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Abstract

In the aim of reducing the computational cost of the resolution of parameter-dependent
eigenvalue problems, a model order reduction (MOR) procedure is proposed. We focus on
the case of non-self-adjoint generalized eigenvalue problems, such as the stationary multigroup
neutron diffusion equations. The method lies in an approximation of the manifold of solutions
using a Proper Orthogonal Decomposition approach. The numerical method is composed of
two stages. In the offline stage, we build a reduced space which approximates the manifold.
In the online stage, for any given new set of parameters, we solve a reduced problem on the
reduced space within a much smaller computational time than the required time to solve the
high-fidelity problem. This method is applied to core computations in the APOLLO3®code.

KEYWORDS: Model Order Reduction, Reduced Basis method, Eigenvalue problem, Proper
Orthogonal Decomposition

1 Introduction

We are interested in the parameterized neutron transport equation, when it is solved multi-
ple times for different values of the parameters, e.g. in optimization problems, which is often
called a multiquery context. Let us focus on the multigroup approximation over an energy range
[Emin, Emax] = [EG, EG−1]∪ . . .∪ [E1, E0], where G stands for the given number of neutron energy
groups. Given a parameter µ, the steady-state neutron diffusion equation [11, Chapter 7] seeks the
multigroup neutron scalar flux φµ =

(
φ1
µ, . . . , φ

G
µ

)
associated with the multiplication factor keff,µ

(the largest eigenvalue in modulus) inside the nuclear reactor core R such that

(
Lgµ −Hg

µ

)
φgµ =

1

keff,µ
Fgµφgµ, ∀g = {1, . . . , G}, in R, (1)
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and vacuum boundary conditions on ∂R where R is a bounded and open subset of R3. The
advection operator Lgµ, the scattering operator Hg

µ and the fission operator Fgµ are defined by

• Lgµφgµ = −div (Dg
µ∇φgµ) + Σg

t,µφ
g
µ;

• Hg
µφ

g
µ =

G∑
g′=1

Hg′→g
µ φg

′
µ , where Hg′→g

µ φg
′
µ = Σg′→g

s,0,µ φ
g′
µ ;

• Fgµφgµ =

G∑
g′=1

Fg
′,g
µ φg

′
µ , where Fg

′,g
µ φg

′
µ = χgµ(νΣf )g

′
µ φ

g′
µ ;

where Dg
µ, Σg

t,µ, χgµ, νgµ and Σg
fµ

are respectively, for the group g, the diffusion coefficient, the total
cross-section, the total spectrum, the average number of neutrons emitted per fission, the fission

cross-section, and Σg′→g
s,0,µ is the Legendre moment of order 0 of the scattering cross-section from

group g′ to group g. We introduce a partition (Rm)Mm=1 of the domain R with M ∈ N∗ so that for
all 1 ≤ m ≤M , Rm is a domain with Lipschitz, piecewise regular boundaries. For g, g′ = 1, 2, the

coefficients Dg
µ, Σg

t,µ, Σg′→g
s,0,µ , χgµ, (νΣf )gµ are assumed to be piecewise regular on each domain Rm

for 1 ≤ m ≤M .

Several reduced-order models have been proposed in this context [4, 12, 15]. In this work, we
propose a reduced basis (RB) approach, see [17] for a general introduction and [7, 19] for appli-
cations in neutronics. It is shown numerically in [8] that our approach does not exhibit spurious
eigenvalues observed in the monolithic ROM defined in [12] (where the authors propose an alterna-
tive groupwise reduced-order model), see [9, Remark 2.6] for a theoretical argument. We focus on
the development in the project APOLLO3® [16], a shared platform among CEA, FRAMATOME
and EDF, which includes different deterministic solvers for the neutron transport equation. Par-
ticularly, we are interested in the MINARET solver [14] in the diffusion approximation, discretized
with discontinuous finite elements.

