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The fluid description is widely used for the multi-dimensional modeling of low tem-
perature plasmas with complex chemistries due to their relative low computational
cost. It relies however on a series of simplifying assumptions and some truncation
of the moment equations for describing the non-equilibrium between the electrons,
positive ions, negative ions and the neutrals. In this paper, the classical assumption
of isothermal negative ions is revisited for electronegative plasmas and more partic-
ularly for the fluid modelling of the transition between the plasma and its sheath.
To do so, and in contrast to previous studies, the energy balance equation for the
negative ions is also computed and it allows to derive the polytropic coefficient γ
of the negative ions in addition to the one of the positive ions. Strong variations
in the sheath and presheath of the negative ions temperature and their polytropic
coefficient are observed. The polytropic coefficient is shown to be a strongly vary-
ing function of space having for consequence that the negative ions are isothermal
only in a very narrow extension of the presheath. For the case considered in this
paper, both positive and negative ion flows are nearly adiabatic at the sheath-edge
and become adiabatic inside the sheath. This paper shows that classical fluid mod-
elling assumptions need to be verified for each system under consideration, most
particularly while modelling the transition from a plasma to a wall.

Keywords: Thermodynamics, Sheath, Presheath, Multi-fluid, Negative ions, Poly-
tropic coefficient

I. INTRODUCTION

Despite being one of the oldest plasma problems1,2, the interaction between a plasma
and a boundary is still an intense area of research due its numerous applications in plasma
processes3–5. However, intrinsic difficulties arise in the theoretical description of the plasma
boundary because the use of some simplifying assumptions is needed to describe the non-
equilibrium transition between the plasma and the wall. A kinetic analysis, consisting in
finding the solutions of the Boltzmann or Fokker-Planck equations6–12 or, if collisions are
neglected, the Vlasov equation13–17, is often required to account both for the microscopic
boundary conditions and the inhomogeneity due to space charge. It is however difficult with
a kinetic model, in comparison with a self-consistent fluid model, to realistically simulate
the geometric effects as well as elementary processes together with a detailed description
of the electron and ion collisional processes. The use of Particle-in-Cell codes22–25 is also
possible but the computational effort that would be required to achieve a steady-state
solution (for example, 5 days when using the code described by Schiesko et al.25 for a 1D
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problem), make them unsuitable to perform parametric scans in 2D or 3D and they are
often restricted to small simulation domains in the case of high densities (i.e. small Debye
length). For these reasons, the fluid approximation is often used to model non-equilibrium
low temperature plasmas26–29.
In the fluid formalism, the macroscopic properties of the plasma are described by a set
of moment equations which are derived from an underlying kinetic equation, usually the
Boltzmann equation, well suited for describing plasma discharges. The fluid equations
are not closed but involve higher orders of the velocity moments. Truncation procedures
exist26–28 at the cost of eliminating or approximating certain features of the plasma dy-
namics and constrain the regime of validity of the set of fluid equations. Fluid models are
based on the continuity equations resolved both in space and time and they allow describing
the evolution of the state of system using a set of independent variables which stem from
thermodynamics. However, their validity and application range have been extended in
some cases far beyond the cases where the assumption of local thermal equilibrium is valid
while still using some thermodynamic properties for truncating the moment equations (e.g.
isothermal or adiabatic properties for some species in a multi-species system). Moreover,
a common assumption is that the electron energy distribution function in the plasma is
governed by the local equilibrium between the acceleration given by the electric field and
the momentum and energy losses due to the collisions18. Computing rate and transport
coefficients usually allows to assimilate the temperature to a mean energy which is then
used in the energy continuity equation19–21. The use of fluid equations can therefore be
extended beyond Maxwellian distribution functions using non-equilibrium factors (such as
Kappa or Druyvesteyn velocity distribution functions) although their applicability is not
often well justified. This is underlined by the difficulty to set proper boundary conditions
and the sensitivity of fluid models to initial values to yield physical results while solving
the set of equations for the steady state.
Typically, the continuity and momentum exchange equations are used for the positive
ions while the electrons and, when included, the negative ions, are assumed to follow a
Boltzmann relation30–33 although Franklin34 showed in his seminal paper that care should
be taken when using Boltzmann relations both for electrons and negative ions. Two-fluid
models for electropositive plasmas, where continuity and momentum exchanges equation
are used also for the electrons, are less common35–38.

To test the validity of fluid models and particularly the transition of a plasma to a wall, it
is useful to check the thermodynamic characteristics of the fluid and their consistency with
the general hypotheses made while constructing the model. The description of the plasma
sheath is concerned with the interactions between a closed system and its environment
and one can expect the particles to behave either as isothermal, isentropic or adiabatic.
Particle and energy balance equations in the fluid approximation (i.e. where the velocity
distributions are described with a single parameter such as the temperature or the mean
energy) for a closed system do not fulfil a priori any particular thermodynamic case although
its formalism usually implies the fulfilment of local thermal equilibrium (LTE) for single
species. The departure from LTE of a system is, in the most simple case, done by relaxing
the condition of a single temperature for all species and allowing different temperatures
which are controlled by their predefined velocity distribution at an injection boundary
and/or via the coupling with external fields. Their ratio is then driven by the interaction of
the system with its environment and the momentum exchanges between the species inside
the system. For non-equilibrium plasmas, it is typically a strong electric field that increases
the temperature of the electrons (due to their low mass compared to all the other species)
within the plasma region and they do not have enough time and space to thermalize with
the surrounding species nor the environment.

