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A B S T R A C T

Organic scintillators are widely used for neutron/gamma detection. Pulse shape discrimination algorithms have
been commonly used to discriminate the detected radiations. These algorithms have several limits, in particular
with plastic scintillator which has lower discrimination ability, compared to liquid scintillator. Recently,
machine learning (ML) models have been explored to enhance discrimination performance. Nevertheless,
obtaining an accurate ML model or evaluating any discrimination approach requires a reference neutron
dataset. The preparation of this is challenging because neutron sources are also gamma-ray emitters. Therefore,
this paper proposes a pipeline to prepare clean labeled neutron/gamma datasets acquired by an organic
scintillator. The method is mainly based on a Time of Flight setup and Tail-to-Total integral ratio (𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜)
discrimination algorithm. In the presented case, EJ276 plastic scintillator and 252Cf source were used to
implement the acquisition chain. The results showed that this process can identify and remove mislabeled
samples in the entire ToF spectrum, including those that contribute to peak values. Furthermore, the process
cleans ToF dataset from pile-up events, which can significantly impact experimental results and the conclusions
extracted from them.
1. Introduction

The detection of neutron radiations by organic scintillators (plastic,
liquid and stilbene) has many applications in several fields such as
homeland security and nuclear medicine. These scintillators are also
sensitive to gamma-rays. Moreover, the emission of neutrons is always
accompanied by an emission of gamma-rays. Pulse shape discrimina-
tion techniques, such as zero crossing [1], 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 integral ratio [2]
and curve-fitting [3] have been proposed to discriminate the neutron
events from the detected gamma-rays. These algorithms rely on the
difference in shape of the signals to classify them. Neutron interaction
produces a longer signal than the one generated by gamma-ray [4].

This difference is more important in liquid and stilbene organic
scintillators. Thus, the discrimination ability of these detectors is higher
compared to their plastic counterparts using pulse shape discrimi-
nation algorithms [5–8]. However, despite this intrinsic limitation,
plastic organic scintillators have several advantages. They can be easily
produced and have a relatively low cost [9]. In addition, they have in-
creased durability, non-toxicity, and non-flammability characteristics.
In recent years, Eljen Technology has developed a commercial pulse
shape discriminating plastic scintillator (EJ276) [10]. Its pulse shape
discrimination properties have increased to be comparable to those
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offered by liquid scintillators. Fig. 1 shows the difference between the
average neutron and gamma-ray signals produced by EJ276 plastic
scintillator

Recently, machine learning (ML) techniques have been explored to
improve discrimination performance with liquid and stilbene scintil-
lators [11–14]. The authors of [11] propose a non negative matrix
factorization to discriminate neutron gamma radiations with stilbene
scintillator. Another study proposes a Gaussian Mixture model with
EJ309 liquid scintillator [12]. However, both studies do not show
how the pure neutron and gamma signals were prepared to evaluate
the methods. In [13,14], the authors implement an artificial neutral
network (ANN) and Support Vector Machine models to achieve the dis-
crimination with stilbene and liquid scintillator, respectively. Another
ML model is proposed in [15] to classify radiations detected by the
EJ299-33 plastic scintillator. While the discrimination performance is
improved in the three previous studies, the ML models were trained on
datasets labeled by 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination algorithm. The accuracy of
the labeling by this algorithm is decreased when dealing with relatively
low energy radiations due to a significant overlap between the 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜
distributions of neutrons and gamma-rays [16]. Choosing one 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜
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Fig. 1. Average of neutron and gamma-ray signals detected by EJ276 plastic
scintillator.

threshold to classify the signals results to a significant number of
mislabeled samples.

Despite the results obtained by all previous work on the neutron
gamma discrimination task, obtaining an accurate ML model or the
evaluation of any discrimination approach remains a difficult task due
to the lack of a reference neutron dataset. The main limitation for
obtaining this dataset is the impact of gamma-rays emissions in neutron
sources.

This paper proposes a pipeline to prepare clean and labeled neu-
tron/gamma datasets detected by an organic scintillator (Fig. 2). First, a
dataset is acquired using Time of Flight (ToF) experimental setup. Then,
the acquired dataset is cleaned up from pile-up events. Thereafter, the
remaining signals are processed to decrease the number of background
events, they are then labeled based on ToF information. The last step is
identifying and removing the mislabeled samples obtained by ToF using
a proposed labeling method based on 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 algorithm. Furthermore,
the article shows the results provided by a proof of concept ANN model
trained on the prepared dataset. The results are compared to those
obtained by 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination algorithm.

In Section 2 we will explain in details the ToF and standard ex-
perimental setup that we built to prepare the real neutron/gamma
datasets. The radioactivity sources used in these acquisition chains
are 252Cf and 60Co. Then, in Section 3 we will introduce the pile-up
detection algorithm that we implemented to clean up the data acquired
by ToF setup. Section 4 explains the proposed strategy to remove the
mislabeled samples. The method depends on the results obtained by
the ToF experiment and 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination algorithm. Recently, a
similar approach has been proposed to remove the mislabeled samples
in the dataset acquired by ToF setup using EJ309 liquid organic scintil-
lator [17]. However, the energy distributions of classified neutron and
gamma-rays do not correspond to the chosen thresholds to remove the
mislabeled samples.

In Section 5 the paper shows the results obtained after training of an
ANN model on the prepared datasets. The model is evaluated on signals
acquired using a pure gamma source for different energy ranges. The
results are compared with those obtained by 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 algorithm which
validate the outperforming of the trained model. Finally, the article
concludes by summarizing the main contributions and limitations of
this labeling process (Section 6).

