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Abstract—Domain-Specific Languages (DSLs) are specialized
languages targeted to an application domain. EMF (Eclipse
Modeling Framework) is the most popular DSL development
framework, with Ecore as its metametamodel and Java as the
target language. We can find the translation of Ecore and
the implementation of subsets of EMF functionalities targeting
different languages. One language that has raised interest is
Rust, thanks to the possibility of producing reliable and secure
programs that are energy-frugal and executable in web rower via
WebAssembly. In this paper, we present our end-to-end approach
for metamodeling using Rust. Our solution integrates a code
generator from Ecore to Rust and a code interpreter of Ecore
metamodels, which enables performing model manipulation op-
erations (CRUD and serialization) within a Rust environment.
We provide an implementation using Behavior Trees to validate
our approach and discuss the main advantages and difficulties.

Index Terms—Rust, end-to-end metamodeling, Ecore, multi-
platform

I. INTRODUCTION

In the face of the climate emergency, the solution is tech-
nological and behavioral. On the one hand, it is important to
change our habits, because technology alone cannot save us.
However, on the other hand, technology remains an important
lever to help us combat global warming and achieve carbon
neutrality as quickly as possible. Technological challenges are
high and rely on multi-disciplinarity teams and the power of
collective intelligence. The key to success underlying these
two principles is knowledge, specifically the creation and
sharing of knowledge, or even better, the federation of knowl-
edge. Model-based engineering aligns with this approach and
has already demonstrated its ability to improve knowledge
management practices, particularly in a collaborative context,
such as online collaborative modeling approaches.

A Domain-Specific Language (DSL) is a specialized lan-
guage for an application domain. It is built around the technical
vocabulary of the domain to increase software development
productivity. Domain models produced using a DSL are rel-
evant in the design phase and can constitute actual software
artifacts since code can be directly generated from them [1],
[2]. DSLs find applications in diverse contexts e.g.; CSS for
web styling, SQL for database querying, Coq for formal proof,
and Behavior Trees for robotics and computer games.

There exists a wide range of programming languages,
frameworks, and language workbenches dedicated to the de-
velopment of DSLs [3]. Examples of such tools include

MetaEdit [4], the GEMOC Studio [5], Rascal [6], and MPS1,
among others. The Eclipse Modeling Framework (EMF)
stands out as a popular environment for DSL development.
It enables the efficient creation of metamodel-based abstract
syntaxes using the Ecore language, which provides a rich
ecosystem of model-based software and tools [7]. EMF pri-
marily targets Java as the runtime environment: its code
generation tool converts Ecore models into Java source code.
The success of EMF encouraged the modeling community to
implement Ecore in languages other than Java. For example,
there is a C++2 and Python3 implementation of Ecore. Re-
cently, a Rust code generation tool laid the groundwork for
an implementation of Ecore in this language [8]. Our work
provides an extended mapping, and it handles an end-to-end
metamodeling chain using Rust.

If our priorities lie in aspects such as performance, energy
consumption, bare metal architecture targeting (e. g. embedded
systems), and ensuring auditability, safety, security, and certi-
fication, then opting for Rust becomes an interesting choice.

Rust is a multi-paradigm and general-purpose programming
language which guarantees memory and thread safety without
garbage collection through the ownership system. While being
as low-level as C or C++, it offers high-level, zero cost
abstractions such as traits, pattern matching, algebraic data
types, closures, and iterators4. It produces high-reliability
programs with excellent execution speed. Additionally, Rust is
designed for a wide range of execution environments such as
embedded systems, network services, command-line tools, and
web applications through WebAssembly5. However, it should
be noted that Rust is not built around a class taxonomy: the
language does not feature abstract class or class inheritance.

All these features could be explored in a lightweight mod-
eling environment based on Ecore targeting this low-level and
safe language.

