
HAL Id: cea-04292759
https://cea.hal.science/cea-04292759v1

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards logical specification of adversarial examples in
machine learning

Marwa Zeroual, Brahim Hamid, Morayo Adedjouma, Jason Jaskolka

To cite this version:
Marwa Zeroual, Brahim Hamid, Morayo Adedjouma, Jason Jaskolka. Towards logical specification
of adversarial examples in machine learning. IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom 2022), Dec 2022, Wuhan, China. IEEE, 2022
IEEE International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp.1575-1580, 2022, �10.1109/TrustCom56396.2022.00226�. �cea-04292759�

https://cea.hal.science/cea-04292759v1
https://hal.archives-ouvertes.fr

Towards logical specification of adversarial
examples in machine learning

Marwa ZEROUAL
Université Paris-Saclay,

CEA, List
F91120, Palaiseau, France

marwa.zeroual@cea.fr

Brahim HAMID
IRIT, Université de Toulouse, CNRS, UT2

118 Route de Narbonne
31062 Toulouse Cedex 9, France

brahim.hamid@irit.fr

Morayo ADEDJOUMAA
Université Paris-Saclay,

CEA, List
F91120, Palaiseau, France

morayo.adedjoumaa@cea.fr

Jason JASKOLKA
Department of Systems and Computer Engineering

Carleton University
Ottawa, ON, Canada

jason.jaskolka@carleton.ca

Abstract—The use of Artificial Intelligence (AI)-based sys-
tems, using particularly Machine Learning (ML) classifiers, is
growing rapidly and finding uses in many industries. Most of
these industries have critical safety, security, and dependability
requirements. Despite this rapid growth, interest in the security
of these systems has only arisen in the last few years and it
is not yet well-studied. There is a want for a formal notion
of security for ML systems, similar to that used in classical
information security. We took this statement toward security
threat modeling and analysis in ML-based systems, focusing on
the adversarial example threat. An adversarial example threat is
an input of the classifier that was maliciously modified to induce a
misclassification. Identifying this threat at the architecture design
stage before proceeding with system development is a critical
milestone in the development process of secure ML systems.
In this paper, we propose an approach to adversarial example
threat specification and detection in component-based software
architecture models. We use first-order and modal logic as an
abstract and technology-independent formalism. The general idea
of the approach is to specify the threat as property of a modeled
system such that the violation of the specified property indicates
the presence of the threat. We demonstrate the applicability of
the method through a classifier used in a recommendation system.

Index Terms—adversarial examples, machine learning, classi-
fiers, threat, logical specification, arguments

I. INTRODUCTION

Machine learning (ML) has recently witnessed a widespread

adoption in different industries thanks to the satisfactory

results that it guarantees — sometimes exceeding the results of

humans. The integration of ML components in critical systems

(e.g., Autonomous Driving Vehicles, Facial Recognition Pay-

ment Systems, Airborne Collision-Avoidance Systems) calls

us to question their trustworthiness. Despite this rapid growth,

interest in the security and trustworthiness of these systems has

only arisen in the last few years and it is not yet well-studied.

ML components refer to the components developed using ML

techniques. The ML components that do not learn enough, are

not competent to be trusted to make the intended decision [1].

For instance, ML techniques were used to build a pedestrian

detector for a self-driving car. This ML component was trained

to only recognize pedestrians on a crosswalk. The self-driving

car integrating this ML component killed a pedestrian that was

not near the crosswalk [1]. An attacker might exploit the lack

of the learning phase or tamper with the entries of the ML

component to force a self-driving car to behave in dangerous

ways and possibly cause an accident.