2. Experimental configuration

2.1. Tof setup

Time of flight (ToF) is a technique used to discriminate and la-
bel neutron and gamma-ray signals. This method relies on the speed
2

difference between gamma-rays and neutrons to discriminate them,
considering the gamma-ray is faster than the neutron. Nevertheless,
acquired labeled datasets often contain mislabeled samples, which have
various origins, such as the overlap between the gamma and neutron
arrival time distributions and natural background radiations. These
mislabeled samples have a penalizing impact on the evaluation of any
discrimination approach.

The authors in [18] introduces an approach for minimizing the
labeling error of ToF setups using a liquid scintillator. However, the
implemented method cannot remove background events that coinci-
dentally contribute to peaks in the ToF distribution. An alternative
method for improving the precision of ToF measurements with liquid
scintillator involves the use of an optimization algorithm to identify the
time interval within the ToF distribution that has the lowest number
of mislabeled samples [19]. Both approaches generated training and
validation datasets of ML models presented in [20,21], respectively. In
this study, the proposed method to reduce the error involves combining
the results of ToF and 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination algorithm. By using this
approach, mislabeled samples from the entire ToF distribution of the
acquired dataset can be detected and removed, as shown by the results
obtained in Section 4.

The experimental ToF setup involves two detectors separated by
a distance L (50 cm), as illustrated in Fig. 3. The radiation source is
placed in front of the start detector. When the oscilloscope identifies the
detection of radiations at both detectors and the time between the two
identifications is less than a preset time threshold, it records two signals
corresponding to the radiation detected by each detector. Neutron and
gamma-ray signals of the stop detector can be distinguished by the time
of flight between the two detectors, which is calculated from the time
duration between the peaks of both recorded signals. The components
that we used to implement this setup are (Fig. 4):

• Start scintillator: EJ200 non-discriminating plastic scintillator
made by Eljen Technology. This scintillator is not able to discrim-
inate between neutrons and gamma-rays.

• Stop scintillator: EJ276 discriminating plastic scintillator used in
the standard setup chain implemented in Section 2.2.

The acquisition was carried out with identical settings of the mea-
surement chain implemented in Section 2.2, using the same PMT model
and radiation source. The maximum time between triggering of the
start and stop detectors is 60 ns.

It should be highlighted that the experimental results obtained
from this ToF setup showed a significant percentage of pile-up events
within the collected dataset. Thus, an offline digital detection method
described in Section 3 was implemented to remove these events.

2.2. Experimental setup

The proposed labeling pipeline requires gamma-ray and mixed
neutron/gamma-ray datasets for the labeling and generating synthetic
pile-up signals, as explained in Sections 3 and 4. These datasets were
acquired by the experimental configuration shown in Fig. 5. The
scintillator is coupled to the PMT which is linked to the digitizer. The
radiation source is placed at a given distance from the scintillator. The
main components of this experimental set-up shown are:

• Scintillator: EJ276 discriminating plastic scintillator made by El-
jen Technology. Its discrimination ability depends on the energy
level of the detected ray, the lower the energy, the harder the
discrimination.

• Photomultiplier: PMTETL9821 made by ET Enterprises which is
supplied by 1700 V.

• Digitizer: LeCroy WAVERUNNER 640Zi with 8 bits vertical reso-
lution.

• Radiation source: 252Cf which is simultaneously a source of neu-
trons and gamma-rays and 60Co which is a pure source of gamma-
rays.
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Fig. 2. The main steps of the proposed labeling pipeline.
Fig. 3. Diagram representing the configuration of ToF experiment.

Fig. 4. Implemented ToF experiment.

Fig. 5. The key components of the standard experimental setup.

The starting point of each signal is considered as the time when the
signal reaches 10% of its maximum value. However, some signals con-
tain background and electronic noises that have an intensity equal to
or higher than this threshold. They sometimes appear at the beginning
of the acquisition before several to tens nanoseconds from the actual
starting point of the signal. To avoid this bias, the rising time mode of
3

all acquired signals is computed. Thereafter, the search for the starting
point of each signal is linked between the time of its maximum value
and twice the average rise time.

The acquisition parameters were set to a triggering threshold of
60 mV, a sampling frequency of 5 GHz, a time window of 200 ns, and
a 𝑉𝑝𝑝 of 3.2 V. A duration of 100 ns was assigned to the signal from
its identified starting point, while the baseline was given a length of
50 ns.

The next step in the proposed labeling pipeline after the acquisition
is identifying and removing the pile-up events obtained in the acquired
ToF setup. Next section explains the method we proposed to detect and
remove these events.

3. Pile-up detection and evaluation

Pile-up is a phenomenon that can occur when measuring signals
with non-zero durations, such as neutrons and gamma-rays, whose
arrival times follow a Poisson distribution. This event occurs when
more than one signal is detected within the recorded duration, resulting
in the detection of multiple local peaks in the overall acquired signal
(Fig. 6(a)). These events are usually detected and rejected using a
dedicated electronic system [22]. Nevertheless, some of them may be
missed in the implemented ToF setup due to its coincidence acquisition
characteristic and natural background radiations. As a result, an offline
method is necessary to process these events and obtain a reliable
datasets for neutron/gamma classification. Furthermore, evaluating the
performance of the detection method can be challenging, as pile-up
events in the acquired dataset cannot be easily identified. Therefore,
a method for synthesizing pile-up events must be included in the
evaluation process to assess the detection performance.

The performance of a pile-up detection algorithm is measured by
determining its detection error, which is the percentage of undetected
signals in a dataset consisting exclusively of pile-up events. Detecting
pile-up events becomes more challenging as the time difference be-
tween the arrival of the two contributions within an event becomes
smaller. Consequently, the evaluation must take this factor into account
to identify the minimum threshold at which the detection error remains
within an acceptable range. In our research, we considered a detection
error of less than 1% to be acceptable.