In this work, we present an approach to use Rust as a
metamodeling engine and as a target language for metamodel-
based abstract syntax code generation. This end-to-end meta-
modeling approach using Rust integrates two components:

1http://jetbrains.com/mps
2https://github.com/catedrasaes-umu/emf4cpp
3https://pyecore.readthedocs.io/en/latest/
4https://doc.rust-lang.org/book/
5https://www.rust-lang.org/fr/what

http://jetbrains.com/mps
https://github.com/catedrasaes-umu/emf4cpp
https://pyecore.readthedocs.io/en/latest/
https://doc.rust-lang.org/book/
https://www.rust-lang.org/fr/what


RustEcore and Ecore2rs. The first one allow to dynamically
manipulate Ecore metamodels and models in Rust, simulating
an Ecore infrastructure in memory like EMF does, and the
second one generates Rust code from Ecore metamodels. We
present an end-to-end implementation, using the Behavior
Trees (BT) DSL as an illustrative example to showcase our
methodology. Through this evaluation, we analyze the ad-
vantages and limitations of applying our approach to the BT
scenario.

The rest of this paper is structured as follows. Section 2
introduces terms and concepts used in the paper. Furthermore,
we explain how a Behavior Tree (BT) works. Section 3 gives
an overview of our contribution and presents the main features
of both tools, as well as their integration. Section 4 provides an
evaluation of our approach. We discuss the results in Section
5 and the related work in Section 6. The conclusion in Section
7 sums up our project and proposes various improvement axes
for our work.

II. CONTEXT

In this section, we define what is a metamodel-based DSL,
its usage, and we motivate our approach with an illustrative
example: Behavior Trees.

A. Metamodel-based DSL

A DSL consists of three main components: abstract syntax,
concrete syntax, and semantics [9]. The abstract syntax for-
mally defines the rules to create a syntactically valid model,
while the concrete syntax determines how language elements
are displayed and edited. Semantics specifies the interpre-
tation of models as representations of or specifications for
modeled systems. The DSL’s abstract syntax is often defined
using a metamodel, that is a set of rules that describes how
models should be structured and what components they can
contain [9].

Crafting a metamodel can be done with a metamodeling
language such as Ecore, which is implemented as part of
EMF. It allows the creation of metamodels in the form of
a class diagram, with each class representing a concept from
the application domain. Classes can have features, operations
and references to other classes. They can be organized into
packages6.

B. Behavior Tree

We use Behavior Trees to illustrate our approach, which are
tree structures often used in game development and robotics, to
model a task or execution plan [10]. These domains are known
to have high requirements in terms of optimization, either
because of very resource-intensive operations (i. e. computer
games), or because of the low resources of embedded systems.
In the case of robotics, systems are often critical and failure
is intolerable.

6https://www.eclipse.org/modeling/emf/docs/1.x/UG/EMF v1.0 Users
Guide.html

Fig. 1: A Behavior Tree model using Groot IDE 7

1) Execution Semantics: Behavior Trees are composed of
nodes and executed through a series of discrete update steps
called ticks. Each time a BT is ticked, usually at a specified
rate, its children nodes are ticked recursively based on the
tree construction (sequential execution). Once a node is ticked,
it reports its status to the parent node, which can either be
Success, Failure, or Running. The Running status indicates
that an asynchronous task is being processed.

2) Nodes: Behavior Tree nodes are of different types8. The
Root node is the BT entry point: it has one child and no parent.
Leaves are execution nodes, i. e. Action (task) or Condition.
Condition nodes are usually a simple boolean check (e. g. is the
door open ?) and cannot return the Running status. Control
nodes are internal nodes and determine the traversal of the
BT based on the status of their children. They can have any
number of children. The main control nodes are Sequence and
Fallback (sometimes called Selector). Sequence nodes execute
children in order until one child returns Failure or all children
return Success9. Fallback nodes execute children in order until
one of them returns Success or all children return Failure. They
are used to design recovery behaviors10. Finally, Decorator
nodes apply a custom policy to a single child node, changing
the status of the decorated node. For example, an Inverter
decorator will change Success to Failure, and vice-versa11.

3) Blackboard: Execution nodes have ports for manipulat-
ing a key/value storage called the Blackboard. Input ports can
read an entry in the Blackboard, while output ports can write
to an entry.