ML based systems (MLBS) software development pro-

foundly depends on software architecture. MLBS have been

proven vulnerable to both traditional threats that plague sys-

tems without ML components, as well as new threats that

are targeting ML components [2]. The fundamental problem

addressed in our work is how to assure that MLBS are

designed, managed, and operated with appropriate security

properties. This requires verification to evaluate whether the

design and/or implementation has been built according to the

system requirements. Addressing the security issues early in

the system life cycle, mainly in the design phase, reduces the

risk of finding security vulnerabilities in the corresponding

system, and once these vulnerabilities are found, it works

to minimize their impact. Formal methods are a promising

approach for achieving a rigor level demonstrating that all

system behaviors meet some desirable properties [3]. However,

the means by which the application of formal methods for

developing and assuring secure MLBS is still lacking. Formal

approaches to security are usually based on a system model,

a threat model, and the targeted security properties. It is

challenging to explore the applicability of formal methods in

addressing MLBS security threats early in system develop-

ment, particularly at the architectural design phase.

The objective of this work is to study security in the

context of MLBS through the formal definition of a threat

model. Particularly, we present a formal model to capture the

adversarial example threat as described [2]. This threat aims

to breach the integrity of the ML component by crafting its

inputs such that the component’s behavior changes. We aim

to propose a logical specification (based on first-order and

1575

2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

2324-9013/22/$31.00 ©2022 IEEE
DOI 10.1109/TrustCom56396.2022.00226

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 T

ru
st

, S
ec

ur
ity

 a
nd

 P
riv

ac
y

in
 C

om
pu

tin
g

an
d

C
om

m
un

ic
at

io
ns

 (T
ru

st
C

om
) |

 9
78

-1
-6

65
4-

94
25

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
Tr

us
tC

om
56

39
6.

20
22

.0
02

26

Authorized licensed use limited to: CEA. Downloaded on October 08,2023 at 18:01:10 UTC from IEEE Xplore. Restrictions apply.

modal logic) of the adversarial example threat in component-

based software architecture development. This specification

will help further elicit security requirements to protect against

the corresponding threat.

The remainder of the paper is organized as follows. Sec-

tion II gives a general context of our proposed approach. Sec-

tion III describes the logical specification of the adversarial
example threat. Then, Section IV illustrates the detection of

the adversarial example threat through an example. Section V

discusses related works. Finally, Section VI concludes and

sketches directions for future work.

II. CONTEXT

In this section, we present the context of our work, including

a set of concepts and definitions that might prove useful in

understanding our approach.

A. ML-based Systems

MLBS are such systems that integrate some components

based on ML techniques. ML techniques replace repetitive

tasks done by human experts. Developing the ML components

passes through two phases: the training phase and the inference

phase. The specific task-related data supplied by domain

experts is used to create a training data set. The ML component

will learn how to carry out the same task using the data

provided. The output of the training is the ML model handled

by the ML component. During the inference phase, the ML

components are used in large systems composed of different

kinds of components, some of which may also be ML-based.

The ML component should receive data of the same type as

the training data. Fig. 1 represents the different components

that align with various steps to set up an MLBS (the numbers

in parentheses correspond to the numbers in Fig. 1):

• Raw data in the world is used in both the training and

the inference ML component setting up phases (1).

• The Data collection process aims to collect the raw data

and to prepare it for the training phase (2).

• Data Set is the component where the data that will be

used to train the ML component is stored (3).

• The Model training process launches the ML algorithm

on the training data to derive the ML model (4).

• Input Sender is the component used to query the ML

component (5).

• ML component is the component that handles the ML

model (6).

• Output Receiver is the component that receives the results

returned by the ML component during the inference

phase (7).

In this work, we are interested in ML components used for

classification tasks.

B. Classification problem

A classification problem aims to assign a given input to

the most suitable class among multiple classes. We define two

sets: the set of the inputs to classify X and a finite and discrete

set of class labels L. We assume the existence of an unknown

function f : X → L that is specified by an oracle and predicts

the class (from L) to which the input belongs.

The problem is to find a second function f ′ : X → L that

is as close as possible to f [4]. One could use ML techniques

to resolve this problem efficiently. Coming back to Fig. 1,

the raw data in the environment is collected to produce the

training data that will be stored in the data set component, the

component based on ML is called the classifier and its main

action is the calculation of the function f ′ .

C. Adversarial examples

Adversarial examples are well crafted inputs fed to the

classifier in order to deceive it, i.e., assign a given input to a

class to which it does not belong. They are obtained by slightly

modifying a sane (i.e., initially well classified) input. The

attackers exploit the gap between the specified classification

function f and the learned function f ′ to find an input x ∈ X
for which f(x) �= f ′(x).