In the vast majority of studies, the truncation of the fluid equations occurs at the mo-
mentum exchange equation, which requires an assumption about the higher moment of the
distribution function, the pressure force term ∇p. A common approach is to relate it to the
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density gradient by the ansatz

∇p = γkBT∇n (1)

where γ is the polytropic coefficient39, n the density, kB the Boltzmann constant and
T the temperature. For the description of multi-fluid systems, it is therefore also usual to
assume some properties like isentropic, isothermal or adiabatic flows where each species take
a single value of γ and the latter describes globally its interaction with the environment.

The polytropic coefficient is defined by γ = (c − cp)/(c − cV ) where c is the polytropic
specific heat and cp and cV are the specific heat at constant pressure and constant volume
respectively. In that case, the system exchanges no energy with the environment. In the
case of ideal gas law, the relation p = nkBT describes the properties of a gas made of
non-interacting particles and using the ansatz given by equation 1, one gets

γ = 1 +
n

T

∇T
∇n

. (2)

This equation, with γ expressed as a function of spatial coordinates, gives the local ther-
modynamic properties of the fluid flow in the approximation of an ideal gas. A well-known
special case is the adiabatic case for which δQ = 0 corresponding to c = 0 and yielding
γ = cp/cV

1. Concerning the positive ions temperature Ti, the assumption mostly used is a
constant value. Setting γ= 1 corresponds to an isothermal ion flow40–42, while setting γ= 3
yields to a one-dimensional adiabatic ion flow43–46. It has been shown however by Kuhn
et al.39 that γ for positive ions is not a constant and varies spatially for low temperature
non-equilibrium plasmas. This finding demonstrates the inconsistency of the isothermal or
adiabatic assumption or even any other constant γ value for modelling the ion flow in the
sheath and the presheath. A two-fluid model for positive ions and electrons has been re-
cently developed where γ(x) and Ti(x) both become functions of a spatial coordinate47–50.
Concerning the description of the negative ions and the problem of the electronegative
plasma sheath, and to the best of the authors’ knowledge, the use of a Boltzmann factor
with the isothermal assumption is the rule and it is generally adopted30–34,37,51,52 .

In view of the above, it is legitimate to question the validity of the assumptions of a
constant temperature and of a constant γ for the negative ions in the sheath and presheath.
In this paper, a multi-fluid model47–50 is extended to account for the negative ions with γ(x)
and T (x) computed self-consistently, neglecting the heat flux for all the involved species. In
section II the equations are presented and mathematically converted to an explicit 1st order
system with the advantage of directly identifying the singularities and giving the possibility
to determine boundary and initial conditions values leading to physically acceptable solu-
tions. In section III the results are presented and discussed. First the validity of the model
is demonstrated by considering Ti = 0 as initial condition. The polytropic coefficients of the
positive and negative ions are then investigated with Ti 6= 0 as well as their temperature
profiles. Finally, section IV summarizes the main conclusions.

II. THE MODEL

A. Assumptions and description of the model

One considers a one-dimensional model with the plasma bulk located at x = 0, as shown
in Figure 1 and it expands towards positive x values without the explicit definition of a wall.
Details of the derivation of the fluid equations from the moments of the Boltzmann equation

1 Note that using the ideal gas law as equation of state for an adiabatic expansion is by definition equivalent
of having an isentropic gas flow.
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FIG. 1. Schematic representation of the model setup. The plasma bulk is located at x = 0 and
expands. The blue line is a representation of an observable such as the electric potential or the
density.

can be found in there47,48. The steady state fluid equations are written in the following
form with α ∈ [i,e,n] for the positive ions, electrons and negative ions respectively:

∂

∂x
(nαuα)− Sα = 0 (3)

mαnαuα
∂uα
∂x

+
∂pα
∂x

i
±
e,n

e0nα
∂φ

∂x
−Aα +mαuαSα = 0 (4)

and for the positive and negative ions, i.e., α ∈ [i,n]:

1

2
uα
∂pα
∂x

+
3

2
pα
∂uα
∂x
−Mα + uαAα −

1

2
mαu

2
αSα = 0 (5)

The potential profile φ is determined by the Poisson Equation:

∂2φ

∂2x
= −e0

ε0
(ni − ne − nn) (6)

where ni, ne and nn are the positive ion, electron and negative ion densities respectively, ui,
ue and un are the positive ion, electron and negative ion fluid velocities respectively, e0, mα

and ε0 the elementary charge, mass and the vacuum permittivity respectively. The source
terms Sα, the elastic collisions terms Aα and the energy transfer terms Mα are typically
prescribed functions.