4) Running Example: Figure 1 is a Behavior Tree model
which describes the behavior of a robot traversing a room. It
has three tasks (OpenDoor, EnterRoom, CloseDoor) and one
condition (IsDoorOpen). A Boolean blackboard entry indicates
whether the door is open or not. Assuming this Boolean
is false, the execution sequence would be: Root, Sequence,
Fallback, IsDoorOpen condition returns false, OpenDoor task
changes the Boolean to true, EnterRoom task executes, Close-
Door task changes the Boolean to false.

8https://www.behaviortree.dev/docs/learn-the-basics/bt basics/
9https://www.behaviortree.dev/docs/nodes-library/SequenceNode
10https://www.behaviortree.dev/docs/nodes-library/FallbackNode
11https://www.behaviortree.dev/docs/nodes-library/DecoratorNode
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Obtaining such a behavior tree using a model-based ap-
proach involves designing the metamodel, generating the code,
and using it to instantiate models. Our approach aims to fullfill
the first two steps, i. e. providing an end-to-end metamodeling
environment using Rust.

III. END-TO-END METAMODELING IN RUST

In this section, we present the design of the approach and its
envisioned use by language engineers. We motivate our design
choices for both Ecore2rs and RustEcore tools and detail how
they fit into the approach we propose.

A. Overview

Figure 2 depicts the presented solution. From left to right,
it shows the creation of a DSL by the language engineer and
its usage by the domain expert.

First, the language engineer defines the abstract syntax
of the DSL in a metamodeling environment integrating the
RustEcore framework. Several user interfaces can be used
with this Ecore implementation. For example, the abstract
syntax could be designed in a Web-based Graphical User
Interface (GUI) and then debugged on the fly in a Terminal
User Interface (TUI) later in the development cycle. The
language engineer can design models and validate them in
the environment to test and ensure that the metamodel meets
their needs. Then, RustEcore exports the Ecore metamodel
to a file in serializable format. The Ecore2rs tool translates
it into a Rust-based abstract syntax, ready to use in a Rust
program. Finally, the language engineer defines the operational
semantics of the DSL in Rust and obtains a pure Rust
DSL implementation. Relying on the different compilation
toolchains that Rust offers, the DSL runtime can be deployed
in several execution environments (e. g. the OS of the host
machine, embedded systems, the Web via WebAssembly) to
be used by the domain expert.

The following subsections detail the mechanisms of the two
central pieces of our approach: the RustEcore and
Ecore2rs tools.

B. RustEcore

RustEcore is a modeling framework written in Rust de-
signed for dynamic creation and manipulation of Ecore meta-
models and models. It serves as an Ecore metamodeling
engine, interpreting models and facilitating seamless integra-
tion with diverse user interfaces. It offers the deserializa-
tion/serialization of Ecore metamodels in different formats
(JSON, XMI, PlantUML) and integrates Ecore2rs as a de-
pendency, allowing to generate the Rust code of a metamodel
designed with the framework.

1) Metamodel Creation: RustEcore provides an API
for programmatically designing metamodels using Ecore-
like elements. Creating a metamodel with it involves
defining EClasses, adding EStructuralFeatures,
EOperations, and inheritance relationships to them. The
EClasses are then bundled into an EPackage. Figure 3
shows how these elements are organized in the framework

let mut pkg = EPackage::new("bt");
let mut tree_node = EClass::new_abstract("TreeNode");
tree_node.add_feature(EStructuralFeature::new_unique(

"ID", Type::EString // name, type
))?;
tree_node.add_feature(EStructuralFeature::new_optional(

"name", Type::EString
))?;
tree_node.add_operation(EOperation::new(

"tick", // name
vec![], // params
ReturnType::value_unique(Type::EEnum(status_enum_ref)),

))?;
pkg.add_eclass(Rc::new(RefCell::new(tree_node)))?;

Listing 1: TreeNode Class and Features Declaration Using
RustEcore

and Listing 1 illustrates the use of the API to declare a
class of the metamodel of Behavior Trees we propose in
figure 5.EClasses relationships (including inheritance) are
reproduced with references between the instances of the Rust
structs that represent them. For example, inheriting a class
from another is to add a reference to it in its super_class
field. That is, the framework replicates the semantics of
Ecore’s object-oriented features that Rust does not support.