2 The reduced basis method

In this section, we present a methodology for the implementation of a reduced basis solver for a
non-self-adjoint eigenvalue problem (see e.g. [3, 6]) which writes

Find (uµ, kµ) ∈ RN × R such that

Aµuµ =
1

kµ
Bµuµ, (2)

where kµ is the largest eigenvalue in modulus, where µ ∈ P stands for the parametric dependence of
the problem with P a compact set of Rd, d ≥ 1; Aµ is an invertible non-symmetric matrix, namely
the discretized diffusion operator, or disappearance matrix; Bµ is a non-negative non-symmetric
matrix, namely the discretized fission operator, or production matrix; and N is the total number of
degrees of freedom of the considered high-fidelity discretization. Typically, for multigroup neutron
diffusion calculations, if we denote by NR the total number of spatial degrees of freedom, we have
N = G×NR.
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Note that the multiplication factor kµ is also solution to the following adjoint problem

Find (u∗µ, kµ) ∈ RN × R such that

ATµu
∗
µ =

1

kµ
BT
µ u
∗
µ, (3)

where kµ is the largest eigenvalue in modulus. The goal is to find a linear space of dimension
n << N , denoted by Vn, such that any solution in the manifold

M = {(uµ, kµ);µ ∈ P},

can be well-approximated in the space Vn.

2.1 Offline Stage

To build such a reduced space, we use the information contained in a training space Ptrain =
{µ1, . . . , µns} of ns parameters. The classical a priori error analysis exhibits an upper bound on
the eigenvalue error which depends on the error on the left and right eigenvectors [1, 2]. Following
this insight, the reduced space Vn is built such that

Vn ⊂ Span
(
uµ, u

∗
µ; µ ∈ Ptrain

)
. (4)

In order to give the best n-rank approximation of the manifoldM, we first compute a Singular
Value Decomposition (SVD) to the so-called matrix of snapshots composed of right eigenvectors

S =
(
uµ1 | · · · |uµns

)
∈ RN×ns , (5)

which writes

S = UΣZT , (6)

U = (ξ1| . . . |ξN ) ∈ RN×N ,
Σ = diag

(
σ1, . . . , σmin(ns,N )

)
,

Z = (ψ1| . . . |ψns) ∈ Rns×ns ,

where the σi are the singular values of S, sorted in decreasing order, and U and Z are two orthogonal
matrices. Then, the reduced space associated with the approximation of the manifold to Problem (2)
comes from a Proper Orthogonal Decomposition (POD) and it is defined by

V right = (ξ1| . . . |ξn1) , (7)

where 1 ≤ n1 ≤ ns, which minimizes the 2-norm error between each snapshot and its orthogonal
projection onto the subset of dimension n1 spanned by the columns of V right. The integer n1 comes
from a truncation of the SVD with respect to a given tolerance criterion related to the singular
values. We then proceed similarly to approximate the adjoint manifold {(u∗µ, kµ);µ ∈ P}. We
perform a SVD to the matrix of snapshots S∗ of left eigenvectors, and the POD gives the adjoint
reduced space

V left =
(
ξ∗1 | . . . |ξ∗n2

)
, (8)

where 1 ≤ n2 ≤ ns. The resulting reduced space Vn is defined as the sum of spaces V right and V left,
using an orthonormalization procedure to obtain a basis.
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2.2 Online Stage

2.2.1 Assembling the reduced problem

Let Vn be a matrix containing an orthonormal basis of the reduced space Vn as columns, a Galerkin
projection of Problem (2) is done so that, for any µ ∈ P, the reduced n×n matrices are defined as

Aµ,n = V T
n AµVn, (9)

Bµ,n = V T
n BµVn. (10)

Assembling such matrices is not trivial, since the high-fidelity sparse matrices Aµ and Bµ are not
fully assembled. Indeed,

Aµ =


A1,1
µ A1,2

µ · · · A1,G
µ

A2,1
µ A2,2

µ · · · A2,G
µ

...
...

. . .
...

AG,1µ AG,2µ · · · AG,Gµ

 , Bµ =


B1,1
µ B1,2

µ · · · B1,G
µ

B2,1
µ B2,2

µ · · · B2,G
µ

...
...

. . .
...

BG,1
µ BG,2

µ · · · BG,G
µ

 (11)

where, for g′ 6= g, the block matrices Ag,g
′

µ and Bg,g′
µ are sparse NR × NR matrices, for g, g′ =

{1, . . . , G}, and the diagonal blocks Ag,gµ are directly accessible in memory. Therefore, if we de-
compose the reduced matrix Vn = (ξ1| . . . |ξn) along its G group components such that Vn =ξ

1
1 · · · ξ1

n
...

