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GENERALIZATION OF THE SECOND ORDER VECTOR POTENTIAL FORMULATION FOR ARBITRARY NON-ORTHOGONAL CURVILINEAR COORDINATES SYSTEMS FROM THE COVARIANT FORM OF MAXWELL'S EQUATIONS

A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are based on the secondorder vector potential (SOVP) formalism which introduces two scalar potentials in order to obtain analytical expressions of the electromagnetic fields from the two potentials. However, The scalar decomposition is often known for canonical coordinate systems. This paper aims in introducing a specific SOVP formulation dedicated to arbitrary non-orthogonal curvilinear coordinates systems. The electromagnetic field representation which is derived in this paper constitutes the key stone for the development of semi-analytical models for solving some eddy currents modelling problems and electromagnetic radiation problems considering at least two homogeneous media separated by a rough interface. This SOVP formulation is derived from the tensor formalism and Maxwell's equations written in a non-orthogonal coordinates system adapted to a surface characterized by a 2D arbitrary aperiodic profile.

Second Order vector potential (SOVP), curvilinear coordinate system, Eddy current non destructive testing (ECNDT)

Introduction

A great number of semi-analytical models for simulating Eddy Current Non Destructive Testing (ECNDT) of conductive test pieces has been developped since the the research works of several pioneers [START_REF] Dodd | Analytical solutions to eddy current probe-coil problems[END_REF][START_REF] Tegopoulos | Eddy currents in Linear Conducting Media[END_REF][START_REF] Bowler | Eddy current calculations using half-space Green's functions[END_REF][START_REF] Burke | Eddy-current induction in a uniaxially anisotropic plate[END_REF][START_REF] Bowler | A theoretical and computational model of eddy current probes incorporating Volume integral and Conjuguate Gradient Methods[END_REF][START_REF] Bowler | Eddy current probe impedance due to a volumetric flaw[END_REF][START_REF] Nair | Electromagnetic induction (eddy currents) in a conducting halfspace in the absence and presence of inhomogeneities : A new formalism[END_REF]. Most of canonical ECNDT configurations can be simulated today by numerically implementing some closed-form expression of the solution of the forward problem to be solved [START_REF] Reboud | ECT benchmark results: Modeling with civa of 3D flaws responses in planar and cylindrical work pieces[END_REF]9]. Most of these semi-analytical models lead to fast numerical models and are thus very useful for running analysis or parametric studies. Most of these semi-analytical models are based on the scalar decomposition of the electromagnetic field in some specific curvilinear orthogonal coordinate systems. The numerical models coming from these analytical models are therefore limited to canonical geometries. The purpose of this paper is to present a more general scalar potential representation of the electromagnetic field which can be applied for a non orthogonal coordinate system in order to prepare the development of some semi-analytical model which has the capability to compute the quasi-static electromagnetic fields due to an eddy current probe scanning a conducting half-space. The shape of the boundary surface is complex since two regions are separated by a rough surface. The framework of this project aims in generalizing the previous work [START_REF] Prémel | Computation of a quasi-static field induced by two long straight parallel wires in a conductor with a rough surface[END_REF] which has been firstly introduced for 2D eddy current problems.