3.1. Detection method

There are various algorithms available for handling digital detec-
tion of pile-up events. These include fitting [23,24] and deconvolu-
tion [25] methods, as well as an approach based on the first-order
derivative [26]. Recently, a ML model has been developed that can
simultaneously classify neutron, gamma-ray, and pile-up events of a
liquid scintillator [13]. Another method for detecting pile-up events
in germanium detectors has also been proposed, which leverages the
relatively long signal length (in microseconds) to identify them [27].

The pile-up detection method implemented in this work to clean up
the datasets acquired by ToF setup is inspired by the work of authors
in [28]. The method is based on the cross-correlation between the
output signal of the detector and a predefined Gaussian kernel. Cross-
correlation measures the similarity between two vectors over time and
the shape of an output signal produced by an organic scintillator is
similar to the shape of a Gaussian window. This means that each peak
in the cross-correlation output could indicate an event in the acquired
signal. However, a Gaussian window that is too wide will cause the
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Fig. 6. Real detected pile-up event before and after the correlation with Gaussian kernel.
peaks of two closely occurring events to merge together. Conversely, a
narrow window will result in detecting most signals as pile-ups, since
any noise peak can be similar to the created narrow kernel and be
identified as a pulse peak.

The optimal width of the kernel window depends on the standard
deviation used to create the kernel and the number of points in the
kernel array. In the presented case, the kernel size is the same as the
signal length and the standard deviation should be adjusted to find
its optimal value. The tuning can be done by gradually decreasing
the standard deviation until the algorithm starts to misidentify the
majority of the signals in a collected dataset as pile-ups. In other
words, the optimal value is the point at which decreasing the standard
deviation further would lead to a substantial misidentification of actual
signals, while increasing it would lead to a considerable number of
misidentified pile-up events. In the presented case, the obtained opti-
mal value of the standard deviation was equal to 4. The first four lines
of algorithm 1 summarize these steps. However, it should be noted that
using the optimal standard deviation value obtained may misidentify
some signals as pile-up events. The objective of this detection method
is to prepare clean neutron gamma datasets, and the performance in
terms of counting rate is not a concern.

After the correlation, in line five of algorithm 1, the peaks in the
obtained output are detected using the implemented find_peaks function
in scipy library in python. The function finds all local maximum by a
simple comparison of neighboring values. Some of the detected peaks
refer to noise signals. Therefore, by specifying conditions for a peak’s
properties, a subset of the detected peaks can be selected (Fig. 6(b)).
These properties are width, amplitude, and the distance between two
peaks. Finally, if the number of peaks that are found is higher than one,
the acquired signal is considered as a pile-up.

3.2. Evaluation of the detection method

To evaluate this detection method, a synthetic pile-up dataset is
generated using real signals acquired using the setup explained in Sec-
tion 2.2, where the radiation source is 252Cf. A synthetic pile-up event is
created by selecting randomly two acquired signals, shifting the second
one, then adding them together. The shifting was determined by arrival
time difference parameter which can be assigned to a constant or random
value within a given predefined time interval. The shape of a created
pile-up signal is quite realistic and similar to the shape of a real pile-up
event. This is because the photomultiplier (PMT) current is proportional
to the incident radiation fluxes magnitude which are linearly added
4

Algorithm 1: Pile-up detection.
0: function 𝑝𝑖𝑙𝑒 − 𝑢𝑝 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝑠𝑖𝑔𝑛𝑎𝑙𝑠)
1: 𝑠𝑖𝑔𝑚𝑎 = 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑣𝑎𝑙𝑢𝑒
2: 𝑤𝑖𝑛𝑑𝑜𝑤 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑖𝑔𝑛𝑎𝑙), 𝑠𝑖𝑔𝑚𝑎)
3: 𝑐𝑜𝑟𝑟 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒(𝑠𝑖𝑔𝑛𝑎𝑙, 𝑤𝑖𝑛𝑑𝑜𝑤)
4: 𝑐𝑜𝑟𝑟 = (𝑐𝑜𝑟𝑟-𝑚𝑖𝑛(𝑐𝑜𝑟𝑟))∕(𝑚𝑎𝑥(𝑐𝑜𝑟𝑟)-𝑚𝑖𝑛(𝑐𝑜𝑟𝑟))
5: 𝑖𝑛𝑑𝑒𝑥𝑝𝑒𝑎𝑘𝑠= find-peaks (corr, high, width, distance)
6: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑛𝑑𝑒𝑥𝑝𝑒𝑎𝑘𝑠 > 1) then
7: 𝑝𝑖𝑙𝑒 − 𝑢𝑝 − 𝑒𝑣𝑒𝑛𝑡 = 1
8: else
9: 𝑝𝑖𝑙𝑒 − 𝑢𝑝 − 𝑒𝑣𝑒𝑛𝑡 = 0

10: end if
11: return 𝑝𝑖𝑙𝑒 − 𝑢𝑝 − 𝑒𝑣𝑒𝑛𝑡

when multiple radiations are detected in the same time window of the
acquisition [29]. Moreover, this method allows us to precisely control
the temporal arrival difference between the two rays of a synthetic
pileup event. Therefore, the detection error can be evaluated according
to the variation of this parameter. Table 1 summarizes the results of
this evaluation, where the value of arrival time distance were adjusted
between 5 and 15 ns. For each value, the execution was repeated 10
times, each time 100000 pile-up signals were generated.