The pressure term appearing in eq. (4) is written

∂pe
∂x

= kBTe
∂ne
∂x

(7)

For the positive and negative ions, the closure relation is made by assuming that their
respective heat fluxes are zero and the pressure term appearing in eq. (4) is written:

∂pi
∂x

= γikBTi
∂ni
∂x

(8)

∂pn
∂x

= γnkBTn
∂nn
∂x

(9)

for the positive and negative ions respectively and with γi and γn taken from eq. (1).
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The choice of this closure relation for the positive and negative ions imply that the system
is isolated in the sense that there is no heat transfer in-between the surrounding and the
system. The energy is transferred internally only in terms of work. This assumption is a
simplification which allows for the hierarchy truncature of the fluid equations at the energy
balance equation and represents an ideal case from a thermodynamic point of view. For
the electrons, one chooses an homogeneous temperature.

The source terms Sα take into account several processes. It is convenient to analyse the
results to normalize the source terms Si, Se and Sn to the effective ionization time τ which
represents the average time between two consecutive ionizations: Sα → Sα/τ for α ∈ [i,e,n].
Si is thus written as:

Si = ne −Rec ni nn (10)

The recombination between positive and negative ions is pondered by the recombination rate
Rec while the the ionization rate is proportional to ne and the same simplifying assumption
made by Gyergyek and Kovačič is chosen (see48 and the related discussion). Se is written
as:

Se = (1−Att)ne +Det ne nn (11)

For the consistency with the positive ion source term, the first term being the ionization
rate must be proportional to ne. Att and Det are the attachment and detachment rates to
generate negative ions by electron attachment to a background neutral or detachment of a
negative ion by electron collision.
Sn is written as:

Sn = Att ne −Det ne nn −Rec ni nn (12)

The terms Mα gives the rate of energy exchange between the positive and negative ions
and other particle species because of inelastic collisions. This paper being focused on the
study of the transition between the plasma and the wall and relatively low densities, one
can set Mα = 0. This implies that the species are non-interacting but not necessarily that
they behave as an adiabatic flow as they are coupled through the local electric field. They
can also take different temperatures depending on their formation mechanism2. In the
following the case where the positive and negative ions have the same temperature and
the case for which the negative ions have an higher temperature than the positive ions will
be considered. These assumptions concerning the collisions are valid in the case of a low
density plasma (around 1017m−3 and below for the charged particles) as considered here,
and care should be taken when considering larger densities.

The following normalization variables are introduced:

λd =

(
ε0kBTe
n0e20

) 1
2

, c0 =

(
kBTe
mi

) 1
2

, L = c0τ, ξ =
λd
L
, Ni =

ni
n0
, Ne =

ne
n0
,

Nn =
nn
n0
, X =

x

L
, µi = 1, µe =

me

mi
, µn =

mn

mi
, θi =

Ti
Te
, θn =

Tn
Te
,

Pi =
pi

n0kBTe
, Pn =

pn
n0kBTe

, Ψ =
e0φ

kBTe
, η = − dΨ

dX
, Vi =

ui
c0
, Ve =

ue
c0
, Vn =

un
c0

(13)

2 Taking the case of a low pressure negative ion source, the positive ions usually have a temperature close
to the gas temperature while negative ions have significantly higher mean energies via their preferential
formation mechanism

H2(v ≥ 5) + e− → H−(hot) + H(cold).
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In eqs. (13) λd, c0 and L are the Debye length, the Bohm velocity and the ionization
length respectively. Provided eqs. (13), the system of equations (3-6) is then rewritten in
dimensionless form for α ∈ [i,e,n] as:

d

dX
(NαVα)− sα = 0 (14)

µeNeVe
dVe
dX

= Ne
dΨ

dX
− dNe
dX
− µeVese (15)

For the positive and negative ions, i.e., for α ∈ [i,n]:

µαNαVα
dVα
dX

i
±
n
Nα

dΨ

dX
+
dPα
dX

+ µαVαsα = 0 (16)

1

2
Vα
dPα
dX

+
3

2
Pα

dVα
dX
− 1

2
V 2
α sα = 0 (17)

with

Pα = Nαθα (18)

while the Poisson equation becomes:

ξ2
d2Ψ

d2X
= Ne +Nn −Ni (19)

In the presented model, the flux of the particles reaching the wall is simply the integral
of eqs. (14) for each species. As a consequence, modelling an absorbing conductive or
floating wall is determined by the initial conditions for the densities, flow velocities and
source terms values. For simplicity and in the rest of the paper one considers a plasma
where the negative ions are mainly detached by electron impact by setting Rec and Att to
zero in the eqs. (10-12) for the source terms. Setting n0 = 1 it follows that:

si = Ne (20)

se = Ne +DetNeNn (21)

sn = −DetNeNn (22)

The system of equations (14-19) is then mathematically converted into an explicit 1st order
system. The main advantage of working with the first order differential equations system is
that one can perform a qualitative analysis and directly identify the singularities and initial
conditions values leading to physically acceptable solutions as will be done below.

dNi
dX

=
3si(V

2
i − θi) +NiViE

Vi(V 2
i − 3θi)

(23)

dNe
dX

=
2µeVese −NeE

(µeV 2
e − 1)

(24)

dNn
dX

=
3sn(µnV

2
n − θn)−NnVnE

Vn(µnV 2
n − 3θn)