Our implementation relies on the interior mutability12 pat-
tern to handle relations. To avoid memory leaks, only the
EPackage stores strong references (i. e. Rc memory con-
tainer) to classifiers. EClasses among themselves have weak
references. This avoids situations where classes with a two-
way relationship are not deallocated after being removed from
the package.

2) Model Creation and Validation: Model elements are
represented by instances of EObject. As shown in figure 4,
EObject has a reference to an EClass, a list of attribute
values, i. e. a key/value list (the key being the name of the
attribute), and a boolean is_valid indicating whether the
EObject conforms to its EClass definition. RustEcore
prevents the instantiation of an EObject that has a reference
to an abstract class or interface. Model’s classes and objects
are both instances of Rust structs and are therefore at the same
level of the MOF hierarchy (M0). Thus, the class/instance
relationship is emulated and the language’s typing cannot
enforce the construction of a valid EObject. This vali-
dation process is handled by RustEcore. On instantiation,
an EObject is declared invalid. As shown in Listing 2,
validation is performed by calling the validate() method
on the object, ensuring that all attributes (including inherited
ones) are set to correct values that respect the constraints
defined in the metamodel (concerning cardinalities, type of
value, the memory container).

3) Notification system: RustEcore integrates a notification
system to listen to changes made to an element. It is designed
to adapt to various use cases related to user interfaces. One
such application involves tracking all changes made to models,
enabling a history feature that captures their evolution over
time. Another example would be the case of a distributed

12https://doc.rust-lang.org/book/ch15-05-interior-mutability.html

https://doc.rust-lang.org/book/ch15-05-interior-mutability.html


Fig. 2: Approach Overview

Fig. 3: Diagram of RustEcore for Creating Metamodels

Fig. 4: Diagram of RustEcore for Creating Models

let mut behavior_tree = EObject::new(
pkg.eclass_ref("BehaviorTree")? // EClass type

)?;
let validate = true;
behavior_tree.set_unique(

"ID", Value::from("BT1"), validate
)?;
behavior_tree.set_unique(

"rootnode", Value::from(sequence), validate
)?;
behavior_tree.set_unique(

"blackboard", Value::from(blackboard), validate
)?;
behavior_tree.validate()?;

Listing 2: Model Building using RustEcore



system where users receive notifications about state changes
in a shared collaborative model.

An action can be triggered by a closure depending on the
type of event. Table I summarizes the event list. The imple-
mentation of the notification system is based on the observer
pattern. An observable object implements the Observable
trait (which is automatically implemented using a macro)
and contains a list of adapters. An adapter is a closure
comprising the notifying object, optionally the attribute where
the state change occurred, and the type of event received.
Figures 3 and 4 show that EClass and EObject implement
Observable by default.

Rust enforces several strict rules regarding shared references
and the lifetime of values13. So instead of having a reference
to a Listener, an Observable register closures (adapters) that
fire on new notifications. It guarantees at compile time that
no operations will be performed on the Listener outside of
the Observable. While we prohibit adapters from capturing
references, a language engineer will be able to use smart
pointers14 as needed.

Some default listeners are already implemented. For exam-
ple, if an EClass is deleted from the metamodel, the system
automatically manages the deletion of all references (including
inheritance relationships) to this element, preventing access to
broken references.

Event name Feature type Change type
Set Unique The value has changed

Unset Optional The value has been unset
Add List A value has been added

AddMany List Many values have been added
Remove List A value has been removed

RemoveMany List Many values have been removed
Move List A value has been moved inside a feature

Resolve Any A feature has been resolved from a proxy
RemoveAdapter Any An adapter has been removed

RemoveRef Any The referenced type has been removed

TABLE I: Type of Event That Can Be Notified Depending on
the Feature Type

C. Ecore2rs

Ecore2rs is a code generator written in Rust that translates
Ecore metamodels to Rust. The tool can be used in two ways:
as a command-line tool, where it takes an Ecore metamodel as
input and generates a Rust file, or as a Rust procedural macro.
In the latter case, it takes the path to a metamodel as input
and directly produces the resulting code as token trees within
the Rust compiler [11].