The minimum arrival time difference required to keep the error
less than 1% is 14 ns, meaning the proposed detection method can
accurately identify a signal as a pile-up event if the second contribution
arrives 14 ns after the first one. This does not imply that the method
cannot detect pile-up events with a shorter arrival time difference
between their two rays. Nonetheless, as indicated in Table 1, the
likelihood of detection decreases when the distance between the two
arrival times is less than this threshold. These results show that the
simple implemented detection method with a single tuning parameter
(standard deviation of the Gaussian kernel) is adequate to clean up pile-
up events from the signals acquired by the ToF setup with a satisfying
level of performance.

Finally, the obtained optimal value of the standard deviation of
the Gaussian kernel was used to apply the algorithm on the datasets
obtained by the ToF acquisition chain. The percentage of the detected
pile-up events was 8.8% of the signals. This relatively high percentage
validates the importance of their offline detection.
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Table 1
Pile-up detection error (%) according to arrival time distance (nanoseconds) between the two contributions in a
pile-up event.
Arrival time difference (ns) 5 6 7 8 9 10 11 12 13 14 15

Detection error 77.6% 66.5% 44.2% 29.8% 22.8% 17.1% 10.2% 3.9% 1.1% 0.6% 0.5%
Fig. 7. Time-of-Flight Distribution.

4. Signal labeling

The presented labeling strategy combines the results of the ToF and
𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 algorithm to identify and remove the mislabeled samples in
the ToF setup.

4.1. Processing & labeling ToF dataset

The obtained ToF distribution of the remaining signals is illustrated
in Fig. 7. The figure shows that the data contains two main classes. The
left and right distributions are respectively corresponding to gamma-
rays and neutrons. As gamma-rays are faster than neutrons, their ToF
values are lower. However, the two ToF regions contain mislabeled
gamma and neutron samples as we mentioned in Section 1. In Sec-
tion 4.3, we will work on reducing the percentage of these events using
the proposed labeling method.

It is worth mentioning that the obtained average ToF value of the
neutron class (37 ns) is compatible with the expected value of the
theory. This value is equal to 35.7 ns, considering the experimental
set-up previously described. It can be computed by considering that
the distance between the two detectors is equal to 50 cm and the mode
energy of the neutrons emitted by the 252Cf is 1 MeV which corresponds
to a speed equal to 1.4 cm/ns [30]. Concerning the negative average
ToF value of the gamma signals (−3.82 ns) is due to the difference
response time of two detectors and the time resolution of the digitizer,
since the speed of gamma is approximately equal to the speed of light
in the air.

The samples located at the extremes of each class’s distribution are
primarily either mislabeled or irrelevant background events. Moreover,
the region lying in between the two distributions is associated with
significant uncertainty in classification. Therefore, in order to ensure
accurate classification of acquired signals based on ToF parameter
and to obtain well-labeled datasets, it is necessary to eliminate these
samples. This can be done through the following steps:

1. Separate the detected radiations into two classes by applying the
K-mean algorithm [31], taking the ToF values of the signals as
input. The effectiveness of this method is illustrated in Fig. 8(a),
which how the data are well-separated into two classes.
5

2. Calculate the ToF mean (𝜇) and standard deviation (𝜎) of each
cluster.

3. Remove signals in each cluster i, if its ToF value is:

• 𝑇 𝑜𝐹𝑠𝑖𝑔𝑛𝑎𝑙 > 𝜇𝑖 + 𝛽 ∗ 𝜎𝑖

or

• 𝑇 𝑜𝐹𝑠𝑖𝑔𝑛𝑎𝑙 < 𝜇𝑖 − 𝛽 ∗ 𝜎𝑖

𝜇𝑖 and 𝜎𝑖 are the mean and the standard deviation of cluster i.

The percentage of removed signals is inversely proportional to 𝛽.
Moreover, the ToF distributions of both classes follow the Normal
distribution. Therefore, by setting 𝛽 to 3, 0.2% of the signals of each
distribution are removed (Fig. 8(b)). In this way, the neutron and
gamma clusters are ensured to be well separated with a low percentage
of rejection.

4.2. Tail-to-total integral ratio

At the exit of a scintillation process on a organic scintillator, neu-
tron signals are slightly longer than gamma rays. 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 algorithm
takes benefit of this difference in the decay time to differentiate both
contributions. The 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 of each signal f(t) is computed using the
following equation

𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 =
𝑄𝑡𝑎𝑖𝑙
𝑄𝑡𝑜𝑡𝑎𝑙

(1)

where 𝑄𝑡𝑎𝑖𝑙 = ∫ 𝑡𝑙𝑜𝑛𝑔
𝑡𝑠ℎ𝑜𝑟𝑡

𝑓 (𝑡) and 𝑄𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑡𝑙𝑜𝑛𝑔
0 𝑓 (𝑡)

The amplitude values of a signal are directly proportional to the de-
tected radiation energy [29]. Therefore, this energy can be represented
by the value of 𝑄𝑡𝑜𝑡𝑎𝑙. The optimal values of the tuning parameters (𝑡𝑙𝑜𝑛𝑔
and 𝑡𝑠ℎ𝑜𝑟𝑡) are obtained by applying the optimization algorithm [32]
on the dataset used to create the synthetic pile-up signals, where the
obtained optimal values are respectively 18 ns and 100 ns.

This algorithm is applied on the dataset acquired by the ToF setup.
Fig. 9 illustrates the two-dimensional graphical representation of the
obtained distribution of 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 as a function of the total energy
(𝑄𝑡𝑜𝑡𝑎𝑙). We can distinguish two main clusters. The overlapping be-
tween both of them shows the difficulty of the 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 algorithm to
discriminate all signals, especially for relatively low energy radiations.
Choosing one 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 threshold to classify the signals will lead to a
significant number of mislabeled samples. Next section explains how
this issue is treated. Furthermore, the 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 of the gamma-rays
emitted by the cobalt (60Co) source is calculated for use in the labeling
strategy in the next section.