The scalarization of the electromagnetic field is well known to researchers for a long time [START_REF] William | Static and Dynamic Electricity[END_REF] and it has been extensively used for different applications in electromagnetism such as the radiation and scattering theory [START_REF] Morse | Methods of Theoretical Physics[END_REF][START_REF] Felsen | Radiation and Scattering of Waves[END_REF] and in the analysis of eddy currents [START_REF] Hammond | Use of potentials in calculation of electromagnetic fields[END_REF]. A great number of authors have made use of the scalar potential formulation of the electromagnetic field since it is the starting point which allows to derive some analytical expressions of the field arising from specific canonical geometries implying an arbitrary time harmonic current above a conducting half space [START_REF] Bowler | Eddy current calculations using half-space Green's functions[END_REF][START_REF] Nair | Electromagnetic induction (eddy currents) in a conducting halfspace in the absence and presence of inhomogeneities : A new formalism[END_REF], or above a slab of finite thickness [START_REF] Burke | Eddy-current induction in a uniaxially anisotropic plate[END_REF]. This scalar formulation, also called the second order vector potential formulation has been also used in the cylindrical coordinate system for an arbitrary current source inside a borehole [START_REF] Theodoulidis | Analytical modeling of wobble in eddy current tube testing with bobbin coils[END_REF][START_REF] Burke | Impedance of a horizontal coil in a borehole: a model for eddy-current bolthole probes[END_REF] or in the spherical coordinate system [START_REF] Tsiboukis | Analytical and numerical solution of the eddy-current problem in spherical coordinates based on the second-order vector potential formulation[END_REF][START_REF] Mrozynski | Analytical determination of eddy currents in a hollow sphere excited by an arbitrary dipole[END_REF]. This paper concerns more particularly the calculation of the electromagnetic field in the quasi-static limit when the geometry of the separating surface between two homogeneous media is described by an arbitrary non-orthogonal coordinate system. This paper is organized as follows. In section two, the second-order vector potential formulation is briefly introduced. Since a Laplacian operator is only applied on a scalar potential, this formulation can minimize the number of unknowns and consequently the computer storage when calculating the electromagnetic fields in 3D scattering electromagnetic problems and 3D eddy currents problems. However, this formulation has been investigated for a finite number of orthogonal coordinates systems. The third section describes an extended formulation based on the covariant form of Maxwell's equations. The curvilinear coordinate method is summarized for obtaining the relationship between the components of the electromagnetic field and two longitudinal components. In Section 4, the second-order vector formulation is finally derived and some examples of different coordinate system are given in section 5 in order to give some illustration of the formulas. Finally, section 6 gives the conclusion and future works.

the second order vector potential formulation for eddy current problems

In curvilinear coordinate systems, the components of the magnetic vector potential cannot be separated due to the coupling between them [START_REF] Morse | Methods of Theoretical Physics[END_REF]. Thus, the problem of the computation of the vector field leads to a great number of coupled unknowns since it is not possible to obtain separable Helmholtz equations. In order to overcome this drawback, it is usual to split the vector field into a longitudinal part and a transversal part. The longitudinal part is obtained from the calculation of the gradient of a scalar potential, this part is irrotational (rotational free). The transversal part is derived from another vector potential; this part is called solenoidal (divergence free).

A = A L + A T A L = ∇φ with ∇ × A L = 0 (2.1) A T = A T1 + A T2 with ∇ • A T = 0 (2.2)
This vector potential can also derived from two other scalar potentials and a fixed unit vector judiciously chosen [START_REF] William | Static and Dynamic Electricity[END_REF] according to the coordinate system used. The second order vector potential results in the separation of the Helmholtz equation in several coordinate systems [START_REF] Tsiboukis | FDM-based second order potential formulation for 3D eddy current curvilinear problems[END_REF].

(2.3)

A T = ∇ × W = ∇ × (u W 1 + u × ∇W 2 )
According to this decomposition, the magnetic vector potential depends on three scalar quantities φ, W 1 and W 2 . Since the magnetic vector potential A is derived from the curl of W, this implies the coulomb gauge. This vector potential is also called the Second Order Vector Potential (SOVP). The longitudinal part of the electromagnetic field is not necessary for representing the magnetic flux density since the definition of B = ∇ × A and ∇ × (∇φ) = 0. Only two scalar potential are finally necessary to represent the magnetic flux density B = ∇ × ∇ × W and the current density can be derived by J = 1 µ ∇ × B. In such a way , this formulation has been extensively used to derive some analytical solutions for eddy current modeling problems. The goal of this paper is to generalize this formulation for a non-orthogonal curvillinear coordinates system which could describe the arbitrary shape of a separating rough surface between two regions of the space.

Problem Formulation

Let us consider an isotropic, homogeneous conducting half-space characterized by its conductivity σ and its magnetic permeability µ and the permittivity ε. The global planar surface delimiting this half-space is locally corrugated according to a cylindrical surface profile. In a Cartesian coordinate system (x, y, z), the surface is assumed to be invariant along the z axis and is described by a parametric function a(x). Eddy currents are induced in the conducting region due to 3D arbitrary current sources in air above the half-space. The goal of this paper is to introduce a generalized scalar potentials formalism to build up a fast semi-analytical model which is able to compute the electromagnetic fields considering the quasi-static regime. This formalism is based on the introduction of a curvilinear coordinate system which conforms the rough surface. Writing the boundary conditions is thus easier since one of the new system of curvilinear coordinates is set to zero for each point on the boundary surface. Moreover, the tangential components and the normal components of the electromagnetic field are easily written by using the covariant and contravariant basis respectively. In the next section, the covariant form of Maxwell's equations governing the electromagnetic field are summarized and discussed.