...
ξG1 · · · ξGn

, then we have

(Aµ,n)i,j := (V T
n AµVn)i,j =

G∑
g=1

(ξgi )TAg,gµ ξgj +
G∑

g,g′=1
g′ 6=g

(ξgi )TAg,g
′

µ ξg
′

j , (12)

(Bµ,n)i,j := (V T
n BµVn)i,j =

G∑
g,g′=1

(ξgi )TBg,g′
µ ξg

′

j . (13)

For a given parameter µ ∈ P, the reduced problem is then the following,

Find (cµ,n, kµ,n) ∈ Rn × R such that

Aµ,ncµ,n =
1

kµ,n
Bµ,ncµ,n, (14)

where kµ,n is the largest eigenvalue in modulus. We then obtain uµ,n = Vncµ,n, as the approximated
right eigenvector written in the high-fidelity space RN . The associated adjoint problem writes,

Find (c∗µ,n, kµ,n) ∈ Rn × R such that

ATµ,nc
∗
µ,n =

1

kµ,n
BT
µ,nc

∗
µ,n, (15)

where kµ,n is the largest eigenvalue in modulus. Similarly, we obtain u∗µ,n = Vnc
∗
µ,n, as the approxi-

mated left eigenvector written in the high-fidelity space RN . In order to solve the reduced problem,
we use a power iteration method with given relative error tolerances and maximum number of
iterations.

4



2.2.2 Computing errors and error estimates

In order to quantify the approximation by the reduced basis method of dimension n ∈ N∗, we first
normalize all high-fidelity and reduced multigroup fluxes such that ‖uµ‖2 = ‖u∗µ‖2 = ‖uµ,n‖2 =
‖u∗µ,n‖2 = 1. Then, we define the respective following `2-errors on the eigenvectors and `2-error on
the eigenvalue

euµ,n := ‖uµ − uµ,n‖2, (16)

eu
∗
µ,n := ‖u∗µ − u∗µ,n‖2, (17)

ekµ,n := |kµ − kµ,n|. (18)

Let us respectively define the residuals on the direct and adjoint flux by

Rµ,n := (Bµ − kµ,nAµ)uµ,n, (19)

R∗µ,n := (BT
µ − kµ,nATµ )uµ,n. (20)

In the following, we will consider the error estimates ‖Rµ,n‖2, ‖R∗µ,n‖2 and ηkµ,n :=
‖Rµ,n‖‖R∗µ,n‖
〈c∗µ,n, Aµ,ncµ,n〉

respectively on the reduced direct flux uµ, the adjoint reduced flux u∗µ, and the reduced multipli-

cation factor kµ,n [9]. We also introduce the prefactors Cun , Cu
∗

n and Ckn by

Cun := max
µ∈Ppref

euµ,n
‖Rµ,n‖2

, (21)

Cu
∗

n := max
µ∈Ppref

eu
∗
µ,n

‖R∗µ,n‖2
, (22)

Ckn := max
µ∈Ppref

ekµ,n
ηkµ,n

, (23)

where Ppref ⊂ P such that Ppref ∩ Ptrain = ∅.

3 Numerical tests

3.1 Convergence analysis of the RB method on benchmark calculations

The reduced basis approach, as implemented in the APOLLO3®code, is first tested on Model 1
Case 1 of Takeda neutronics benchmarks [20]. A previous work carried out state estimation tech-
niques on this test case using a POD reduced basis from power maps [10]. The considered geometry,
as shown in Figure 1, is a 3D quarter core in the domain {(x, y, z) ∈ R3, 0 ≤ x ≤ 25 cm; 0 ≤ y ≤
25 cm; 0 ≤ z ≤ 25 cm}. The MINARET solver is run with G = 2 energy groups and NR = 3× 105

spatial degrees of freedom. For this high-fidelity solver, we provide a maximum of 500 outer itera-
tions, with relative L2-error tolerances of 10−7 and 10−8 on the two-group flux and on the effective
multiplication factor, respectively. The reduced solver runs a power iteration method with respec-
tively relative `2-error tolerances of 10−8 and 10−9 on the reduced eigenvector and the reduced
eigenvalue.
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Core
Void