For simplicity, we will illustrate adversarial examples in

binary classification (choosing among two classes), as visu-

alized in Fig. 2. The aim of the classifier is to classify the

forms in two classes l1 (i.e., circles) and l2 (i.e., squares).

The specified f and the learned f ′ classification functions are

represented respectively by the bold and the dashed boundary.

The classifier is trained using blue circles and green squares.

The two functions return the same classes for the inputs of

the training data. Unlike most inputs, a small modification of

the inputs close to the f ′ boundary (e.g., change the color of

the blue circle to green) will lead us to bypass the learned

boundary f ′ without bypassing the specified boundary f . It

means we are actually in the same class (e.g., the green circle

is a circle); however, the classifier assigns the modified input

to the other class (e.g., the green circle is a square).

Recalling Fig. 1, the classifier at the inference phase can be

deceived by the component that sends inputs (Input Sender).

Consequently, it will send the wrong class to the Output

recevier. This deception results in the system making false

classifications or categorisations.

III. LOGICAL SPECIFICATION

In this section, we specify the adversarial examples threat

using first-order and modal logic as a formalism that is

Fig. 1. Generic MLBS architecture

1576

Authorized licensed use limited to: CEA. Downloaded on October 08,2023 at 18:01:10 UTC from IEEE Xplore. Restrictions apply.

abstract and technology-independent. Principles of first-order

and modal logic

An MLBS is modeled by a set of components and con-

nectors. The components are seen as black boxes. They are

communicating by exchanging messages: sending/receiving

messages to/from other components. Each component can

execute local actions that allow it to modify its local variables

and process data received or to be sent in messages. We based

our formalization of the classification problem on the work

in [5].

A. Computing model

1) Sets:
• C is the set of components

• F is the set of features; it contains #F1 distinct features

F = {fi | 1 ≤ i ≤ #F}
• Vi is the set of distinct values that can be taken by the

feature fi; it contains #Vi values.

Vi = {vij | 1 ≤ j ≤ #Vi}
• L is the set of the class labels; it contains #L distinct

labels

L = {lk | 1 ≤ k ≤ #L}
• U is the set of all possible literals; a literal is a couple

of feature and value

U = {uij = (fi : vij) | fi ∈ F ∧ vij ∈ Vi}
– is consistent(U) indicates that the subset of liter-

als U ⊂ U does not contain two literals having the

same feature but distinct values

– contains(U,m) indicates that the subset of liter-

als U ⊂ U contains m literals

• Xn is the set of the inputs to classify; each input is a

consistent tuple of n literals. Since the sets of the features

and the values are finite, the set of inputs is also finite

and contains #Xn

Xn = {xq | xq ⊂ U ∧ 1 ≤ q ≤ #Xn

∧ contains(xq, n) ∧ is consistent(xq)}
– belongs(xq, lk) indicates that the input xq ∈ Xn

belongs to the class with the label lk ∈ L
• T is the set of training data

T = {(xq, lk) | xq ∈ Xn ∧ lk ∈ L ∧ belongs(xq, lk)}
1We use the notation #V to denote the cardinality of the set V .

Fig. 2. Illustration of adversarial examples against binary classification

– cons(U, lk) indicates that the subset of literals U ⊂ U
is against the class with the label lk
∀(xq, lo) ∈ T | is consistent(U) ∧ U ⊂ xq ∧ lo �= lk

– pros(U, lk) indicates that the subset of literals U ⊂ U
supports the class with the label lk
∀(xq, lo) ∈ T | is consistent(U) ∧ U ⊂ xq ∧ lo = lk

• Pk is the set of minimal arguments in favour of the class

with the label lk

Pk =

⎧⎨
⎩

p ⊂ U
pros(p, lk)
∀ p′ ⊂ p | ¬ pros(p′, lk)

(1)

• Gk is the set of minimal arguments against the class with

the label lk

Gk =

⎧⎨
⎩

g ⊂ U
cons(g, lk)
∀ g′ ⊂ g |¬ cons(g′, lk)

(2)

2) Actions:
• classify(c, xq, lk) denotes that the component c assigns

the input xq to the class with the label lk
• set value(c, fi, vij) denotes that the component c sets the

value vij for the feature fi
3) Modalities:
• Ec(a) is a predicate indicating that action a is enabled

for component c ∈ C
• L(classify(c, xq, lk)) denotes that the classification action

is done according to the learned classification function

• S(classify(c, xq, lk)) denotes that the classification action

is done according to the specified classification function.