(25)
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dVi
dX

= −Vi

(
2Visi +NiE

Ni(V 2
i − 3θi)

)
(26)

dVe
dX

= −

(
se(1 + µeV

2
e )−NeVeE

Ne(µeV 2
e − 1)

)
(27)

dVn
dX

= −Vn

(
2µnVnsn −NnE
Nn(µnV 2

n − 3θn)

)
(28)

dθi
dX

=
V 4
i si + 2ViNiθiE + 3θ2i si

NiVi(V 2
i − 3θi)

(29)

dθn
dX

=
µ2
nV

4
n sn − 2VnNnθnE + 3θ2nsn
NnVn(µnV 2

n − 3θn)
(30)

dΨ

dX
= E (31)

dE

dX
=
Ne +Nn −Ni

ξ2
(32)

Furthermore, the individual terms can be analyzed separately to better understand the
underlying physics as it will be done for the positive and negative ion temperatures in
section III. The polytropic coefficient γ does not appear in the system (23-32). It is however
straightforward to calculate γ provided its definition in eq. (1), once the solution of (23-32)
is found.

B. Singularities and initial conditions

The system (23-32) represents ten equations of ten unknown functions of X:Ni(X), Ne(X),
Nn(X), Vi(X), Ve(X), Vn(X), θi(X), θn(X), E(X) and Ψ(X).
Although, the system (23-32) is highly non-linear and has to be solved numerically, a
qualitative analysis of the equations is possible.

Let’s first start to analyse the electrons equations (24) and (27). Since the negative ions
are generated in the plasma bulk, the potential is a monotonic decreasing function of space,
the potential gradient E on the r.h.s is negative. As a consequence the second term is
positive due to the minus sign as well as the first term of eq. (27). In eq. (27), due to
the global minus sign, the numerator is thus negative. However, the fluid velocity is known
to be a monotonically increasing function of space, and as a consequence this is only true
when:

Ve −
1
√
µ
e

< 0 (33)

and the system is singular beyond the electron thermal velocity defined as Veth = µ
−1/2
e .

Applying the same reasoning, one observes that eq. (24) is negative as long as eq. (33)
is satisfied, and thus the electron density is a monotonic decreasing function of space, as
expected. This condition was also derived by Gyergyek and Kovačič48.
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FIG. 2. a) presents the variation of the quantity (3θn)
1
2 -Vn (square root of the denominator of Eq.

(25)) as a function of X, b) the variation of Ve as a function of X. For both figures, the boundary
conditions (36) with the source terms (38-40), τ = 4.7876x10−4 s and ξ= 5x10−6 are chosen. On
both figures a) and b) the curves are labelled according to the value of the detachment coefficient
Det for the negative ions. In b), the curves labelled 0.5 and 2 almost superimpose.

Concerning the positive ions, a difficulty arises due to the first term of the numerator
being positive while the second term is negative because of the potential gradient in eq.
(26). Typically, the values of the potential gradient are large and the first term of the
numerator relatively small. Numerical investigations under the conditions presented in sec.
III shows that the numerator is negative. Including the global minus sign in eq. (26), the
positive ion velocity is a monotonic increasing function of space if:

Vi −
√

3θi > 0 (34)

As a consequence, if a non-zero temperature initial condition for the positive ions is chosen,
the condition described in eq. (34) must be fulfilled as initial condition for Vi to obtain a
physically acceptable solution. In their paper, Gyergyek and Kovačič48 derived a similar
condition: Vi>

√
γiθi and then found the condition given by eq. (34) in this paper by some

sort of shooting method49. One sees here the clear advantage of working with explicit 1st

order system where eq. (34) could be directly derived.

Concerning the negative ions, because of the source term (see eq. 22) the first term of
eq. (28) is negative, while the second is positive. There again a numerical analysis shows
that for the presented conditions below in sec. III, the numerator is positive. Accounting
for the global minus sign in eq. (28) and due to the fact that the negative ion flow velocity
is in this case an increasing function of space it follows that:√

3θn − Vn > 0 (35)
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FIG. 3. a), b), c) and d) show, the potential profile and the corresponding normalized positive
ion, negative ion and electron density profiles as a function of X (bottom) and Debye length
(top). These results are obtained for the boundary conditions (36) with the source terms (38-40),
τ = 4.7876x10−4 s, ξ= 5x10−6 and Det = 0.1 for a) and b), Det = 0.5 for c) and d). The insets in
panels b) and d) show a zoom on the sheath region.

and the system is singular beyond.

Obviously the conditions presented here are derived for a simplified model without colli-
sions, charge exchange etc... and are also strongly dependent on the source terms.
An example showing the occurrence of the different singularities with the variation of the
source terms is shown in Fig. 2 and discussed in the following section.