3.1. The covariant form of Maxwell's equations. In curvilinear coordinates systems, the Maxwell's equation are based on the tensorial formalism. By assuming a standard time dependence (e -iωt ), the covariant form is given by:

∂ j B j = 0 ∂ j D j = 0 (no charge sources) ξ ijk ∂ j E k = - ∂B i ∂t = +iωB i with i, j, k = 1, 2, 3 ξ ijk ∂ j H k = J i + ∂D i ∂t = J i s + J i -iωD i (3.1)
where ξ ijk stands for the Lévi-Cività indicator [START_REF] Post | Formal Structure of Electromagnetics: General Covariance and Electromagnetics[END_REF] and i, j, k ∈ 1, 2, 3 are the indices associated to the components of the fields on the the three coordinate axes.

The notation ∂ j means ∂/∂x j . This formalism is invariant to a change of referential.

The components E k and H k are the covariant components of the vectors E and H. The components B i , J i and D i are the contravariant components of the vectors B, J and D respectively. They are themselves related to the covariant components of the vectors E and H by the constitutive relations :

B i = µ H i = µ √ g g ij H j = µ ij H j J i = σ E i = σ √ g g ij E j = σ ij E j D i = ε E i = ε √ g g ij E j = ε ij E j (3.2)
where g ij are the contravariant components of the metric tensor of the coordinate system. The covariant components of the metric tensor verify the condition g ik g kj = δ ij and √ g = det(g ij ). The pseudo-tensors µ ij , σ ij and ε ij depend on the the choice of the metric system and they contain the physical and geometrical information of the problem. In the quasi-static regime, the permittivity of the conducting material is neglected and the wave number becomes k 2 c = iωµσ. To exhibit a symmetry in the Maxwell's equation, let introduce some notations. The complex impedance of the material is defined so that k c Z = ωµ and Z σ = -ik c . By denoting G j = iZH j , Maxwell's equations may be simply written by:

∇ • E = 0 ∇ • B = 0 ∇ × E = k c √ g g ij G ∇ × G = iZ √ gg ij J s + k c √ gg ij E (3.3) 
The dot product and the cross product are used exactly as in the Cartesian case.

Boundary conditions.

The main interest of this approach based on the coordinate transformation is that boundary conditions may been written in an analytical form since the boundary surface conforms exactly with the curvilinear coordinate system. The new system of coordinates is chosen so that one variable, at least, is constant for each point conforming the interface between the two media. Let us consider the coordinates x 1 , x 2 , x 3 and let u a field vector. The boundary surface is defined by x 3 = 0 for instance. Then, the continuity of the tangential components of the field vector u may be expressed by the continuity of the covariant components u 1 , u 2 while the continuity of the normal component of u may be translated in the continuity of the contravariant component u 3 . These two conditions will be explicitly described in the following of this paper. The main goal of this paper is to define two scalar potentials, usually the transverse electric and the transverse magnetic potentials for solving 3D eddy currents problems by using the curvilinear coordinate method.

3.3.

The curvilinear coordinate method. The boundary surface separating two isotropic homogeneous regions may be described by some parametric equations.

Starting from the Cartesian coordinate system (x, y, z), we are looking for a new coordinate system such that the boundary surface conforms with one surface of coordinates. The Cartesian coordinates are labeled using index notation so that (x, y, z) = (x 1 , x 2 , x 3 ). Now, let define a set of curvilinear coordinates (θ 1 , θ 2 , θ 3 ):

x 1 = f (θ 1 , θ 2 , θ 3 )
x 2 = g(θ 1 , θ 2 , θ 3 )

x 3 = h(θ 1 , θ 2 , θ 3 ) (3.4)
Two natural sets of base vectors are associated with a curvilinear system: the covariant vectors u i that are tangent to the coordinate lines and the contravariant vectors u i that are normal to the coordinate surfaces.