4.3. Labeling strategy

Fig. 10(a) shows the 2d graph of 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 according to total en-
ergy for signals labeled as neutron by ToF parameter. The figure
contains two main clusters that represent true and mislabeled neutron
radiations. To separate them and obtain a clean neutron dataset, a
convenient 𝑇𝑇𝑇𝑁𝑒𝑢𝑡𝑟𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 must be chosen. The 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 distribution
of both clusters in Fig. 11 reveals two peaks corresponding to each
cluster. 𝑇𝑇𝑇𝑁𝑒𝑢𝑡𝑟𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is chosen to be equal to the 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 value
of the first peak plus half-width at half maximum (Fig. 10(a)). The
ToF distribution of the removed samples is approximately similar to
the original ToF distribution of the neutron cluster. Thus, with this
approach, even background events that contribute to the peaks in the
ToF spectrum can be removed.
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Fig. 8. Labeling of ToF output vector by K-mean algorithm.
Fig. 9. 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 according to the total energy for signals of ToF setup.

It is important to note that it is uncertain that all background
events can be identified by this method, and some neutron events may
be misclassified. Furthermore, the removed signals may contain true
neutron samples. Nevertheless, the performance of neutron counting
rate is not a parameter of interest for this work.

Concerning the signals labeled as gamma-rays, the 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 distribu-
tion according to total energy has one main cluster (Fig. 10(b)). In other
words, the contamination by mislabeled samples is relatively low. In
order to increase the labeling accuracy, a 𝑇𝑇𝑇𝐺𝑎𝑚𝑚𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is defined,
which is calculated based on the normally distributed 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 obtained
from a pure gamma dataset emitted by 60Co (Fig. 12), by adding
three times the standard deviation (3 ∗ 𝜎𝛾𝑇𝑇𝑇 ) to the mean (𝜇𝛾𝑇𝑇𝑇 ).
Consequently, the rejection rate is approximately equal to 0.5%.

Finally, at the end of this labeling pipeline, four datasets can be
obtained. It should be emphasized that the primary objective of the
proposed labeling process is to create an authentic dataset for neutrons.
Gamma-ray signals can be obtained directly from gamma sources, such
as 60Co or 137Cs.

1. neutron: signals are labeled as neutron using the proposed strat-
egy.
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2. gamma: signals are labeled as gamma using the proposed strat-
egy.

3. mislabeled-neutron: signals classified as gamma by
𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 method and neutron by ToF technique.

4. mislabeled-gamma: signals classified as neutron by
𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 method and gamma by ToF technique.

Neutron and gamma datasets will be used to train the ANN model
proposed in Section 5.

5. ANN model

5.1. Implementation

First, 165000 signals are acquired using the ToF setup previously
described in Section 2.1. Then, pile-up events are detected and removed
using the proposed detection method where the percentage of these
events in the dataset is equal to 8.8%. The remaining signals are labeled
using the strategy proposed in Section 4.3. The size of the obtained
neutron and gamma datasets is respectively equal to 29600 and 117600
signals.

In order to explore the ability of a ML model to discriminate neu-
tron/gamma radiations with plastic scintillator, an ANN model proof of
concept is trained on the prepared data. The type of model is Multilayer
Perceptron (MLP) Neural Network. The number of layers is equal to
four:

1. An input layer has 500 neurons which is the number of points
representing a signal.

2. Two hidden layers of 32 neurons each.
3. An output layer has one neuron which is the probability of a

signal to be a neutron or gamma.

The data set is separated into 80% for the training and 20% for
the validation. Binary cross-entropy and Adam algorithm are respec-
tively the chosen loss function and optimizer algorithm. The number
of epochs, waiting epochs, and batch size are assigned to 200, 10,
and 16 respectively. ReLU and Sigmoid are respectively the activation
functions of the hidden and last layers. The implementation is done
using the Keras framework and Scikit-learn library.

The output of the model is a value between 0 and 1 which represents
the probability that a radiation belongs to the neutron class. An output
higher than 0.5 means that the ray is neutron, otherwise it is gamma.
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Fig. 10. 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 according to total integral for each class of signals labeled by ToF parameter.
Fig. 11. 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 distribution of signals labeled as neutron by ToF.

Fig. 12. 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 distribution of gamma-rays emitted by 60Co.

In other word, 0.5 is usually used as a classification threshold. For
the 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination algorithm, a chosen value of 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 that
depends on the acquisition chain is used as a classification threshold.
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Table 2
Confusion matrix of the validation data.

Predicted neutron Predicted gamma

True neutron 5443 (TP) 474 (FN)
True gamma 392 (FP) 23135 (TN)

5.2. Results

The accuracy achieved by this implemented model is 97% which is
computed using the confusion matrix of the validation data represented
in Table 2. The obtained True Positive Rate (TPR) is equal to 92%. This
means that 80 samples from each 1000 neutrons will be classified as
gamma rays. Moreover, for each 1000 gamma signals classified by the
model, 20 false alarms are raised. In other words, the False Positive
Rate (FPR) is equal to 2%.

The ratio of neutron rejection in ToF setup using the proposed
labeling strategy is 9% (ratio of mislabeled neutrons to the total number
of neutrons). 5% of these rejected samples are classified as true neutron
by our ANN model. In other words, this ratio is reduced to 8.5% using
our model.

Moreover, the FPR and TPR obtained by the trained model and
𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination algorithm on the validation dataset at different
classification thresholds shows that the first outperforms the second
(Fig. 13). For the same FPR value, the TPR obtained by the trained
model is higher.