1) Translation Into Rust: Table II presents the mapping be-
tween Ecore and Rust types in EStructuralFeatures [8].
EClass translation uses the interior mutability pattern15 and
a trait object16.

13https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
14https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
15https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
16https://doc.rust-lang.org/book/ch17-02-trait-objects.html
17Interfaces in Ecore are represented by abstract EClasses and marked

as interfaces.

Ecore Rust
EByte i8
EShort i16
EInt i32
ELong i64
EFloat f32
EDouble f64
EBoolean bool
EChar char
EString String
EEnum T T
EClass T Rc<RefCell<dyn TLike>

TABLE II: EStructuralFeature Type Conversion Table

Ecore feature bounds Rust type
1 T

0 or 1 Option<T>
More than 1 Vec<T>

TABLE III: EStructuralFeature Bounds Conversion
Table

Table III shows which data structures are used to convert
features based on their arity. Table IV summarizes the encod-
ing of Ecore elements in Rust.

Ecore2rs provides a systematic encoding of the object-
oriented aspects of Ecore metamodels, specifically addressing
the inheritance relation between classes, including multiple
inheritance.

The Ecore inheritance system has three aspects which need
to be addressed: feature inheritance, operation inheritance,
and subtyping [12]. Feature inheritance means that a subclass
contains all of its superclasses’ data fields (i. e. attributes
and references) recursively in addition to its own. On the
other hand, operation inheritance is about methods: a subclass
contains all of its superclasses’ methods recursively in addition
to its own. The implementation of a given method is that of the
closest parent (including itself) providing an implementation
for it. Finally, subtyping is the ability to substitute the actual
type of a value with the type of one of its superclasses (i. e.
polymorphism).

Feature inheritance is achieved with a Rust struct, i. e. a
data structure containing data fields. This means that a subclass
has, for each of its superclasses, a field to store an instance of
it. Therefore, it is possible to access, by induction, the inherited
fields from all of its superclasses, recursively. Listing 3 shows
the code resulting from the conversion of two classes of
the metamodel of Behavior Trees we propose in figure 5.
Properties inherited from TreeNode by Decorator are
stored in the inst_tree_node field.

Operation inheritance consists in abstracting a class by its
functionalities, which includes operations defined for this class

Ecore Rust
EEnum T Enum T

EClass T (including abstract) struct T + trait TLike
EInterface T 17 trait TLike

TABLE IV: Data Structure Conversion Table
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pub struct TreeNode {
pub id: String,
pub name: Option<String>,

}

pub struct Decorator {
pub inst_tree_node: TreeNode,
pub treenode: Rc<RefCell<dyn TreeNodeLike>>,

}

Listing 3: Feature Inheritance Example Featuring the Abstract
Class Decorator Inheriting the Abstract Class TreeNode

and getters/setters to access its properties. It is achieved by
using two traits: TLike, which is generated for each class
T in the metamodel, and AsInstanceOf<T>, which use
a generic parameter to convert one type to another or to
itself, getting a reference to that target type. Traits define a
set of methods that can be implemented by types, allowing
code reuse and polymorphism, similar to interfaces in object-
oriented programming languages. Listing 4 shows the trait
DecoratorLike generated for Decorator. To implement
TLike, T must implements AsInstanceOf for all its
superclasses and itself. This is automatically generated and
allows providing a default implementation for getters/setters in
TLike by accessing the properties of the T struct, including
inherited properties.

To achieve inheritance of regular method implementation,
each subclass T must retrieve the implementation of the
method in its superclass SupT within its TLike trait. As a
result, T implements all its parent traits SupTLike, which is
allowed because T implements AsInstanceOf<SupT> for
all its superclasses.