The two last modalities allow us to express a modal attitude

of the classification action done by a component c. Revisiting

Fig. 2, the modality L refers to the dashed boundary (corre-

sponding to learned function f ′) whereas the modality S refers

to the bold boundary (corresponding to learned function f).

The existing gap between the two boundaries brings up the

thought that we need these two modalities to specify the

behaviour of the classifier. The vulnerability of the classifier

to adversarial examples is due to the gap between the two

boundaries.
4) Macros:
• replace(xq, xr, U) denotes that the input xr is obtained

from the input xq by replacing the values of features

in xq by those in U ⊂ U and keeping the remaining ones

unchanged

replace(xq, xr, U) ≡ ∀ (fi : vij) ∈ xr |
(fi : vij) ∈ U ∨ (fi : vij) ∈ xq ∧ � (fi : vik) ∈ U

(3)

• valid(xq) denotes that the input xq is valid (i.e., each of

its literals is provided only by the component which is

enabled to do the action set value)

valid(xq) ≡ ∀(fi : vij) ∈ xq, ∃!c ∈ C |
Ec(set value(c, fi, vij))

(4)

1577

Authorized licensed use limited to: CEA. Downloaded on October 08,2023 at 18:01:10 UTC from IEEE Xplore. Restrictions apply.

B. Adversarial examples specification

Adversarial examples breach the integrity of the ML com-

ponent by stealthily modifying the input data that is fed to

it. They can take the form of classifier assigning the wrong

label to an input due to a small modification of it. To identify

the presence of the threat, we can verify whether the classifier

outputs the right class for the modified inputs, i.e., the output
class remains constant in some specified neighborhood of some
specific point. For the component c ∈ C, we define the fol-

lowing property AdversarialExamples(c) which is specified

for all valid inputs x1, x2 ∈ Xn and for the class label lk ∈ L
and for all arguments u ∈ Gk:

valid(x1) ∧ valid(x2) ∧ replace(x1, x2, u) ∧
S(Ec(classify(c, x1, lk))) ∧ L(Ec(classify(c, x1, lk))) ∧
S(Ec(classify(c, x2, lk)))⇒ L(Ec(classify(c, x2, lk)))

(5)

The property ensures that every input x2 obtained by a small

modification in x1 and specified to belong to the same class

as x1 should be assigned the same class.

IV. DETECTING ADVERSARIAL EXAMPLES

In this section, we will use an illustrative example referred

to as the Jogging Recommendation System (JRS) to demon-

strate the application of the proposed approach to detect the

existence of an adversarial example threat.

A. Informal description of JRS

The main function of the JRS is to recommend whether

the user should go jogging or not according to the suitability

of a set of weather conditions. JRS uses four weather condi-

tions, namely, sky which takes values in {Sunny, Cloudy,

Rainy}, temperature which takes values in {Hot, Mild,

Cool}, humidity which takes values in {Low, High} and

wind which takes values in {Medium, High}. As described

in Fig. 1, here we focus on the the inference phase. Below,

we describe a set of selected cases for the JRS presented as a

set of functional requirements.

1) F Req 1. A hesitant user (User) queries the sensors

(Sensor) about current weather conditions. They want

to go jogging only in suitable weather conditions, that

is, they want to avoid going out when they would not

be able to jog comfortably.

2) F Req 2. The sensors (Sensor) shall send the informa-

tion about the weather to the classifier (Classifier).

3) F Req 3. The classifier (Classifier) shall decide to go

jogging or not and answer the user (User).