III. RESULTS AND DISCUSSION

A. Study of the general trends

In this sub-section, all the presented figures are obtained with the following parameters.
The analysis is restricted to ξ= 5x10−6. This value for ξ has been shown to be in the range
where the asymptotic two-scale plasma-sheath approximation ξ = λd / L → 0 is valid53.
The asymptotic two-scale limit has been mathematically defined in a rigorous manner by
Caruso and Cavaliere54. Hydrogen positive and negative ions with 1 a.m.u. are chosen.
The following boundary conditions are selected:

Ni[0] = 1, Ne[0] = 0.65, Nn[0] = 0.35, Vi[0] = Ve[0] = Vn[0] = 10−5

θi[0] = 0, θn[0] = 0.2, Ψ[0] = E[0] = 0
(36)
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FIG. 4. a) and b) show, the net charge and negative ion densities profiles as a function of the reduced
potential |Ψ|. These results are obtained for the boundary conditions (36) with the source terms
(38-40), τ = 4.7876x10−4 s and ξ= 5x10−6. The labels in a) represent the value of the detachment
rate Det. For each value of Det and respecting the color code, the vertical dashed lines in b) are a
guide to the eye to see the corresponding densities at the sheath-edge. The values nn−se given in
Table 1 represent the negative ion density evaluated at the sheath-edge.

With our choice of normalization, the electrons temperature is 1 everywhere. To compute
the value of the source terms, one has to determine the value of τ which can be expressed,
according to eqs. (13) by:

τ = ξ−1

(
ε0mi

n0e20

) 1
2

(37)

To compute τ we choose a density of 1x1017m−3 and it follows that τ = 4.7876x10−4 s. To
show our point the product DetNeNn should be small and multiplying it by τ permits to
achieve the needed values. Therefore, a slightly modified version of the source terms is used:

si = Ne (38)

se = Ne +DetNeNnτ (39)

sn = −DetNeNnτ (40)

The only varying parameter is the detachment coefficient of the negative ions Det, which
will be in any case specified.

Figures 2 a) and b) present the variation of the quantity (3θn)
1
2 -Vn and Ve as a function

of X, respectively. The interface between the plasma and the presheath is located at X = 0.
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On both Figures 2 a) and b) the curves are labeled according to the value the detachment
coefficient Det taken for the negative ions.

According to the condition derived in eq. (35), the quantity (3θn)
1
2 -Vn should remain

positive. Figure 2a) shows that only the curves labelled 0.01, 0.05 and 0.1 show a singu-
larity due to this criterion. Conversely and as shown in Figure b), a singularity occurs
for the curves labelled 0.5 and 2 (which almost superimpose) because the electron velocity
reaches the thermal velocity defined in eq. (34), whose value for the chosen parameters is
Veth = 42.8 c0. Figures 2a) and b) confirm the analysis done in the previous section but
also clearly show that a change of the source terms only is responsible for triggering the
singularities, highlighting the fact that care should be taken with the choice of the boundary
conditions.

Figures 3a), b) and c), d) present two examples of the potential profiles and the corre-
sponding positive ion, negative ion and electron density profiles obtained for the boundary
conditions specified at the beginning of this section and with Det = 0.1 for a) and b),
Det = 0.5 for c) and d), respectively. On both panels a) and c), the potential profile
starts at X = 0 which corresponds to the plasma side and slowly decreases in the presheath
until the sheath is reached. For this reason, the potential profiles in Figures 3a) and c)
reach a minimum value around -1.2 and -4.0, respectively. The influence of the detachment
parameter for the negative ions can be observed in panels 3b) and d). While for both
studied cases the negative ion density decreases, it is more pronounced in Figure 3d) where
Det = 0.5. For this reason in the presheath shown in Figure 3b), the quasi-neutrality is
maintained by both electrons and negative ions, while one observes the positive ion density
following the strong decrease of the negative ion density in Figure 3d). Furthermore, in
Figure 3d) most of the negative ions are detached inside the presheath and the positive ion
density then matches the electron density until the space charge separation occurs when
the sheath is reached, as shown in the inset panel.

Figures 4a) and b) show the charge density and negative ion density profiles as function
of |Ψ| for different values of the detachment parameter. The labels in panel a) indicate the
value of Det. Typically, in the presheath, where the quasi-neutrality prevails the net charge
density is zero, while a non-zero value is the signature of a space-charge separation, or in
other words that the sheath has been reached. One observes in Figure 4a) that the space-
charge separation increases faster with amount of negative ions present at the sheath-edge.
This is because the negative ions, for the chosen parameters, have a temperature smaller
(see Figure 6a) than the electrons and thus are more affected by the potential. The opposite
effect is observed when their temperature is greater than that of electrons as will be shown
below.
An increase of the detachment parameter leads to an increase of the presheath potential

drop (or sheath-edge potential) and to a decrease of the negative ion density evaluated at
the sheath-edge as shown in Figures 4a) and b) respectively. The values for the normalized
position Xse, potential |Ψse| and negative ion density nn−se evaluated at the sheath-edge
for the different Det values are given in the Table 1. The trends observed in Figure 4a) and
the values in Table 1 have been already shown by simpler isothermal fluid models (see for
example51,55). Although the values for the sheath-edge potential derived in these papers
cannot be directly compared to what is found here, the agreement observed for the order
of magnitude of the sheath-edge potential and the fact that they obey similar trends.