However, in the top parent class of the inheritance hierarchy,
the method implementation does not exist because Ecore
metamodels only specify the method signature and not whether
a method is abstract or not. Ultimately, methods must be
implemented manually by the developer, who is the only one
who knows where the method is concrete in the inheritance
hierarchy. Therefore, the implementation of the traits TLike
for the structs T cannot be generated and the resulting code
does not compile directly.

The developer has to implement the top parent class meth-
ods when implementing SupClassLike for SupClass18.
Subclasses inherit these implementations. They can be over-
ridden by the developer by supplying a new one when imple-
menting SubClassLike for SubClass.

Finally, subtyping consists in abstracting a value of type
T to a dyn SupTLike, that is any type implementing the
SupTLike trait. Since T implements all SupTLike traits
of its superclasses, calling a method on dyn SupTLike
will resolve by the runtime to the actual type of the value
(dynamic dispatch) and use the definition from the TLike
implementation for T (which can be inherited or overridden).

2) Customizing Code Generation: Rust is a low-level sys-
tem language with a strong type system, which requires

18Abstract methods must have an implementation but can be expressed
using panic!, which terminates the program when called.

pub trait DecoratorLike
where

Self: for<'a> AsInstanceOf<'a, Decorator>,
{

fn treenode(&self) -> &Rc<RefCell<dyn TreeNodeLike>> {
&self.as_inst_ref().treenode

}
fn id(&self) -> &String {

TreeNodeLike::id(&self.as_inst_ref().inst_tree_node)
}
fn name(&self) -> &Option<String> {

TreeNodeLike::name(&self.as_inst_ref().inst_tree_node)
}
fn tick(&self) -> Status {

TreeNodeLike::tick(&self.as_inst_ref().inst_tree_node)
}
// For clarity, setters have been omitted.

}

Listing 4: Operation Inheritance Example Featuring the Gen-
erated Trait DecoratorLike, Exposing the Decorator
Functionalities

explicit specification of mutability at the type level. To offer
Ecore designers greater control over code generation, Ecore2rs
incorporates an annotation framework. It is based on Ecore
annotations (i. e. EAnnotation), which allows attaching
key/value pairs to packages, classes, features, references, and
operations. With this framework, designers can customize code
generation aspects such as parameter mutability and choice of
memory containers for storing values.

IV. IMPLEMENTATION AND EXPERIMENTS

In this section, we present a first evaluation of our approach
using a DSL of Behavior Tree. We consider the following
research questions:

• RQ 1: Does the approach allow end-to-end design of DSL
in Rust?

• RQ 2: Does RustEcore fit into various user interfaces and
address interoperability challenges with other standards
and modeling formats?

• RQ 3: Does the code generated by Ecore2rs conform to
the semantics of the Ecore metamodel and how much
manual implementation effort does it avoid?

A. Experiment

Our evaluation protocol follows the steps for creating a
DSL, from designing the abstract syntax to implementing
a model. First, we create an Ecore metamodel of Behavior
Tree programmatically with RustEcore. We use two user in-
terfaces, namely a TUI and a Web-based GUI, both integrating
RustEcore, to modify and visualize the metamodel. Then, we
generate the Rust abstract syntax from the metamodel. We
implement the operational semantics in Rust, thus obtaining
a Rust implementation of the DSL. Finally, we recreate the
model shown in figure 1 to demonstrate that our implementa-
tion works correctly.

1) Metamodel: Figure 5 shows the metamodel of Be-
havior Trees we propose, based on the retro-engineering
works of Ghzouli et al. [10] and the implementation of
the BehaviorTree.CPP library19. This library is used in the

19https://www.behaviortree.dev/
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Fig. 5: A Behavior Trees Metamodel Using the EMF Graphical Editor

Papyrus4Robotics modeling development environment20 [13],
[14].

The metamodel exposes only the main subset of nodes
needed to run a viable Behavior Tree. Control nodes such
as Parallel or decorator nodes such as RepeatNode have been
excluded for clarity of the model.