According to these functional requirements, we proposed

the JRS architecture as visualized in Fig. 3. We used UML-

like [6] notations to describe the high-level architecture model

of the JRS, where software components are represented by

components and information exchanges between them are

represented by connectors. We consider the components User,

Sensor and Classifier representing, respectively the end user,

Fig. 3. The architecture of the JRS

the set of sensors to capture weather conditions and the ML

component. The internal structure of Sensor is composed of

four components, Sky, Temperature, Humidity and Wind to

collect the appropriate weather condition. Moreover, we con-

sider the connector that is transmitting the user request to the

sensor (i.e., UserSensor), the connector that is transmitting the

weather conditions data to the classifier (i.e., SensorClassifier)

and the connector that is transmitting the recommendation to

the user (i.e., ClassifierUser).

From the security perspective, we consider the detection

of adversarial examples. In the JRS, this threat occurs when

the Sensor component is able to build an adversarial input

(conditions not suitable to go jogging) using a sane input

(conditions suitable to go jogging) in order to make the user

go jogging in non-suitable weather conditions.

B. Logical specification of the JRS

Let C = {User, Classifier, Sensor, Sky, Temperature, Hu-
midity, Wind} be the set of the components. Let F = {f1=S,

f2=T , f3=W , f4=H} be the set of features where each feature

takes values in the set V1 ={Sunny, Cloudy, Rainy}, V2 =

{Hot, Mild, Cool}, V3 = {Low, High} and V4 = {Medium,

High}, respectively. The set of literals U contains all the

possible literals, for example the literal u13 = (S : Rainy)
indicates that the value of the feature S is Rainy(it contains
4 literals and is consistent). The set X 4 contains the inputs of

the Classifier. An input xq is 4-tuple of literals, of the form

(S: v1j , T : v2h , H: v3k, W : v4l). The Classifier classifies the

inputs from the set X 4 in two classes L = {l1= yes, l2=no}.
The class is then sent to the User.

The training data T used to train the Classifier is shown

in Table I. It contains examples of different situations and the

specified decision to be made. Based on this table, we build

both the sets of the arguments pros and arguments cons classes.

For the arguments pros a class, we look for the minimal

set of literals that is common to the instances belonging to

the same class respecting the property 1. For example, all

the inputs that contain the literals (S: Cloudy, H: Medium)
belong to the class yes however the literals are not considered

1578

Authorized licensed use limited to: CEA. Downloaded on October 08,2023 at 18:01:10 UTC from IEEE Xplore. Restrictions apply.

as an argument because there is a minimal set of literals (S:

Cloudy) for which all the inputs are in the class yes.

Consequently, the arguments that support the class yes are:

P1 = {(S: Cloudy); (S: Sunny, H: Medium); (S: Rainy,

W : Low)}. In the same way, we build the set of the arguments

pros the class no: P2 = {(S: Sunny, H: High); (S: Rainy,

W : High)}.
Respecting Property 2, we build the set of the arguments

against the classes. The presence of an argument against a

class prohibits the classifier from assigning the input to that

class. The set of arguments cons the class yes is G1 = {(S:

Sunny, H: High); (S: Rainy, W : High)}, and the set of

the arguments cons the class no is G2 = {(S: Cloudy); (S:

Sunny, H: Medium); (S: Rainy, W : Low)}.
Using the sets P1 and P2, we build the algorithm of

the learned classification shown in Algorithm 1 where x.fi
denotes the value of the feature fi in the input x. In other

words, the modality L is supported by Algorithm 1.

Algorithm 1 The learned classification

Require: x ∈ X 4 , l ∈ L
if x.S = Cloudy or
(x.S = Sunny and x.H = Medium) or
(x.S = Rainy and x.W = Low) then

l← yes
else

l← no
end if

We represent in Table II some randomly chosen examples

other than those of the training data in Table I to support the

modality S.

