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SUMMARY

Age profiling of archaeological bone assemblages can inform on past animal man-
agement practices, but is limited by the fragmentary nature of the fossil record
and the lack of universal skeletal markers for age. DNA methylation clocks offer
new, albeit challenging, alternatives for estimating the age-at-death of ancient in-
dividuals. Here, we take advantage of the availability of a DNAmethylation clock
based on 31,836 CpG sites and dental agemarkers in horses to assess age predic-
tions in 84 ancient remains. We evaluate our approach using whole-genome
sequencing data and develop a capture assay providing reliable estimates for
only a fraction of the cost. We also leverage DNA methylation patterns to assess
castration practice in the past. Our work opens for a deeper characterization of
past husbandry and ritual practices and holds the potential to reveal age mortal-
ity profiles in ancient societies, once extended to human remains.

INTRODUCTION

Zooarchaeological research is aimed at understanding the diversity of human-animal relationships in the

past.1 It has traditionally built on the analysis of morphological variation, which allows for the taxonomic

and sex identification of archaeological bone assemblages,2 as well as their geospatial differentiation.3

The presence of bone cut marks and tooth bit wear4 also typically provide insights into butchery and

bridling practice,5 while isotopic signatures can reveal patterns of animal mobility throughout their lives,6

including seasonal mobility and diet.7

Recent advances in ancient DNA research have democratized access to genome data from archaeolog-

ical osseous material.8 While most attention is focused on ancient human remains, providing fine-grained

resolution into the atlas of past human migrations,9 the genomic analysis of non-human archaeological

remains has also improved our understanding of past human-animal relationships, especially in the

context of animal domestication.10 For example, whole-genome sequence data from ancient animals

have clarified the debated origins of several species, including horses11 and dogs,12,13 as well as their

further geographic spread post-domestication and differentiation into modern breeds.14 While this

research has typically concentrated on charting changing patterns of genetic ancestry through space

and time, underpinning the expansion of particular bloodlines,15 it has more recently focused on unfold-

ing past breeding management practices.16 In goats, the identification of elevated inbreeding and

shared genetic relatedness among animals not otherwise associated with major skeletal changes has

indicated earlier-than-expected attempts of animal management at Ganj Dareh, Iran, around �10,200

years ago.17 Complete genome sequencing of the �2,300-year-old horses buried at Berel’, Kazakhstan,

has also illuminated the breeding and ritual practices of Scythian Pazyryk, within which diverse bloodlines

of various coat colorations were formed and sacrificed in the absence of inbreeding and male-driven

selection.18 Moreover, genotyping data for loci underlying key traits-of-interest have opened for the

prediction of phenotypes that do not otherwise fossilize, ranging from the physiological (e.g. speed19),

to the esthetical (e.g. color20 and height21) and behavioral (e.g. aggressivity11), and more (e.g.

ambling22).
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Figure 1. Archaeological samples

Samples subjected to target enrichment (Capture) or whole genome sequencing (WGS) are indicated with triangles and circles, respectively. Symbol sizes are

proportional to the number of samples investigated, while the numbers reported indicate their age, in years BCE (Before Common Era), if negative, and years CE

(Common Era), if positive. Colors refer to the genetic lineages investigated, with DOM2 referring tomodern domestic horses and non-DOM2 to any other lineage.

See also Table S1.
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No matter how successful ancient DNA analyses have already been, they hold the potential to improve

the characterization of past animal and breeding practice even further; since beyond the sole sequence

variation, patterns of nucleotidemisincorporation at sites that have been damaged after death carry epige-

netic information.23 In particular, following postmortem deamination, CpG sites are converted into TpG

sites if methylated, but into UpG sites if not.24,25 Enzymatic excision of Uracils prevents the incorporation

of UpG sites into ancient DNA libraries. This provides an excess of CpG/TpG conversions specifically

at those sites that were methylated when the animal died. Statistical packages, such as DamMet,26

automate the inference of the fraction, F, of cells carrying DNA methylation at any given locus or genomic

region of interest from patterns of CpG/TpG conversions in ancient DNA sequence data. Reliable infer-

ence requires high-coverage sequence data, which has hitherto limited the approach to only a handful of