Furthermore, in order to evaluate the behavior of the model when
neutrons are not presented, the model is tested on a pure gamma
dataset emitted by a 60Co source for different energy ranges. Signals
are acquired using the standard setup (Fig. 5). Then, the starting point
of each raw sample is determined before being fed to the trained model
to predict its type.

The radiation energy is represented by the total integral 𝑄𝑡𝑜𝑡𝑎𝑙
as we mentioned before. For each energy range, the FPR is com-
puted and compared to the result obtained by the 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrim-
ination algorithm. The obtained results are summarized in Table 3.
Our model is more accurate than the 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 algorithm when treating
𝑇𝑇𝑇𝑁𝑒𝑢𝑡𝑟𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and less precise when choosing 𝑇𝑇𝑇𝐺𝑎𝑚𝑚𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .
However, a lot of neutron samples will be missed by choosing
𝑇𝑇𝑇𝐺𝑎𝑚𝑚𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 when the detector is exposed to a source of mixed
gamma/neutron radiations as proven by the experimental results of the
labeling.

6. Contributions and limitations

The presented labeling pipeline can be used to prepared neutron
dataset with any organic or inorganic scintillator. It can identify and
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Fig. 13. FPR and TPR obtained by the trained model and 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination
algorithm on validation data at different classification thresholds.

Table 3
FPR according to different energy ranges.

Total energy (𝑄𝑡𝑜𝑡𝑎𝑙) [5–10] [10–20] [20–30]

FPR of ANN 3.33% 1% 0.5%
FPR of 𝑇𝑇𝑇𝐺𝑎𝑚𝑚𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1.7% 0.02% 0.0%
FPR of 𝑇𝑇𝑇𝑁𝑒𝑢𝑡𝑟𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 32.7% 12.6% 6.21%

remove mislabeled samples in the entire ToF spectrum, including those
that contribute to peak values. This process cleans ToF dataset from
pile-up events, which can significantly impact experimental results and
the conclusions extracted from them. This point is usually disregarded
in the literature when ToF discrimination approach is employed to label
the signals. Furthermore, the process can provide labeled datasets, even
when the ability of discrimination of the implemented acquisition chain
is relatively low. In the presented experimental setup, the obtained
Figure of Merit is equal to 0.6 [33]. More accurate labeled dataset
that have relatively lower energy range, can be obtained in a similar
acquisition chain with higher discrimination ability, which is primarily
dependent on SNR, as shown by the results obtained in [33].

The dependency on 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination algorithm is one main
limitation of the proposed signal labeling method. Another limitation
is the dependency on the sampling frequency and on the energy range
of the incident radiations. The energy of the particle and its type
determine both the distance it can travel and its speed. Therefore, when
dealing with lower energy radiations, the distance between detectors
needs to be reduced, resulting in lower ToF values for higher energy
radiations. To detect these lower ToF values, the sampling rate must
be increased. Moreover, compared to the traditional method, the ToF
measurement chain is more complicated to be implemented, and the
acquisition process takes longer time due to coincidence detection.
This becomes particularly challenging as a large dataset is required
to effectively identify the peak of mislabeled neutron dataset in the
𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 distribution of the neutron signals labeled by ToF.

7. Conclusion and future developments

This article presents a pipeline to prepare clean and labeled neu-
tron/gamma datasets in an organic scintillator. The initial step is to
gather the dataset through an implemented ToF setup. The subsequent
stage comprises detecting and removing pile-up events using a pro-
posed and evaluated detection method. The remaining signals are then
processed to decrease the number of background events and classified
into neutron and gamma-ray classes. Finally, 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination
algorithm is employed to reduce the percentage of mislabeled samples
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present in the obtained datasets. The article concludes with a discussion
of the strengths and weaknesses of this labeling process.

Thereafter, an ANN proof of concept model is trained on the pre-
pared datasets and it is evaluated on gamma pulses for different energy
radiation ranges. The results are compared with those obtained by
𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 discrimination algorithm. Our trained model in this approach
outperforms the 𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜 method. For the same FPR value, the TPR
obtained by the ANN model is higher.

In the future work, we will explore deeply the discrimination of neu-
trons and gamma-rays in an organic scintillator by different ML tools,
such as supervised and unsupervised models. Different ML models and
the state of the art algorithm (𝑇𝑇𝑇𝑟𝑎𝑡𝑖𝑜) will be evaluated based on the
variation of sampling frequency and the energy range of the incident
radiations. Conducting discrimination at a lower energy level highlights
the out-performance, while reducing the sampling rate minimizes the
cost and size of embedded implementation. Training and validation
datasets of the implemented models will be prepared by the proposed
labeling process.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] B. D’Mellow, M. Aspinall, R. Mackin, M.J. Joyce, A. Peyton, Digital discrimina-
tion of neutrons and 𝛾-rays in liquid scintillators using pulse gradient analysis,
Nucl. Instrum. Methods Phys. Res. A 578 (1) (2007) 191–197.

[2] J. Adams, G. White, A versatile pulse shape discriminator for charged particle
separation and its application to fast neutron time-of-flight spectroscopy, Nucl.
Instrum. Methods 156 (3) (1978) 459–476.

[3] S. Marrone, D. Cano-Ott, N. Colonna, C. Domingo, F. Gramegna, E. Gonzalez, F.
Gunsing, M. Heil, F. Käppeler, P. Mastinu, et al., Pulse shape analysis of liquid
scintillators for neutron studies, Nucl. Instrum. Methods Phys. Res. A 490 (1–2)
(2002) 299–307.

[4] F. Brooks, Development of organic scintillators, Nucl. Instrum. Methods 162 (1–3)
(1979) 477–505.