Det 0.01 0.05 0.1 0.5 2
Xse 0.591 0.633 0.644 0.568 0.5685
|Ψse| 0.313 0.525 0.817 0.846 0.849
nn−se 0.082 0.045 0.037 0 0

TABLE I. Values of the normalized position Xse, potential |Ψse| and negative ion density nn−se

evaluated at the sheath-edge for the different Det values.
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FIG. 5. Variation of the positive ion and electron density profiles a function of the normalized
potential |Ψ|, for Det = 0.5; the sheath-edge potential Ψse derived by Tonks and Langmuir2 is
plotted with a dash line.

FIG. 6. a) and b) show, the variation of the reduced temperature θi (short dotted line) and θn (full
line), and respectively the polytropic coefficients γi (short dotted line) and γn (full line) for Det

values of 0.01, 0.05 and 0.1 as a function of the reduced potential |Ψ|. These results are obtained
for the boundary conditions (36) with the source terms (38-40), τ = 4.7876x10−4 s and ξ= 5x10−6.
The labels in both figures a) and b) represent the value of Det.

Furthermore, one observes that for the largest values of Det, namely 0.5 and 2, the negative
ion density at the sheath-edge shown in Table 1 is zero and |Ψse| saturates at a value around
0.85, i.e., very close to the the ”classical” Tonks-Langmuir value for the sheath-edge2. This
result is highlighted in Figure 5 where it is easier to see that the sheath-edge potential for
Det = 0.5 is very close to Tonks-Langmuir value (|Ψse| = 0.854) plotted vertically. Note
that for the case presented in Figure 5, the negative ion density has already reached zero
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as shown in Figure 4b).
In the case of electropositive plasmas49,53, it has already been shown that the Tonks-
Langmuir value for the sheath-edge potential was recovered in the case of the two-scale
asymptotic limit. In this work, one recovers very close values for |Ψse| to 0.854 only for
Det = 0.5 and 2, both values for which the negative ion density at the sheath-edge is zero.
It clearly shows, as expected, that the sheath-edge potential does not depend on the bulk
nn but only on the sheath-edge negative ion density, the two-scale asymptotic limit being
fulfilled by having chosen ξ= 5x10−6 in this study.

Figures 6a) and b) show the variation of θi and θn and γi and γn as a function of |Ψ|
respectively. Only the cases for Det = 0.01, 0.05 and 0.1 are presented because most of the
negative ions are detached in the presheath for larger Det values as shown in Figure 4b)
and Table 1.
An explanation to the trends observed for the temperatures and polytropic coefficients of
both positive and negative ions, which depends on the initial conditions, will be given in
the next section. One can notice that in the frame of the model assumptions, the polytropic
coefficients largely vary into the presheath and the sheath. For this reason and hereafter,
they will be called polytropic functions. It is not shown in Figure 6b), but the polytropic
coefficient of the positive ions is highly negative for small X values (towards the neutral
plasma). Negative polytropic functions are well known in astrophysics where by means of
the virial theorem, one can show that a gravitating system like a star or a star cluster show
an increase of temperature when loosing energy. Other examples, include self-gravitating
gas sphere at thermodynamic equilibrium56, or black hole thermodynamics57,58. Note that
there is an obvious analogy between gravitational field and an externally applied potential
gradient to a closed thermodynamic system made of charged particles59. However, in the
presented model, for the chosen boundary conditions of Ni[0] = 1, θi[0] = 0, according
to the definition of γ given in eq. (1), a singularity exists at X = Ψ = 0. This is clearly a
limitation of the model that explain the high negative values of γi. By choosing θi[0] > 0
as a boundary, the singularity can be removed as will be shown in the next section.

B. Results for θi > 0 and θn > 0.

The results presented in this sub-section were obtained for the following initial conditions

Ni[0] = 1, Ne[0] = 0.50, Nn[0] = 0.50, Vi[0] = 0.54808758

Ve[0] = Vn[0] = 3.10−11, θi[0] = 0.1, Ψ[0] = E[0] = 0, ξ = 5.10−6
(41)

The same value for τ = 4.7876x10−4 s is chosen, with Det being now fixed to 10−5. The
negative ion temperature at the plasma-presheath interface θn[0] having for values 0.10,
0.25, 0.50, 0.60 or 0.75 is the only varying parameter. The initial velocities for the elec-
trons, positive ions and negative ions satisfy the criteria given by eqs. (33), (34) and (35)
respectively.

Figure 7 shows the variation of θn and θi as a function of |Ψ| for different initial conditions
θn[0]. The trends observed for θn resemble those shown in Figure 6a). This is however not
the case for θi and we note that θi is a monotonic decreasing function of |Ψ| in Figure 7.
The variations of θi and θn can be easily explained by evaluating the contribution of the
different individual terms of eqs. (29-30). To this aim, one defines the following terms:

V 4
i si

NiVi(V 2
i − 3θi)

(42)

2ViNiθiE

NiVi(V 2
i − 3θi)

(43)
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FIG. 7. Variation of θi and θn for several reduced negative ion temperatures in the plasma θn[0]
of 0.10, 0.25, 0.50, 0.60 and 0.75 as a function of |Ψ|. These results are obtained for the boundary
conditions (41) with the source terms (38-40), τ = 4.7876x10−4 s, Det = 10−5 and ξ= 5x10−6.