The Jacobian matrix J defines the transformation from the Cartesian coordinates (x 1 , x 2 , x 3 ) to the curvilinear coordinates (θ 1 , θ 2 , θ 3 ):

(3.5) J = ∂x ∂θ =   ∂f ∂θ 1 ∂f ∂θ 2 ∂f ∂θ 3 ∂g ∂θ 1 ∂g ∂θ 2 ∂g ∂θ 3 ∂h ∂θ 1 ∂h ∂θ 2 ∂h ∂θ 3   .
In the following of the paper, let denote ∂ i F = ∂F ∂θ i . The matrix representation of the covariant components of the metric tensor is given by:

(3.6) [g ij ] = ∂x ∂θ T ∂x ∂θ
and we denote by g the determinant g = |g ij |. Similarly, The matrix representation of the contravariant components of the metric tensor are given by:

(3.7)

g ij = ∂θ ∂x T ∂θ ∂x
Assume that this matrix may be expressed by:

(3.8) g ij =   g 11 g 12 g 13 g 21 g 22 g 23 g 31 g 32 g 33  
Due to the relationship between these two representations of the metric tensors

g ij = [g ij ]
-1 , the determinant of the matrix g ij is equal to 1/g and: To fit boundary conditions, it is convenient to split the electromagnetic field into two components :

[g ij ] = g ij -1 =  
E = E t + E u u G = G t + G u u (3.10)
Any vector u may be chosen for this decomposition though there are suitable choices [START_REF] William | Static and Dynamic Electricity[END_REF]. In what follows in the paper, u is a vector in the directions of the coordinates x n , n = 1, 2, 3.

3.4. Decomposition transversal/longidutinal components. Let consider the longitudinal component E u and G u and the transversal fields E t and G t . The nabla operator can be decomposed:

∇ × E = (∇ t + ∂ n x n ) × (E t + E n x n ) = (∇ t × E t ) + ∇ t × (E n x n ) + (x n ∂ n ) × E t (3.11)
By applying the operator x n × to this equation and taking into account Eq. (3.3), one obtains:

x n × (∇ × E) = ∇ t E n -∂ n E t = k c x n × √ gg ij G t + k c x n × √ gg ij G n x n (3.12)
The same equation may be applied to the field vector G by substituting E → B and E n → G n . These coupled equations may be expressed:

∇ t E n -k c x n × √ gg ij x n G n = ∂ n E t + k c x n × √ gg ij G t ∇ t G n -k c x n × √ gg ij x n E n = ∂ n G t + k c x n × √ gg ij E t (3.13)
Let consider a compact form:

∂ n I k c x n × √ gg ij k c x n × √ gg ij ∂ n I E t G t = ∇ t -k c x n × √ gg ij x n -k c x n × √ gg ij x n ∇ t E n G n (3.14) 
where I means an identity dyadic operator. The left-hand side of (3.14) may be multiplied by the matrix:

(3.15) ∂ n I -k c x n × √ gg ij -k c x n × √ g g ij ∂ n I
such as:

(3.16)

∂ n I -k c x n × √ gg ij -k c x n × √ g g ij ∂ n I ∂ n I k c x n × √ gg ij k c x n × √ g g ij ∂ n I E t G t = C 11 k c C 12 k c C 12 C 11 E t G t with C 11 = ∂ n ∂ n I -k 2 c x n × √ g g ij x n × √ g g ij C 12 = ∂ n x n × √ gg ij -x n × √ g g ij ∂ n (3.17)
So, in the general case, the transverse fields E t and G t are coupled. Similarly, the right side of (3.14) is multiplied by the same matrix 3.15:

(3.18) ∂ n I -k c x n × √ g g ij -k c x n × √ g g ij ∂ n I ∇ t -k c x n × √ g g ij x n -k c x n × √ g g ij x n ∇ t E n G n = M 11 M 12 M 12 M 11 E n G n with M 11 = ∂ n ∇ t + k 2 c x n × √ g g ij x n × √ g g ij x n M 12 = -k c x n × √ g g ij ∇ t + ∂ n x n × √ g g ij x n (3.19)
In particular, The second term of the right side of the matrix M 12 can be transformed:

M 12 = -k c x n × √ g g ij ∇ t + ∂ n x n × √ g g ij x n = -k c x n × √ g g ij (∇ t + ∂ n x n ) = -k c x n × √ g g ij ∇ (3.20)
The first term on the left side of the matrix can be written:

∂ n ∇ t + k 2 c x n × √ gg ij x n × √ gg ij x n = (∂ n ∇ -∂ n ∂ n x n ) + k 2 c x n × √ gg ij x n × √ gg ij x n = ∂ n ∇ -∂ n ∂ n I -k 2 c x n × √ gg ij x n × √ gg ij x n (3.21)
The first term on the right side of the equation (3.21) may be translated on the left side so that an extended formulation can be obtained for all the components of the electromagnetic field in terms of the two longitudinal components:

(3.22) C 11 k c C 12 k c C 12 C 11 E G = ∂ n ∇ -k c x n × √ g g ij ∇ -k c x n × √ g g ij ∇ ∂ n ∇ E n G n
Finally, the term C 11 on the left side of (3.22) may be substituted by:

(3.23) x n × √ g g ij x n × √ g g ij F = [g ij ] x n (x n • F) -g nn F
and the expressions of the electromagnetic fields may be obtained from the longitudinal components by the simplified equation:

∂ n ∂ n + k 2 c g nn k c C 12 k c C 12 ∂ n ∂ n + k 2 c g nn E G = ∂ n ∇ + k 2 c g ij x n -k c x n × √ g g ij ∇ -k c x n × √ g g ij ∇ ∂ n ∇ + k 2 c g ij x n E n G n (3.24)
In the general case, the matrix operator cannot be translated on the right side of the equation but this form can help us to find a scalar decomposition. This is the main goal of the next section.

The scalar decomposition

In the following of the paper, all developments are performed according to the vector x 3 but any vector may be chosen. Let us introduce two auxiliary scalar functions W 1 and W 2 such that:

(4.1) E G = ∂ n ∇ + k 2 c g ij x n -k c x n × √ g g ij ∇ -k c x n × √ g g ij ∇ ∂ n ∇ + k 2 c g ij x n W 1 W 2
When there is no source term, Maxwell's equation are written in a compact form:

(4.2) -k c √ g g ij ∇ × I ∇ × I -k c √ g g ij E G = 0 0 so, by introducing (4.1) in (4.2), -k c √ g g ij ∇ × I ∇ × I -k c √ g g ij ∂ n ∇ + k 2 c g ij x n -k c x n × √ g g ij ∇ -k c x n × √ g g ij ∇ ∂ n ∇ + k 2 c g ij x n W 1 W 2 = 0 0 (4.3)
which becomes:

(4.4) -k c a k 2 c b k 2 c b -k c a W 1 W 2 = 0 0
with :

a = √ gg ij ∂ n ∇ + k 2 c g ij x n + ∇ × x n × √ gg ij ∇ (4.5) b = √ gg ij x n × √ g g ij ∇ + ∇ × g ij x n (4.6)
Since the product of the covariant metric tensor by the contravariant metric tensor is equal to identity, g ij [g ij ] = I d and due to the property

∇ × a × b = a (∇ • b) -b (∇ • a) + (b • ∇) a -(a • ∇) b, (4.7)
the operator a may be transformed:

a = √ gg ij ∂ n ∇ + k 2 c √ gx n + ∇ × x n × √ gg ij ∇ = √ gg ij ∂ n ∇ + k 2 c √ gx n + x n ∇ • √ gg ij ∇ -∂ n √ gg ij ∇ = √ gg ij ∂ n ∇ + k 2 c gx n + x n ∇ • √ gg ij ∇ - √ gg ij ∂ n ∇ = k 2 c √ g + ∇ • √ gg ij ∇ x n (4.8)
Moreover, after some tedious calculations, if x n = x 3 , it is possible to show that:

b = √ gg ij x 3 × √ g g ij ∇ + ∇ × g ij x 3 =   g[g ij ]   -g 21 -g 22 -g 23 g 11 g 12 g 13 0 0 0   ∇   +   0 -∂ 3 ∂ 2 ∂ 3 0 -∂ 1 -∂ 2 ∂ 1 0     g 13 g 23 g 33   (4.9)
Since the tensor matric is symmetric, one obtains:

b =   0 -g 33 g 23 g 33 0 -g 13 -g 23 g 13 0   ∇ +   -∂ 3 g 23 + ∂ 2 g 33 ∂ 3 g 13 -∂ 1 g 33 -∂ 2 g 13 + ∂ 1 g 23   =   -∂ 2 g 33 + ∂ 3 g 23 ∂ 1 g 33 -∂ 3 g 13 -∂ 1 g 23 + ∂ 2 g 13   +   -∂ 3 g 23 + ∂ 2 g 33 ∂ 3 g 13 -∂ 1 g 33 -∂ 2 g 13 + ∂ 1 g 23   = 0 (4.10)
The same result may be also obtained for x n = x 1 and x n = x 2 . Finally, the two scalar potentials W 1 and W 2 are governed by the same propagation equation:

(4.11) L (∇) = k 2 c + 1 √ g ∇ • √ g g ij ∇ = 0
According to the tensor analysis, the Laplacian operator of a scalar Φ may be written:

(4.12)

∇ 2 = 1 √ g ∂ ∂θ i √ g g ij ∂ ∂θ j = 0
So, Eq.( 4.11) is the diffusion Helmholtz equation expressed in the curvilinar coordinate system. This equation will be then described for some examples in section 5.

Finally, we can verify if the two first equations of Maxwell's equation in (3.1) are satisfied:

(4.13) ∇ • B = ∇ • µH = µ iZ ∇ • √ gg ij G
By using (4.11) and (4.9), after some calculations:

√ g g ij G = +k c ∇ × g ij x n W 1 -∇ × x n × √ g g ij ∇W 2 = ∇ × k c g ij x n W 1 + x n × √ g g ij ∇W 2 (4.14)
Due to the vector identity ∇ • (∇ × a) = 0, one obtains ∇ • B = 0. Likewise, the condition ∇ • D = 0 is also verified. Finally, let us define two scalar potentials so that:

W 1 = -iωµΓ W 2 = i Z Π (4.15)
we can write the scalar decomposition:

E = -iωµ ∂ n ∇ + k 2 c g ij x n Γ + x n × √ g g ij ∇Π H = k 2 c x n × √ g g ij ∇Γ + ∂ n ∇ + k 2 c g ij x n Π (4.16) 
Since b = 0 in Eq. (4.4), a occurs and by using (4.5), we can write two substitutions:

∂ n ∇ + k 2 c g ij x n = - 1 √ g g ij ∇ × x n × √ g g ij ∇ (4.17) x n × √ g g ij ∇ = - 1 √ g g ij ∇ × g ij x n (4.18)
So, the covariant components of the electromagnetic fields are expressed in the scalar potential decomposition:

E = +iωµ 1 √ g g ij ∇ × x n × √ gg ij ∇Γ + ∇ × g ij x n Π (4.19) H = - 1 √ g g ij ∇ × k 2 c g ij x n Γ + x n × √ gg ij ∇Π (4.20)
In the following of the paper, some particular curvilinear coordinate systems are introduced in order to verify the validity of this decomposition with respect to the works in the literature.

Examples of different curvilinear coordinate systems

In this section, several coordinate system are introduced in order to compare the formulation to other calculations exciting in the literature on the second order potential. Finally, the last section 5.4 provides a new writing concerning the translation coordinate system. 5.1. Application to the planar coordinate system. In the Cartesian coordinate system, the tensor metric is equal to Identity and the scalar decomposition becomes:

E = iωµ ∇ × x 3 × ∇Γ + x 3 Π (5.1) = iωµ ∇ × x 3 Π -∇ × x 3 Γ (5.2) H = ∇ × k 2 c x 3 Γ -∇ × x 3 Π (5.3)
This formula may be compared to the equation described in [START_REF] Bowler | Eddy current calculations using half-space Green's functions[END_REF][START_REF] William | Static and Dynamic Electricity[END_REF][START_REF] Felsen | Radiation and scattering of waves[END_REF]. Π of often called the Transverse Electric (TE) potential Γ is the Transverse Magnetic (TM) potential.

5.2.