C. Detection of the threat

Property 5 holds only for components enabled to do the

classification action, according to the modality E. Let x15=

(S: Cloudy, T : Hot, H: High, W : High) be an input

that is classified to the class yes according to both of

the classification modalities: (1) the specified, as shown in

TABLE I
THE SET OF THE TRAINING DATA OF THE CLASSIFIER USED IN THE JRS

X S T H W Jogging
x1 Sunny Hot High Low no
x2 Sunny Hot High High no
x3 Cloudy Hot High Low yes
x4 Rainy Mild High Low yes
x5 Rainy Cool Medium Low yes
x6 Rainy Cool Medium High no
x7 Cloudy Cool Medium High yes
x8 Sunny Mild High Low no
x9 Sunny Cool Medium Low yes
x10 Rainy Mild Medium Low yes
x11 Sunny Mild Medium High yes
x12 Cloudy Mild High High yes
x13 Cloudy Hot Medium Low yes
x14 Rainy Mild High High no

TABLE II
SOME SPECIFIED EXAMPLES FOR THE JRS

X 4 S T H W Jogging
x15 Cloudy Hot High High yes
x16 Rainy Hot High High yes
x17 Rainy Hot High Low yes

Table II), and (2) the learned, because x15.S = Cloudy as

described in Algorithm 1.

We want to build an adversarial example to x15, that is spec-

ified to belong to the same class yes but will be missclassified

by the classifier (assigned to the class no). To do so, we will

use an argument against the class yes, u ∈ G1 | u = (S :

Rainy, W : High). We will replace the argument u in the

input x15 respecting the modality R to get the input x16= (S:

Rainy, T : Hot, H: High, W : High).

The input x16 is specified to belong to the class yes as

shown in Table II but the learned classification will assign it

to the class no because (x16.S = Rainy ∧ x16.W = High).

Recalling Property 5 gives:

valid(x15) ∧ valid(x16) ∧ replace(x15, x16, u) ∧
S(EClassifier (classify(Classifier , x15,yes))) ∧
L(EClassifier (classify(Classifier , x15,yes))) ∧
S(EClassifier (classify(Classifier , x16,yes))) �⇒
L(EClassifier (classify(Classifier , x16,yes)))

(6)

Property 6 shows how Property 5 is violated by the

input x16 which indicates the presence of an adversarial
example.

V. RELATED WORK

This section dwells on some related works and positions

our contributions, emphasizing threat modeling and analysis

in MLBS.

Works in [7], [8] introduce comprehensive architecture

security analysis for MLBS. The authors in [8] proposed a

security-oriented architectural risk analysis of MLBS in the

context of component-based software architecture. However,

lacks are present in the rigorous modelization of the MLBS

components and their interactions. In [7], the authors analysed

the architecture to propose the first security requirements elic-

itation technique that covers threats against ML components.

They proposed mapping the ML threats to the threats targeting

non ML components to reduce the gaps between the two

categories of threats. In fact, the adversarial examples allow

the attacker to modify the behavior of the ML component

without having the authorization for doing that. Consequently,

it is relevant to map the adversarial examples to the Elevation

of privileges threat class from the STRIDE classification [9].

This mapping requires the application of formal tools to

showcase how we could use this mapping for the detection

and mitigation of the threat.

Existing efforts in the study of adversarial examples are

mainly investigating the attacks and defense strategies. Works

1579

Authorized licensed use limited to: CEA. Downloaded on October 08,2023 at 18:01:10 UTC from IEEE Xplore. Restrictions apply.

in [10]–[12] proposed new approaches for adversarial exam-
ples attack generation in order to overcome the shortcomings

of ML components in adversarial settings. Unlike these works,

we want to anticipate the identification of security threats

earlier, focusing on the architecture security analysis.

From other perspectives, an explanation of adversarial ex-

amples is proposed to help understand how the ML compo-

nents behave. Works from [13], [14] used first-order logic to

define counter-examples and adversarial examples with a focus

on binary classifications and binary features. A more general

explanation was proposed in [5], it is based on arguments in

favor of classes and arguments against classes to explain why a

class is chosen or is not, respectively. In our work, we provide

a security-oriented explanation, it allows the detection of the

threat and the elicitation of security requirements to mitigate

it.