Reflector

Reflexion

Reflexion

Vacuum

Vacuum

Figure 1: Cross-sectional view of the core (z = 0 cm)

Here, the parameter µ lies in the 5-dimensional subset [0.8, 1.2]5, and then enables small expan-
sions of the equation coefficients such that(

D1
µ, D

2
µ,Σ

1
a,µ,Σ

2
a,µ,Σ

1→2
s,0,µ, (νΣf )1

µ, (νΣf )2
µ, χ

1
µ, χ

2
µ

)
=

(
D1

µ1
,
D2

µ2
, µ1Σ1

a, µ2Σ2
a, µ3Σ1→2

s,0 , µ4(νΣf )1, µ5(νΣf )2, χ1, χ2

)
, µ = (µ1, . . . , µ5) ∈ [0.8, 1.2]5,

where, for g, g′ ∈ {1, 2}, Σg
a = (Σg

t − Σg→g
s,0 ), and the values for the coefficients Dg, Σg

a, Σg→g′
s,0 ,

(νΣf )g and χg are given in Appendix 3 of [20].

We generate a training set Ptrain of ns = 100 parameters with a Latin Hypercube Sampling
(LHS) over [0.8, 1.2]5. We then compute the SVD of the 2ns snapshot matrix as defined in (5). The
singular values are shown in Figure 2. The fast decrease of the singular values illustrates the ability
of the training set to approximate the manifold of high-fidelity solutions with a reduced basis of
small dimension. Here, for example, the 10 first singular values range from 104 to 10−1.

The SVD truncation at the order n then provides a reduced space, and the reduced basis method
is tested on the parameter µtest = (1, 1, 1, 1, 1) which does not belong to the training set in order
to determine to what extend the reduced solver is able to compute a good approximation of the
two-group flux and effective multiplicative factor of the Takeda benchmark. The relative errors are
depicted in Figure 3. For n = 5, the reduced solver returns the same keff at the order of the pcm
(10−5), and then the error levels off at the order of magnitude of 10−7, as the order of convergence
is limited by the convergence criterion of the high-fidelity solver. Note that the test parameter
here is particularly well represented by the training space, which explains that the error on the keff

already reaches the order of the pcm, independently of the order of approximation n.

3.2 Computational time reduction on a burnup parametrized nuclear core

We now test the RB method on a small nuclear core, namely the MiniCore problem [9]. The
nuclear core geometry is shown in Figure 4. It is a 3D nuclear core and the domain is {(x, y, z) ∈
R3, 0 ≤ x ≤ 107.52 cm; 0 ≤ y ≤ 107.52 cm; 0 ≤ z ≤ 468.72 cm}. The MINARET solver runs with
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Figure 2: Singular values from the SVD of Takeda snapshots, for ns = 100. Left:
direct eigenvectors; Right: adjoint eigenvectors.

Figure 3: Relative errors on the two-group flux and the keff with respect to the
dimension n of the reduced space Vn, for µ = µtest
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G = 2 energy groups and NR = 108800 spatial degrees of freedom. For this high-fidelity solver,
we provide a maximum of 1000 outer iterations, with relative L2-error tolerances of 10−7 and 10−8

on the two-group flux and on the effective multiplication factor, respectively. The reduced solver
runs a power iteration method with respectively relative `2-error tolerances of 10−8 and 10−9 on
the reduced eigenvector and the reduced eigenvalue.

UGD12
UO2

Reflector

Vacuum

Vacuum

Vacuum

Vacuum

Figure 4: Median cross-sectional view of the MiniCore (z = 234.36 cm)

The problem is parametrized by the burnup value for the 9 fuel assemblies (one UGD12 and
eight UO2). Here, we generate ns = 100 parameters with a Latin Hypercube Sampling (LHS) over
the 9-dimensional space

Ptrain ⊂
{
µ = (µ1, . . . , µ9) ∈ R9; µ1 ∈ [0, 72000]; µ2, . . . , µ9 ∈ [0, 30000]

}
,

where µ1 is the burnup value of the UGD12 assembly and µ2, . . . , µ9 are the burnup values of the
UO2 assemblies, in MWd/ton. Figure 5 shows an example of SVD with such a training set with
ns = 100. As in the previous test case, a reduced order model is suitable for the considered snapshot
family as the 25 first singular values range from the order of magnitude of 104 to 101.