FIG. 8. Variation with the reduced potential of the different individual terms eqs. (42), (43), (44)
from the positive ion temperature eq. (29) a) and the negative ion temperature, eqs. (45), (46),
(47) from eq. (30) b), both for for θn[0] = 0.25.

3θ2i si
NiVi(V 2

i − 3θi)
(44)

µ2
nV

4
n sn

NnVn(µnV 2
n − 3θn)

(45)

−2VnNnθnE

NnVn(µnV 2
n − 3θn)

(46)

3θ2nsn
NnVn(µnV 2

n − 3θn)
(47)
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FIG. 9. Variation of the positive ion, electron and negative ions densities ni, ne and nn for a)
θn[0] = 0.50 and b) 0.60 as function of |Ψ|. These results are obtained for the boundary conditions
(41) with the source terms (38-40), τ = 4.7876x10−4 s, Det = 10−5 and ξ= 5x10−6.

Eqs. (42-44) are the individual terms taken from eqs. (29) for the positive ions and eqs.
(45-47) from eq. (30) for the negative ions.

Figures 8a) and b) represent the contribution of these terms for the positive ions and
negative ions respectively, and as an illustrative example, this analysis is limited to the case
θn[0] = 0.25 but can be extended to the other cases shown in Figure 7a).

Let us first consider the positive ions: several mechanisms playing opposite roles can
explain the trends observed in Figure 7. The first mechanism is the heating of the positive
ions. Inside the presheath, at any given position X0 with the corresponding potential Ψ0,
the velocity distribution function is smaller or equal to

√
−Ψ0. The source term si, pro-

portional to Ne, generates positive ions at very low temperature everywhere in the system
and the potential gradient energy is converted into positive ion thermal energy. This is
highlighted by eq. (42) for the positive ions in Figure 8a) being greater than 0. The second
mechanism is led the potential gradient E which accelerates the positive ions towards the
wall (see eq. (43) in Figure 8a)). The eq. (44) plays here no role because of the very
small value chosen for θi[0]. From Figure 8a) one clearly sees that eq. (43) dominates
the dynamics of the positive ions and the sum of all the terms is everywhere negative for
the chosen parameters. The potential gradient is thus the dominating term as shown in
Figure 8a), explaining the continuous decrease of θi everywhere in the sheath and presheath.

Concerning the negative ions, the following explanations hold for both Figures 6a) and
7). First, Figure 8b) shows that eq. (45) term is negligible, which could be expected due
to the very small value of both sn and Vn(0) and to the fact that Vn(X) stays below unity.
One sees that Eq. (47) is the leading term up to Ψ = 0.15 and Eq. (46) beyond. Eq.
(47) is positive because the chosen source term sn is negative as well as the denominator.
The potential gradient E is the leading variable of Eq. (46). As long as E is small, i.e.
for Ψ≤ 0.15, the source term is responsible sn for the increase of the temperature in both
Figures 6a) and 7). Further downstream inside the presheath when Ψ≥ 0.15, E becomes
the dominant parameter and is then responsible for the temperature decrease.

It is important to notice that the results concerning the temperature profiles shown in
Figures 6a) and 7 clearly show that for both positive and negative ions, an isothermal, or
any other constant temperature assumption fails.

Some of the consequences, on the densities, of not having an isothermal temperature for
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the negative ions are shown in Figure 9a) and b) for θn[0] = 0.50 and 0.60 respectively as
a function of |Ψ|.
Panel a) shows the typical behaviour for low negative ion temperature. The source term sn
(see eq. 40) is proportional to both Nn and Ne. For this reason, Nn first decrease strongly,
and then sn becomes negligible as soon as Nn and Ne are small. As shown in Figure 7, an
increase of θn[0] leads to a higher value for the maximum of θn. This has for consequence,
that when θn > Te

3, Nn[Ψ] decreases at a slower rate than Ne[Ψ] and inversely. For this
reason, by increasing θn[0] up to 0.50 on observes like in Figure 9a) that the negative ion
density approaches the electron density. For θn[0] = 0.60, it can be seen in Figure 9b) that
Nn intercepts two times Ne: once when θn > Te over a sufficient large interval of |Ψ| as
shown in Figure 7, and a second time inside the sheath when θn � Te and for which Nn[Ψ]
decreases faster than Ne[Ψ]. For θn[0] > Te then Nn intercepts Ne only once.
One can thus clearly see that inside the sheath the variation of the temperature influences
the negative species densities to such an extent that population inversion become possible.