BT’s tick() function is asynchronous, but Ecore gives
no way to express it. This problem could be circumvented by
using EAnnotations to mark the methods that need to be
async during generation. However, such an EAnnotation
is currently not implemented in Ecore2rs because async func-
tions in traits are not yet stabilized in Rust. As of the time of
writing, this feature is expected to arrive by the end of 202321.
We ended up to manually modifying the generated code with
the help of the widely-used async_trait crate22.

2) Abstract syntax definition: We programmatically define
the Ecore metamodel with RustEcore using the API exposed
by the framework. We evaluate its accuracy in a TUI integrat-
ing RustEcore, which offers options to modify the metamodel
and visualize it in PlantUML format. We also load the serial-
ized metamodel into a Web-based GUI called RustEcoreWeb,
allowing the metamodel to be viewed as a class diagram.
RustEcoreWeb uses Rust’s WebAssembly compilation target
to run on the Web. These interfaces are illustrated in figures 6
and 7 respectively.

3) Operational Semantics Implementation: All the inter-
faces presented previously have an option to generate the ab-
stract syntax from the metamodel with Ecore2rs. The resulting
code does not compile directly. We have to implement TLike

20https://www.eclipse.org/papyrus/components/robotics/
21https://blog.rust-lang.org/inside-rust/2023/05/03/

stabilizing-async-fn-in-trait.html
22https://crates.io/crates/async-trait

Fig. 6: A Terminal User Interface integrating RustEcore

#[async_trait(?Send)]
impl SequenceLike for Sequence {

async fn tick(&self) -> Status {
for treenode in self.treenodes() {

let status = treenode.tick().await;
if status != Status::Success {

return status;
}

}
Status::Success

}
}

Listing 5: Operational Semantics Implementation for the Se-
quence Node of Behavior Trees

traits for each T struct. Listing 5 shows the tick() method
implementation for the Sequence node.

4) Model Creation and Execution: We create the BT model
depicted in figure 1 in Rust using the generated abstract syn-
tax and implemented operational semantics. Listing 6 shows
some elements of the model. The OpenDoor action has the
“open_door” ID, no name and input ports, and an ouput
port named “opening_door”, allowing to modify the value
of the Blackboard entry specifying if the door is closed or
open. The Root node contains the Sequence node as the first
execution node, a Blackboard, and no subtree.

https://www.eclipse.org/papyrus/components/robotics/
https://blog.rust-lang.org/inside-rust/2023/05/03/stabilizing-async-fn-in-trait.html
https://blog.rust-lang.org/inside-rust/2023/05/03/stabilizing-async-fn-in-trait.html
https://crates.io/crates/async-trait


Fig. 7: A Web-Based Graphical User Interface Integrating RustEcore

...
let open_door = OpenDoor {

inst_action: Action::new("open_door".to_string(), None,
vec![], vec![
OutFlowPort {

inst_data_flow_port: DataFlowPort {
name: "opening_door".to_string(),
entry: Some(Rc::clone(&bb_entry_ref)),
value: None,

},
}

]),
};
...
let seq = Sequence {

inst_control_node: ControlNode {
inst_tree_node: TreeNode {

id: "seq".to_string(),
name: None,

},
treenodes: vec![

Box::new(fallback),
Box::new(enter_room),
Box::new(close_door),

],
},

};

Root {
behaviortrees: vec![BehaviorTree {

id: "bt".to_string(),
rootnode: Box::new(seq),
blackboard,
subtrees: vec![],

}],
}

Listing 6: Elements of Implementing a Behavior Tree Model
Using the Generated Abstract Syntax

Fig. 8: Execution Log of the Behavior Tree Model Shown in
Figure 1

The execution logs for this model are shown in figure 8 and
match the execution description made in Section 2.2.4, thus
validating our implementation.

B. Discussions

In this subsection, we discuss the results and outline
potential challenges and encourage further exploration and
refinement of the tools in future research endeavors.

