Model-based predictive control of a solar reactor dedicated to syngas production

Youssef Karout, Axel Curcio, Julien Eynard, Stéphane Thil, Sylvain Rodat, Stéphane Abanades, Stéphane Grieu

To cite this version:

Youssef Karout, Axel Curcio, Julien Eynard, Stéphane Thil, Sylvain Rodat, et al.. Model-based predictive control of a solar reactor dedicated to syngas production. SOLARPACES 2022, Sep 2022, Albuquerque (Nouveau Mexique), United States. cea-04289730

HAL Id: cea-04289730
https://cea.hal.science/cea-04289730
Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A solar spouted-bed gasifier has been conceived by Bellouard et al. [1], and its hybrid solar-autothermal operation has been investigated by Boujjat et al. [2] and Curcio et al. [3].

This work aims at conciliating the solar-autothermal hybrid control strategy of a gasifier with the efficient implementation of a model-based predictive control (MPC) algorithm.

Goal: maintain reactor’s temperature to ensure its stability and optimal chemical reactions.

Solar reactor modeling

- Oxygen flow rate is controlled by an adaptive proportional integral derivative (PID) controller with optimized gains.
- Defocussing factor is controlled by a rule-based controller as follows:

\[
D(t) = \begin{cases}
1, & \text{if } \text{DNI}(t) \leq 800 \text{ W m}^{-2} \text{ and } T(t) < 1473 \text{ K} \\
800 \text{ DNI}(t) & \text{if } \text{DNI}(t) > 800 \text{ W m}^{-2} \text{ and } T(t) > 1473 \text{ K}
\end{cases}
\]

Model-based predictive controller

- MPC strategy 1: maintain the reactor’s temperature at any cost.

\[
\text{minimize } \sum_{k=1}^{n} (T(t+k) - S_p)^2 \\
\text{subject to } 0 \leq D(t+k) \leq 1 \text{ and } 0 \leq f_{\text{oxygen}}(t+k) \leq 2
\]

- MPC strategy 2: maintain the reactor’s temperature, while minimizing O2 consumption and maximizing solar energy use.

\[
\text{minimize } \sum_{k=1}^{n} (T(t+k) - S_p)^2 + \beta f_{\text{oxygen}}(t+k)^2 - \gamma D(t+k)^2 \\
\text{subject to } 0 \leq D(t+k) \leq 1 \text{ and } 0 \leq f_{\text{oxygen}}(t+k) \leq 2
\]

- DNI forecasts: perfect forecasts, smart persistence forecasts, and proposed image-based forecasts.

Simulation results over one week and case studies