Figures 10a) and b) present the net charge density and γi (thin line) and γn (bold line)
as function of |Ψ| for different values of θn[0], while the vertical dashed lines in b) are a
guide to the eye to see the corresponding γi or γn at the sheath-edge.
One observes in Figure 10a) that a decrease of θn[0] leads, as one could expect, to a faster
space charge separation in the sheath, because Nn[ψ] decreases faster with a lower temper-
ature.
In Figure 10a) one can see that at the position X = 0, γi for the positive ions is equal
to 3, which means that the ion flow is adiabatic. This is a consequence of having chosen
θi[0] > 0 which leads to a removal of the singularity at X = 0, in contrast to the results
presented in Figure 6b). The profile of γi is in good agreement with others results48,49,53

and can be qualitatively explained. The ion flow at the entrance of the system is adiabatic.
Because the potential gradient accelerates the ions towards the wall, the ions are expanding
and cooling as explained before. However, the cooling is reduced because of the heating
mechanism shown in Figure 8a) due to the source term si and discussed before. This has
for consequence that the cooling is as fast as an adiabatic cooling and γi decreases. Near
the sheath edge, the heating mechanism becomes inefficient because Ne is small and the
potential gradient is the dominant term. Thus, the positive ion flow is adiabatic again at
the sheath-edge as well as inside the sheath.
Note that in Figures 7a) and 10b), the special case where θi[0] = θn[0] = 0.1 corresponds to
the ions being in LTE. The trends and results being similar to the other cases is due to the
electrons not being in LTE and thus the potential gradient, as discussed before, drives the
ions flow towards the wall through its coupling with the electrons.

Concerning the negative ions, γn has a positive value close to zero at Ψ = 0 and then
increases. The behavior of γn is simple to understand by rewriting eq. (1) as

γ = 1 +
n

θ

dθ

dx

(
dn

dx

)−1

(48)

First of all, for all the cases and everywhere in the sheath and presheath, due to sn, one has
dnn
dx

< 0. As can be shown in Figure 6a) or 7),
dθn
dx

is positive as long as θn increases and

negative otherwise. When
dθn
dx

is positive then the second term on the r.h.s side of eq. (48)

is negative, but smaller than one, the weight of this term being proportional to θn[0]. For
this reason one observes that γn increases at a smaller pace for increased values of θn[0] in

3 Te is isothermal with a value of 1 eV.



On the polytropic coefficient of negative ions... 17

FIG. 10. Variation of the net charge density a) and γi (short dotted line) or γn (full line) b) as
function of |Ψ| for different values of θn[0]. For each value of θn[0], the vertical dashed lines in b) are
a guide to the eye to see the corresponding γi or γn at the sheath-edge. These results are obtained
for the boundary conditions (41) with the source terms (38-40), τ = 4.7876x10−4 s, Det = 10−5 and
ξ= 5x10−6.

Figure 10. When
dθn
dx

is negative then the second term on the r.h.s of eq. (48) is positive

and γn increases much faster. This happens as soon as θn starts to decrease. Thus as can
be shown in Figure 10b) is the following: the negative ion flow is adiabatic at the sheath
edge for the smaller values of θn[0] because the heating mechanism has a weaker influence.
For larger values of θn[0] the negative ion flow tends towards adiabaticity without reaching
it, because the heating of the negative ions is stronger. Nevertheless, inside the sheath,
where the potential gradient strongly dominates, the negative ion flow becomes adiabatic.

The fact that one finds for both positive and negative ions that the ion flow at sheath-edge
is adiabatic was expected for both having neglected the heat flux term and thermodynamics
considerations. This is a very important consistency check of the presented model. As a
consequence, and this is the major result of this work, it has been shown, for the first time
to the authors knowledge, that the hypothesis of an isothermal negative ion temperature



On the polytropic coefficient of negative ions... 18

with constant values for γn and θn within the sheath and presheath had to be ruled out.
This is also true for the positive ions.

IV. CONCLUSION

A steady-state one-dimensional multi-fluid model has been developed for electronegative
plasmas. It is an extension of a previous work16 developed for electropositive plasmas and
it accounts for the presence of negative ions, which are not assumed to be isothermal,
allowing for the polytropic function to be calculated. For the positive and negative ions,
the truncature of the fluid equations is made at the level of the energy-balance equation by
neglecting the heat-flux term meaning that the system is isolated. The set of equations is
converted into an explicit 1st order system with the advantage that the singularities and
the initial conditions leading to a physically acceptable result can be directly identified.
Another advantage is to have the possibility of evaluating the relative importance of the
different individual terms in the system of equations which allows to explain the trends of
positive and negative ions temperatures θi and θn as well as γi and γn. The general trends
coming out of this theory are in good agreement with the previous findings. The main new
results can be summarized as follows:

� γn and θn are strongly varying functions of the space coordinate X and hence, the
negative ions cannot be considered isothermal everywhere in the sheath and presheath,

� at the sheath-edge, the value of γn is close to 3 for low negative ion temperatures,
having for consequence that the negative ion flow becomes nearly adiabatic,

� the negative ion flow is adiabatic inside the sheath.

The present results have been deduced for a detachment dominated plasma. Different
behavior of the species in their way towards the wall may however be expected for an at-
tachment dominated plasma or other conditions. While in the present study it is seen that
the polytropic coefficient is a useful parameter to describe the properties of the flow of
charged species, it is intriguing to note that it is done under the ideal gas law assumption
(i.e. non-interacting particles). This approximation appears to yield physical results and is
widely adopted in the literature with excellent results. This is a general paradox stemming
from the fluid description of non-equilibrium, low ionization degree plasmas, where bound-
ary conditions and the Poisson equation allow for the obtention of closure relations for the
charged particles dynamics. Considering that initial conditions are sometimes difficult to
find in order to obtain physical results, particularly for multi-dimensional models, this topic
deserves further investigations in the future.
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