[5] T. Laplace, B. Goldblum, J. Bevins, D. Bleuel, E. Bourret, J. Brown, E. Callaghan,
J. Carlson, P. Feng, G. Gabella, et al., Comparative scintillation performance of
EJ-309, EJ-276, and a novel organic glass, J. Instrum. 15 (11) (2020) P11020.

[6] M. Grodzicka-Kobylka, T. Szczesniak, M. Moszyński, K. Brylew, L. Swiderski,
J. Valiente-Dobón, P. Schotanus, K. Grodzicki, H. Trzaskowska, Fast neutron
and gamma ray pulse shape discrimination in EJ-276 and EJ-276G plastic
scintillators, J. Instrum. 15 (03) (2020) P03030.

[7] F. Ferrulli, N. Dinar, L.G. Manzano, M. Labalme, M. Silari, Characterization of
stilbene and EJ-276 scintillators coupled with a large area SiPM array for a fast
neutron dose rate detector, Nucl. Instrum. Methods Phys. Res. A 1010 (2021)
165566.

[8] M. Grodzicka-Kobylka, T. Szczesniak, M. Moszyński, K. Brylew, L. Swiderski,
J. Valiente-Dobón, P. Schotanus, K. Grodzicki, H. Trzaskowska, Fast neutron
and gamma ray pulse shape discrimination in EJ-276 and EJ-276G plastic
scintillators, J. Instrum. 15 (03) (2020) P03030.

[9] G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010.
[10] E. TECHNOLOGY, PSD Plastic scintilator EJ-276 and EJ-276g, 2022, URL https:

//eljentechnology.com/images/products/data_sheets/EJ-276.pdf.
[11] H. Arahmane, E.-M. Hamzaoui, R. Moursli, Improving neutron-Gamma discrimi-

nation with stilbene organic scintillation detector using blind nonnegative matrix
and tensor factorization methods, J. Spectrosc. 2019 (2019) 1–9, http://dx.doi.
org/10.1155/2019/8360395.

[12] L.M. Simms, B. Blair, J. Ruz, R. Wurtz, A.D. Kaplan, A. Glenn, Pulse discrimina-
tion with a Gaussian mixture model on an FPGA, Nucl. Instrum. Methods Phys.
Res. A 900 (2018) 1–7.

[13] C. Fu, A. Di Fulvio, S. Clarke, D. Wentzloff, S. Pozzi, H. Kim, Artificial neural
network algorithms for pulse shape discrimination and recovery of piled-up
pulses in organic scintillators, Ann. Nucl. Energy 120 (2018) 410–421.

[14] X. Yu, J. Zhu, S. Lin, L. Wang, H. Xing, C. Zhang, Y. Xia, S. Liu, Q. Yue,
W. Wei, Q. Du, C. Tang, Neutron–gamma discrimination based on the support
vector machine method, Nucl. Instrum. Methods Phys. Res. A 777 (2015) 80–84,
http://dx.doi.org/10.1016/j.nima.2014.12.087, URL https://www.sciencedirect.
com/science/article/pii/S0168900214015551.

http://refhub.elsevier.com/S1738-5733(23)00339-X/sb1
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb1
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb1
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb1
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb1
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb2
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb2
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb2
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb2
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb2
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb3
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb3
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb3
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb3
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb3
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb3
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb3
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb4
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb4
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb4
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb5
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb5
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb5
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb5
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb5
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb6
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb6
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb6
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb6
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb6
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb6
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb6
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb7
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb7
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb7
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb7
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb7
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb7
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb7
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb8
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb8
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb8
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb8
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb8
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb8
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb8
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb9
https://eljentechnology.com/images/products/data_sheets/EJ-276.pdf
https://eljentechnology.com/images/products/data_sheets/EJ-276.pdf
https://eljentechnology.com/images/products/data_sheets/EJ-276.pdf
http://dx.doi.org/10.1155/2019/8360395
http://dx.doi.org/10.1155/2019/8360395
http://dx.doi.org/10.1155/2019/8360395
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb12
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb12
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb12
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb12
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb12
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb13
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb13
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb13
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb13
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb13
http://dx.doi.org/10.1016/j.nima.2014.12.087
https://www.sciencedirect.com/science/article/pii/S0168900214015551
https://www.sciencedirect.com/science/article/pii/S0168900214015551
https://www.sciencedirect.com/science/article/pii/S0168900214015551


Nuclear Engineering and Technology xxx (xxxx) xxxA. Hachem et al.
[15] W. Zhang, W. Tongyu, B. Zheng, L. Shiping, Y. Zhang, Y. Zejie, A real-time
neutron-gamma discriminator based on the support vector machine method for
the time-of-flight neutron spectrometer, Plasma Sci. Technol. 20 (4) (2018)
045601.

[16] S. Pozzi, M. Bourne, S. Clarke, Pulse shape discrimination in the plastic
scintillator EJ-299-33, Nucl. Instrum. Methods Phys. Res. A 723 (2013) 19–23.

[17] D. Fobar, L. Phillips, A. Wilhelm, P. Chapman, Considerations for training an
artificial neural network for particle type identification, IEEE Trans. Nucl. Sci.
68 (9) (2021) 2350–2357.

[18] M. Aspinall, B. D’Mellow, R. Mackin, M. Joyce, N. Hawkes, D. Thomas, Z. Jarrah,
A. Peyton, P. Nolan, A. Boston, Verification of the digital discrimination of
neutrons and 𝛾 rays using pulse gradient analysis by digital measurement of
time of flight, Nucl. Instrum. Methods Phys. Res. A 583 (2–3) (2007) 432–438.

[19] K.P. Lennox, P. Rosenfield, B. Blair, A. Kaplan, J. Ruz, A. Glenn, R. Wurtz,
Assessing and minimizing contamination in time of flight basedvalidation data,
Nucl. Instrum. Methods Phys. Res. A 870 (2017) 30–36.