Application to the cylindrical coordinate system. In a cylindrical coordinate system, let us consider (θ 1 , θ 2 , θ 3 ) = (r, θ, z).

x = r cos θ (5.4) y = r sin θ (5.5)

z = z (5.6)
The Jacobian matrix J defining the transformation from the Cartesian coordinates system to the cylindrical coordinates system is given by:

J = ∂x ∂θ =   ∂f ∂θ 1 ∂f ∂θ 2 0 ∂g ∂θ 1 ∂g ∂θ 2 0 ∂h ∂θ 1 ∂h ∂θ 2 1   =   cos θ sin θ 0 -r sin θ r cos θ 0 0 0 1   (5.7) 
The matrix representation of the covariant components of the metric tensor is given by:

(5.8) [g ij ] =   1 0 0 0 r 2 0 0 0 1  
and we denote by g the determinant g = |g ij | = r 2 . The matrix representation of the contravariant components of the metric tensor are given by:

g ij =   1 0 0 0 1 r 2 0 0 0 1   =   1 0 0 0 g 22 0 0 0 1   (5.9)
The transverse fields E t and G t are not coupled since the components of the metric tensor does not depend on the variable x 3 . From the scalar decomposition, the covariant components of the electrical field are given by:

E = +iωµ 1 √ g g ij ∇ × x 3 × √ gg ij ∇Γ + g ij x 3 Π (5.10) H = - 1 √ g g ij ∇ × k 2 c g ij x 3 Γ + x 3 × √ gg ij ∇Π (5.11) E 1 = E r = iωµ 1 r ∂Π ∂θ - ∂ 2 Γ ∂z∂r (5.12) E 2 = iωµ ∂Π ∂r - 1 r ∂ 2 Γ ∂z∂θ (5.13) E 3 = iωµ 1 r ∂ ∂r r ∂Γ ∂r + 1 r ∂ 2 Γ ∂ 2 θ (5.14)
The covariant vectors are related to the unit vectors in the Cartesian coordinate system:

(5.15)

  t 1 t 2 t 3   = J   t x t y t z  
The unit vectors of the cylindrical coordinates are related to the covariant vectors:

  e r e θ e z   =   cos θ sin θ 0 -sin θ cos θ 0 0 0 1     t x t y t z   =   cos θ sin θ 0 -sin θ cos θ 0 0 0 1   J -1   t 1 t 2 t 3   =   1 0 0 0 1 r 0 0 0 1     t x t y t z   (5.16)
and finally

E r = E 1 = iωµ 1 r ∂Π ∂θ - ∂ 2 Γ ∂z∂r E θ = 1 r E 2 = iωµ ∂Π ∂r - 1 r ∂ 2 Γ ∂z∂θ E z = E 3 = iωµ 1 r ∂ ∂r r ∂Γ ∂r + 1 r ∂ 2 Γ ∂ 2 θ
(5.17)

These last equations are similar to those existing in the literature [START_REF] Theodoulidis | Analytical modeling of wobble in eddy current tube testing with bobbin coils[END_REF]. The propagation equation (4.11) is given by:

(5.18) 1 r ∂ 1 (r∂ 1 ) + 1 r 2 ∂ 2 + ∂ 3 + k 2 c = 0
This equation is quite similar to the scalar Helmholtz equation expressed in the cylindrical coordinate system:

(5.19) ∇ 2 Γ + k 2 c Γ = 0 5.3. Application to the spherical coordinate system. In a spherical coordinate system, let us consider (θ 1 , θ 2 , θ 3 ) = (r, θ, φ).

x = r sin θ cos φ = θ 1 sin θ 2 cos θ 3 (5.20) y = r sin θ sin φ = θ 1 sin θ 2 sin θ 3 (5.21)

z = r cos θ = θ 1 cos θ 3 (5.22)
The Jacobian matrix J defining the transformation from the Cartesian coordinates system to the spherical coordinates system is given by:

J = ∂x ∂θ =   ∂f ∂θ 1 ∂f ∂θ 2 0 ∂g ∂θ 1 ∂g ∂θ 2 0 ∂h ∂θ 1 ∂h ∂θ 2 1   =   sin θ cos φ sin θ sin φ cos θ r cos θ cos φ r cos θ sin φ -r sin θ -r sin θ sin φ r sin θ cos φ 0   (5.23)
The matrix representation of the covariant components of the metric tensor is given by:

(5.24) [g ij ] =   1 0 0 0 r 2 0 0 0 r 2 sin 2 θ   and
√ g = r 2 sin θ. The matrix representation of the contravariant components of the metric tensor are given by:

(5.25)

g ij =    0 - r sin θ ∂ 3 r sin θ∂ 2   
in this case, we choose a longitudinal orientation along r = ru r . The scalar decomposition is given by:

E = +iωµ 1 √ g g ij ∇ × x 1 × √ gg ij ∇Γ + g ij x 1 Π (5.26) H = - 1 √ g g ij ∇ × k 2 c g ij x 1 Γ + x 1 × √ gg ij ∇Π (5.27)
The covariant vectors are related to the unit vectors in the Cartesian coordinate system:

(5.28)

  t 1 t 2 t 3   = J   t x t y t z  
The unit vectors of the spherical coordinates are related to the covariant vectors:

  e r e θ e φ   =   sin θ cos φ sin θ sin φ cos θ cos θ cos φ cos θ sin φ -sin φ -sin φ cos φ 0   J -1   t 1 t 2 t 3   =   1 0 0 0 1 r 0 0 0 1 r sin θ     t 1 t 2 t 3   (5.29)
and finally

E r = E 1 = iωµ cos θ r sin θ ∂Γ ∂θ + 1 r sin 2 θ ∂ 2 Γ ∂φ 2 - 1 r ∂ 2 Γ ∂θ 2 E θ = 1 r E 2 = -iωµ ∂ 2 Γ ∂r∂θ - 1 r ∂Γ ∂θ + 1 sin θ ∂Π ∂φ E φ = 1 r sin θ E 3 = -iωµ 1 sin θ ∂ 2 ∂r∂φ + 1 r ∂Γ ∂φ - ∂Π ∂θ
(5.30)

These last equations are rigorously similar to those existing in the literature [START_REF] Tsiboukis | Analytical and numerical solution of the eddy-current problem in spherical coordinates based on the second-order vector potential formulation[END_REF].

The propagation equation (4.11) is given by:

1 r 2 sin θ ∂ 1 r 2 sin θ∂ 1 + 1 r 2 sin θ ∂ 2 (sin θ∂ 2 ) + 1 r 2 sin θ ∂ 3 1 sin θ ∂ 3 + k 2 c = 0 (5.31)
This equation is quite similar to the scalar Helmholtz equation expressed in the spherical coordinate system:

(5.32)

∇ 2 Γ + k 2 c Γ = 0 5.4.
Application to the translation coordinate system. Starting from the Cartesian coordinate system (x, y, z), a 2D boundary surface may be described by a parametric form a(x, y) and let us consider the translation coordinate system so that :

x = x 1 (5.33) y = x 2 (5.34) z = x 3 + a(x 1 , x 2 ) (5.35)

The height z of each point P (x, y, z) conforming the surface is translated in a simplified condition x 3 = 0. The jacobian matrix is given by: x + ȧ2 y

The components of the metric tensor does not depend on the variable x 3 . The field vector E t and G t are not coupled since the operator C 12 in Eq. (3.17) is null. The propagation equation (4.11) is given by:

∂ 2 1 + ∂ 2 2 + k 2 c + g 33 ∂ 2 3 + ∂ 3 ∂ 1 g 13 + g 13 ∂ 1 +∂ 3 ∂ 2 g 23 + g 23 ∂ 2 = 0 (5.39)
This last equation may be compared to the equations described by [START_REF] Granet | Analysis of diffraction by surface-relief crossed gratings with use of the Chandezon method: application to multilayer crossed gratings[END_REF] and [START_REF] Braham | Scattering of electromagnetic waves from twodimensional perfectly conducting random rough surfaces-study with the curvilinear coordinate method[END_REF].

Conclusion and future work

In this paper, a generalized second order potential formulation (SOVP) is proposed for solving scattering or radiation problems described in an arbitrary non orthogonal curvilinear coordinate system. This formulation takes advantages from the tensor analysis but no expertise is finally required for developing the expressions of the electromagnetic field in terms of two scalar potentials, usually the transverse electric potential and the transverse magnetic potential. For writing the components of the electrical field and the magnetic field for any curvilinear coordinate system, it is necessary to write the metric tensor which is easily defined in the paper and to use the vector cross product as usual in a Cartesian coordinate system. This SOVP formulation represents the key stone for implementing new numerical models dedicated to eddy current calculations based on the covariant form of the Maxwell'equations. By using a specific curvilinear coordinate system matching the geometry of the boundary surface, it is possible to write easily and analytically the boundary conditions implying the covariant and contravariant components of the electromagnetic field. In future work, a numerical method will be developed for calculating eddy currents induced in a conducting workpiece due to a 3D eddy current probe scanning the boundary surface described by an arbitrary and irregular geometry.
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