VI. CONCLUSION

In this work, we present a logical specification of the

adversarial example threat against classifiers. We model a

target MLBS architecture using an abstract system computing

model based on first-order logic, modal logic, and set theory as

a technology-independent specification language. According

to this computing model, we specify a property of adversarial
examples. The violation of this property enables us to capture

the presence of the adversarial example threat. We use the

Jogging Recommendation System (JRS) example to showcase

how the specified property detects the presence of the adver-
sarial examples threat.

In future work, we will study other MLBS security threats.

Particularly, we will evaluate the ability of our threat modeling

approach to capture the failure modes described in [2]. In

parallel, we aim to use a tooled language for modeling and

analysis of MLBS using component-port-connector models to

formalize and verify the presence of security threats at the

design phase. In addition, we investigate how security analysis

and/or documentation resulting from formal models may be

used in support of security evaluation and assurance in the

context of MLBS [15].

REFERENCES

[1] M. Harris, “NTSB investigation into deadly uber self-driving car crash
reveals lax attitude toward safety,” IEEE Spectrum, November 2019.

[2] R. S. S. Kumar, J. Snover, D. O’Brien, K. Albert, and S. Viljoen,
“Failure modes in machine learning,” Microsft Documentation,
Available: https://docs.microsoft.com/en-us/security/engineering/failure-
modes-in-machine-learning, November 2019.

[3] S. Chong, J. Guttman, A. Datta, A. Myers, B. Pierce, P. Schaumont,
T. Sherwood, and N. Zeldovich, “Report on the nsf workshop on formal
methods for security,” arXiv preprint arXiv:1608.00678, 2016.

[4] Y. Kawamoto, “Towards logical specification of statistical machine
learning,” in International Conference on Software Engineering and
Formal Methods. Springer, 2019, pp. 293–311.

[5] L. Amgoud, “Explaining black-box classification models with argu-
ments,” in 2021 IEEE 33rd International Conference on Tools with
Artificial Intelligence (ICTAI). IEEE, 2021, pp. 791–795.

[6] OMG, “Unified modeling language (UML), version 2.5.1,” Available:
https://https://www.omg.org/spec/UML/, December 2017.

[7] C. Wilhjelm and A. A. Younis, “A threat analysis methodology for
security requirements elicitation in machine learning based systems,”
in 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C). IEEE, 2020, pp. 426–
433.

[8] G. McGraw, H. Figueroa, V. Shepardson, and R. Bonett, “An architec-
tural risk analysis of machine learning systems: Toward more secure
machine learning,” Berryville Institute of Machine Learning, Clarke
County, VA. Accessed on: Mar, vol. 23, 2020.

[9] A. Shostack, “Experiences threat modeling at microsoft.” MODSEC@
MoDELS, vol. 2008, p. 35, 2008.

[10] M. Khoshpasand and A. Ghorbani, “On the generation of unrestricted
adversarial examples,” in 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W).
IEEE, 2020, pp. 9–15.

[11] T. Di Noia, D. Malitesta, and F. A. Merra, “Taamr: Targeted adversarial
attack against multimedia recommender systems,” in 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W). IEEE, 2020, pp. 1–8.

[12] M. Ozdag, “Adversarial attacks and defenses against deep neural net-
works: a survey,” Procedia Computer Science, vol. 140, pp. 152–161,
2018.

[13] A. Shih, A. Choi, and A. Darwiche, “A symbolic approach to explaining
bayesian network classifiers,” arXiv preprint arXiv:1805.03364, 2018.

[14] A. Ignatiev, N. Narodytska, and J. Marques-Silva, “On relating ex-
planations and adversarial examples,” Advances in neural information
processing systems, vol. 32, 2019.

[15] C. Picardi, R. Hawkins, C. Paterson, and I. Habli, “A pattern for arguing
the assurance of machine learning in medical diagnosis systems,” in
Computer Safety, Reliability, and Security, A. Romanovsky, E. Troubit-
syna, and F. Bitsch, Eds. Cham: Springer International Publishing,
2019, pp. 165–179.

1580

Authorized licensed use limited to: CEA. Downloaded on October 08,2023 at 18:01:10 UTC from IEEE Xplore. Restrictions apply.