1) RQ 1: The approach23 was applied successfully for end-
to-end metamodeling: we designed the abstract syntax, then
obtained the corresponding Rust code and finally produced a
Rust DSL of the BTs. The DSL is a tree-structure, but it uses
a large part of metamodeling concepts. To avoid implementing
all elements from scratch, we integrated a translator from Rust
to Ecore with our Rust Ecore editor. The utilisation of the
Ecore metamodel as a basis enabled interoperability with EMF.
However, the translation from an object oriented modeling

23The resulting implementation will be published on an open source project.



framework to a functional one is not straightforward, due to
conceptual mismatch.

2) RQ 2: RustEcore has been successfully integrated in two
user interfaces. Interoperability is achieved through a XMI
(de)serializer, allowing to load Ecore metamodels designed
in other modeling environments. RustEcore partially reim-
plements Ecore: it lacks some features of the metamodeling
language, such as generic type parameters, subpackages, cus-
tom EDataTypes, and EAnnotations. Since Rust has no
reflection, the framework cannot provide the same API for
manipulating model data reflexively as EMF.

3) RQ 3: The code generated by Ecore2rs respects the
semantics of Ecore, but some limitations should be noted.
First, Ecore2rs cannot resolves packages other than the current
one, including nested packages. Second, abstract classes in
the metamodel are treated as concrete classes, allowing the
instantiation of structs that represent abstract classes. Another
minor limitation is that Ecore2rs does not support type pa-
rameters, including bounded polymorphism. Finally, it has re-
strictions on down/upcasting capabilities, i. e. type conversions
between related classes in an inheritance hierarchy. These
restrictions are related to the Rust compiler and prevent casting
a dyn ClassLike to a dyn SupClassLike, even if the
former inherits from the latter. Indeed, they are fundamentally
of different types and do not share the same virtual table. Po-
tential solutions are being evaluated: trait upcasting coercion is
experimented in the Rust compiler24 and the downcast-rs25

crate allows downcasting, although some edge cases are not
supported.

In terms of avoided manual implementation effort, the
resulting DSL behavior tree consists of 3 362 lines of code,
of which 97.5% is generated code.26 Indeed, reproducing
Ecore’s inheritance semantics requires a significant amount of
generated code.

V. RELATED WORK

The PyEcore framework provides a Python implementation
of EMF, allowing to manipulate metamodels and Ecore models
with this language.27

Ecore2rs builds on preliminary work of Oliver et al.’s,
which focused primarily on the structural encoding of Ecore
to Rust [8] (i. e. mapping Ecore primitive types, reference,
class, and enum to Rust). It extends this work significantly by
proposing a systematic encoding of the object-oriented aspects
of Ecore meta-models, including inheritance.

The EMF framework provides three main building blocks:
core EMF, EMF.edit and EMF.Codegen (Models, Adapters
and Editors). Our work enables model manipulation operations
with a notification system, and code generation for model and
metamodel manipulation operations. Extensions for generating

24https://doc.rust-lang.org/beta/unstable-book/language-features/
trait-upcasting.html

25https://crates.io/crates/downcast-rs
26This metric was obtained with the CLOC tool: https://github.com/

AlDanial/cloc
27https://pyecore.readthedocs.io/en/latest/

editors and adapters could be part of future work. Gonzalez-
Perez et al. have worked on a formal definition of Behavior
Trees through a metamodel [15]. Our metamodel is similar,
which has been used as the primary use case.

VI. CONCLUSION

We presented an end-to-end metamodeling approach to
create DSLs using Rust. The approach integrates two tools:
RustEcore, an ongoing implementation of the Ecore meta-
modeling language in Rust allowing to dynamically define
metamodels and models, and Ecore2rs, a code generator
written in Rust that translates Ecore metamodels to Rust. They
make it possible to design and then automatically generate the
DSL abstract syntax. To evaluate our solution, we applied it
to the DSL of Behavior Trees, which follows a tree-structure,
but it uses a large part of metamodeling concepts.

We consider different directions of research to continue
our work. Both of our tools need to be extended to sup-
port all of Ecore’s features. RustEcore could support model
(de)serialization and Ecore2rs the generation of their code.
Additionally, it would be interesting to generate part of the
operational semantics with Ecore2rs.
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