective sweeps can 

be gained when increasing the density of SNPs and the maximum is obtained with the WGS 

data. Medium-coverage re-sequencing (e.g. 5X) without using genotype likelihoods would 

be recommended for such goals.

Our study also demonstrates that low coverage re-sequencing (1X and 2X) could be 

improved by the use of genotype likelihoods. It could be effective to get reliable genomic 

information. However, the number of incorrect genotypes generated by these data as shown 

here should be taken into account.

Conclusion

The accuracy of panels of variants to describe genome variations depends on the distribution 

of these variants across the genome, according to the level of LD and its proper variability. 

While high to medium coverage genome sequencing produces reliable genotyping, it 
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remains costly both in terms of money and in data management, and thus surrogates of WGS 

data are still needed.

For model species, commercial standardized panels are generally already available and one 

should know their potential biases and use them cautiously. This is particularly true if the 

studied populations or breeds are genetically divergent from the individuals used for 

designing the set of variants. Our results showed that a few thousands of markers randomly 

chosen across the genome provide unbiased information. Therefore, it could be valuable to 

include such sets of variants when designing new SNP chips or when updating existing 

beadChips. Especially, the strategies suggested to correct ascertainment biases could not be 

generalized to other populations/cases or don’t allow highly accurate inferences (e.g. LD-

based pruning). In non-model species, the genotyping of individuals by SNP chips could be 

replaced by genotyping by sequencing approaches (RAD-seq), shown here that they fully 

approximate a random distribution of markers across the genome. This despite the fact that 

they can have sometimes some bias depending on the choice of restriction enzyme and allele 

dropout as reported by Arnold et al. (Arnold et al., 2013). As shown by our results, a suitable 

variant density should be targeted according to the aim of the study and the resources 

allocated. Finally, when considering Whole Genome Sequencing approaches, Genotype 

likelihoods are effective to increase the accuracy of low-coverage (< 5X) sequencing data in 

comparison with direct variant calling approaches. However, these coverages might not be 

fully appropriate for setting up some population genomics studies where individual correct 

genotypes are required. This is due to the important proportions of incorrect genotypes and 

the discordance of site frequency spectra with higher coverage data.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flow-chart describing sampling random and non-random panels of variants and 
individuals.
Whole genome sequences are denoted by WGS.
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Figure 2. Nucleotide diversity (π) in sheep calculated from WGS data and from random and 
non-random panels of variants.
Nucleotide diversity (π) was estimated for each replicate of the different numbers of variants 

of the random panels and for each non-random panel. Sample sizes varied for each estimate 

from 10 to 30 individuals.

Random panels are denoted by their number of variants (from 1K to 5M) and non-random 

panels by: 50K.Chip (Illumina® ovine 50K SNP Beadchip), HD.Chip (Illumina® ovine HD 

Beadchip) exome (exome capture simulation), WGS (all variants extracted from whole 

genome sequences). For each panel of variants the sample sizes are from left to right: 10 

(red), 20 (green) and 30 (yellow) individuals.
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Figure 3. Site frequency spectra (SFS) in sheep inferred from WGS data and from random and 
non-random panels of variants.
Site frequency spectra were estimated using different random and non-random panels for 30 

sheep.

Random panels are denoted by their number of variants (from 1K to 5M) and non-random 

panels by: 50K.Beadchip (Illumina® ovine 50K SNP Beadchip), HD.Beadchip (Illumina® 

ovine HD Beadchip) exome (exome capture simulation), WGS (all variants extracted from 

whole genome sequences). Pearson correlation coefficients with the WGS inferences are 

shown for each panel.
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Figure 4. Nucleotide diversity (π) estimated in two Ovis groups with random and commonly used 
panels of variants.
Plot of Nucleotide diversity (π) estimated with a random set of 10K variants sampled in 

sheep data (10K), and with Illumina® ovine 50K SNP Beadchip (50K.Chip), Illumina® 

ovine HD Beadchip (HD.Chip), and variants extracted from whole genome sequences 

(WGS).
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Figure 5. Estimates of individual inbreeding coefficient (F) and observed heterozygosity (Ho) 
from different panels of variants compared to WGS data estimates in sheep.
Plot of individual inbreeding coefficient (F; top) and observed Heterozygosity (Ho; bottom) 

estimated with variants extracted from whole genome sequences (WGS) versus inferences 

with Illumina® ovine 50K SNP Beadchip (50K.Chip), Illumina® ovine HD Beadchip 

(HD.Chip), and 1 set of 10K variants defined in Moroccan sheep (random 10K). The red 

lines represent the relationship for which the estimates of the different panels are identical to 

the ones of WGS inferences.
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Figure 6. Fixation index (Fst) between Moroccan goats and Bezoar ibex for different panels of 
variants and different samples of individuals.
The fixation index Fst (Weir & Cockerham, 1984) was estimated for each random panel for 

the 5 independent replicates, and for each non-random dataset for each sample size. Random 

panels are denoted by their number of variants (from 1K to 5M) and non-random panels by: 

50K.Chip (Illumina® caprine 50K SNP Beadchip), WGS (all variants extracted from whole 

genome sequences). For each panel of variants the sample sizes are from left to right: 18 

(red), 33 (green) and 48 (yellow) individuals.
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Figure 7. XP-CLR scores calculated along the 20M-40M bp segment on chromosome 10 in a 
horned-polled Moroccan sheep comparison for different sets of variants.
The two peaks of XP-CLR scores showed in the WGS data plot are located respectively in 

the two genes NBEA (chr 10: 26,007,917 - 26,592,574) and MAB21L1 (chr 10: 26,231,353 

- 26,232,432) and in the RXFP2 gene (chr 10: 29,454,677 - 29,502,617 bp). The horizontal 

dashed line represents a XP-CLR score of 15 to represent a scale among the different plots.
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Figure 8. Efficiency and accuracy of different genotyping strategies
For each purpose, the different strategies are rated according to the accuracy of the estimates 

taking as a reference the WGS 12x depth inferences. Grey dots indicate that the genotyping 

approach allow detecting some selection signatures but could miss some further signals 

detected by high density panels and WGS (12x depth) data. MD chip = 50K SNP BeadChip 

(caprine and ovine); HD chip = 600K SNP Ovine BeadChip. Low and medium re-

sequencing coverages are represented by: (i) classical variant calling and filtering denoted by 

1x, 2x and 5x and (ii) variant discovery based on genotype likelihoods denoted by 1xGL, 

2xGL and 5xGL.
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