The reduced basis is tested on 10 burnup maps chosen along a LHS over the test space

Ptest ⊂
{
µ = (µ1, . . . , µ9) ∈ R9; µ1 = 30000; µ2, . . . , µ9 ∈ [0, 15000]

}
.

Figure 6 depicts the convergence of the RB method, as well as the ability for the error estimates to
quantify the approximation. We can see that for n > 45, the errors on the direct and adjoint flux
and on the keff are respectively below 10−3 and 10−5. Regarding the estimates, their convergence,
although they are not at the same rate as those of the real errors, are relevant to their potential
use in the construction of such an approximation space. Indeed, the cost of the offline stage here
highly depends on the high-fidelity MINARET solver’s cost, as we need to compute high-fidelity
solutions for all µ ∈ Ptrain. For the MiniCore, one high-fidelity calculation of the keff is of the
order of the second, whereas computing the reduced eigenvalue kµ,n requires a computational time
of the order of the millisecond, as Figure 7 shows. In order to get more reliable a posteriori error
estimates, we define the set Ppref such that

Ppref ⊂
{
µ = (µ1, . . . , µ9) ∈ R9; µ1 ∈ [0, 72000]; µ2, . . . , µ9 ∈ [0, 30000]

}
,

#Ppref = 5, and Ppref ∩ Ptrain ∩ Ptest = ∅.
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Figure 5: Singular values from the SVD of MiniCore snapshots, for ns = 100. Left:
direct eigenvectors; Right: adjoint eigenvectors.

We then consider the a posteriori error estimates

∆u
µ,n := Cun‖Rµ,n‖2, (24)

∆u∗
µ,n := Cu

∗
n ‖R∗µ,n‖2, (25)

∆k
µ,n := Cknη

k
µ,n, (26)

where the constants Cun , Cu
∗

n and Ckn are defined as in (21), (22) and (23) respectively. Figure 8
shows that the estimates defined right below are more reliable as they remain of the same order of
magnitude as the real errors, independently of the value of n.

Figure 6: Mean errors and their associated error estimates with respect to the
dimension n of the reduced space Vn, over Ptest. From left to right: error ekµ,n and

ηkµ,n; error euµ,n and residual norm ‖Rµ,n‖2; error eu
∗
µ,n and residual norm ‖R∗µ,n‖2.
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Figure 7: Mean computational time for the reduced solver, over Ptest

Figure 8: Maximum errors and their associated error estimates with respect to the
dimension n of the reduced space Vn, over Ptest. From left to right: error ekµ,n, η

k
µ,n

and ∆k
µ,n; error euµ,n, residual norm ‖Rµ,n‖2 and ∆u

µ,n; error eu
∗
µ,n, residual norm ‖R∗µ,n‖2

and ∆u∗
µ,n.
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4 Conclusion

The two test cases that were developed highlight the possibility of a reduced basis method imple-
mentation in the APOLLO3®code, in terms of accuracy and computational time reduction. Note
that a posteriori error estimators in the reduced basis context may be applied in a greedy approach
in the offline stage [5, 18, 13], so that it minimizes calls to the high-fidelity solver, or in an online
certification of the reduced model [9]. To do so, we should investigate on how to compute the
reduced matrices by breaking, as much as possible, their parameter dependency. We could, for
example, consider a General Empirical Interpolation Method (GEIM).
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[6] E. Cancès, V. Ehrlacher, and T. Lelièvre, Greedy algorithms for high-dimensional
eigenvalue problems, Constructive Approximation, 40 (2014), pp. 387–423.

[7] A. Cherezov, R. Sanchez, and H. G. Joo, A reduced-basis element method for pin-by-pin
reactor core calculations in diffusion and SP3 approximations, Annals of Nuclear Energy, 116
(2018), pp. 195–209.

[8] Y. Conjungo Taumhas, Criticality calculations in neutronics: model order reduction and a
posteriori error estimators, PhD thesis, Université Paris Est, 2023.
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