[20] A.D. Kaplan, B. Blair, C. Chen, A. Glenn, J. Ruz, R. Wurtz, A neutron-gamma
pulse shape discrimination method based on pure and mixed sources, Nucl.
Instrum. Methods Phys. Res. A 919 (2019) 36–41.

[21] G. Liu, M. Aspinall, X. Ma, M. Joyce, An investigation of the digital discrimina-
tion of neutrons and 𝛾 rays with organic scintillation detectors using an artificial
neural network, Nucl. Instrum. Methods Phys. Res. A 607 (3) (2009) 620–628.

[22] V.T. Jordanov, Deconvolution of pulses from a detector-amplifier configuration,
Nucl. Instrum. Methods Phys. Res. A 351 (2–3) (1994) 592–594.

[23] S. Marrone, D. Cano-Ott, N. Colonna, C. Domingo, F. Gramegna, E. Gonzalez, F.
Gunsing, M. Heil, F. Käppeler, P. Mastinu, et al., Pulse shape analysis of liquid
scintillators for neutron studies, Nucl. Instrum. Methods Phys. Res. A 490 (1–2)
(2002) 299–307.

[24] F. Belli, B. Esposito, D. Marocco, M. Riva, Y. Kaschuck, G. Bonheure, et al.,
A method for digital processing of pile-up events in organic scintillators, Nucl.
Instrum. Methods Phys. Res. A 595 (2) (2008) 512–519.
9

[25] W. Guo, R.P. Gardner, C.W. Mayo, A study of the real-time deconvolution of
digitized waveforms with pulse pile up for digital radiation spectroscopy, Nucl.
Instrum. Methods Phys. Res. A 544 (3) (2005) 668–678.

[26] X. Luo, V. Modamio, J. Nyberg, J. Valiente-Dobón, Q. Nishada, G. De Angelis,
J. Agramunt, F. Egea, M. Erduran, S. Ertürk, et al., Pulse pile-up identification
and reconstruction for liquid scintillator based neutron detectors, Nucl. Instrum.
Methods Phys. Res. A 897 (2018) 59–65.

[27] M. Nakhostin, Z. Podolyak, P. Regan, P. Walker, A digital method for separation
and reconstruction of pile-up events in germanium detectors, Rev. Sci. Instrum.
81 (10) (2010) 103507.

[28] S. Lee, B. Park, Y. Kim, H. Myung, Peak detection with pile-up rejection using
multiple-template cross-correlation for MWD (measurement while drilling), in:
Robot Intelligence Technology and Applications 3, Springer, 2015, pp. 753–758.

[29] R.W. Engstrom, Photomultiplier Handbook, RCA Solid State Division. Electro
Optics and Devices, 1980.

[30] J.F. Dicello, W. Gross, U. Kraljevic, Radiation quality of Californium-252, Phys.
Med. Biol. 17 (3) (1972) 345–355, http://dx.doi.org/10.1088/0031-9155/17/3/
301.

[31] J. MacQueen, et al., Some methods for classification and analysis of multivariate
observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Vol. 1, no. 14, Oakland, CA, USA, 1967, pp. 281–297.

[32] C. Lynde, E. Montbarbon, M. Hamel, A. Grabowski, C. Frangville, G.H. Bertrand,
G. Galli, F. Carrel, V. Schoepff, Z. El Bitar, Optimization of the charge comparison
method for multiradiation field using various measurement systems, IEEE Trans.
Nucl. Sci. 67 (4) (2020) 679–687.

[33] A. Hachem, A. Kanj, Y. Moline, G. Corre, C. Lynde, F. Carrel, Neutron/Gamma
discrimination performance with plastic scintillator according to SNR, vertical
resolution and sampling frequency, in: 2022 IEEE Nuclear Science Symposium
(NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor
Detector (RTSD) Conference, 2022, forthcoming.

http://refhub.elsevier.com/S1738-5733(23)00339-X/sb15
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb15
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb15
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb15
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb15
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb15
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb15
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb16
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb16
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb16
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb17
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb17
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb17
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb17
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb17
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb18
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb18
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb18
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb18
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb18
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb18
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb18
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb19
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb19
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb19
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb19
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb19
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb20
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb20
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb20
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb20
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb20
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb21
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb21
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb21
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb21
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb21
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb22
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb22
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb22
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb23
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb23
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb23
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb23
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb23
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb23
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb23
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb24
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb24
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb24
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb24
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb24
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb25
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb25
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb25
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb25
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb25
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb26
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb26
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb26
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb26
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb26
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb26
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb26
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb27
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb27
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb27
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb27
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb27
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb28
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb28
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb28
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb28
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb28
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb29
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb29
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb29
http://dx.doi.org/10.1088/0031-9155/17/3/301
http://dx.doi.org/10.1088/0031-9155/17/3/301
http://dx.doi.org/10.1088/0031-9155/17/3/301
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb31
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb31
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb31
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb31
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb31
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb32
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb32
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb32
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb32
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb32
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb32
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb32
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb33
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb33
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb33
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb33
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb33
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb33
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb33
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb33
http://refhub.elsevier.com/S1738-5733(23)00339-X/sb33

	Labeling strategy to improve neutron/gamma discrimination with organic scintillator
	Introduction
	Experimental configuration
	ToF Setup
	Experimental setup

	Pile-up Detection and Evaluation
	Detection Method
	Evaluation of the Detection Method 

	Signal Labeling
	Processing & Labeling ToF Dataset
	Tail-to-Total Integral Ratio
	Labeling strategy

	ANN Model
	Implementation
	Results

	Contributions and Limitations
	Conclusion and Future Developments
	Declaration of competing interest
	References