specimens whose genomes were characterized following extensive sequencing efforts, including anatom-

ically modern humans,24,27,28 Neanderthals,25 and Denisovans.29 Despite DNA methylation clocks charac-

terized across several species, including humans,30 equids,31 and other vertebrates,32 previous attempts to

infer the age-at-death of ancient individuals from DNA methylation levels at key CpG loci have largely

lacked precision.27,33 Yet, the age profile of ancient animal communities can provide important insights

into past breeding practices, with culling patterns indicating management optimization toward animal

production.34 In addition, differentially methylated regions have been recently reported in castrated and

non-castrated males (e.g. in sheep35; in horses36). This opens the potential for the identification of the

castration status of ancient animals on the basis of patterns of DNA methylation.

In this study, we developed the first reliable DNA methylation clock for ancient horses. We first validated

our methodology on shotgun sequencing data from 49 ancient horses whose genome was previously char-

acterized at moderate to high coverage. As shotgun sequencing ancient genomes to high coverage is

generally not cost effective, we developed a new target-enrichment technology for characterizing 1,611

CpG sites at high coverage from limited DNA sequencing efforts. These sites were selected for showing

age-dependent changes in DNAmethylation levels and to encompass regions reported to be differentially

methylated in castrated and non-castrated males.36 Our approach is, thus, tailored to predict the age-at-

death and the castration status of ancient horse remains from patterns of ancient DNA methylation. It can

be extended to any other animal species and provides zooarchaeologists with an augmented range of

predictable phenotypes informing on past breeding management strategies.
RESULTS AND DISCUSSION

Whole-genome sequencing (WGS)

Previous work has shown that high-quality sequence data are necessary for DNA methylation inference in

ancient individuals.27 We, thus, took advantage of 49 ancient horse genomes that were previously charac-

terized at relatively high coverage (4.69- to 24.24-fold on average) (Figure 1; Table S1) to infer DNA
2 iScience 26, 106144, March 17, 2023
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methylation levels for 31,836 CpG sites showing age-dependent profiles in modern horses36 and plains ze-

bras.31 We also increased the average genome sequence coverage to 6.94- and 7.04-fold for two ancient

specimens from Chartres, France, dating to the first–second century CE (GVA53_Fra_110 and GVA60_

Fra_110), and sequenced three new genomes from first century BCE specimens from France at 6.63-,

7.13-, and 8.08-fold (GVA661_Fra_m25, GVA607_Fra_m25, and GVA602_Fra_m25, respectively) (Table S1).

DNA methylation levels were inferred using the DamMet statistical package,26 which provides a probabilistic

framework to assess the fraction of cells, F, sequenced showing DNAmethylation at a given genomic coordi-

nate. This procedurewaspreviously reported to showbest performanceon sequencedata produced following

treatment of ancient DNA extracts with the USER enzymatic mix,26,33 which largely restricts the sequencing of

deaminated cytosines to methylated contexts only. In addition to sequence alignments, this method requires

users to indicate the genomic windows of interest and the average fraction of methylated cells in the tissue

analyzed. We aimed first to identify the best possible combination of parameters for retrieving accurate

DNA methylation estimates, following previous work26 and exploring F values ranging from 70% to 95%. We

also used genomic windows centered on each single CpG site but showing different sizes and containing

fromasingleCpGtoup to50flankingCpGsites (Figure2A). Theparameter combinationmaximizingSpearman

correlation coefficients betweenDNAmethylation levels estimated for ancient individuals and thosemeasured

in modern horses of the same sex was used in downstream analyses (Table S2A). Our overall methodological

approach is summarized in the left part of the flowchart shown in Figure 3, and involved further mathematical

transformation of the F DNA methylation values returned by DamMet.

These analyses revealed that DNA methylation inference was largely insensitive to the average fraction of

methylated cells considered, but could be significantly improved when using genomic windows containing

25–50 CpG sites, in line with previous reports in archaic hominins25 (Table S2A). The distribution of DNA

methylation values across the 31,836 genomic windows was, however, significantly different in ancient and

modern individuals (Figure 2B), with the latter showing a lack of sites fully methylated (F = 1) and

unmethylated (F = 0). Tomitigate this, we built a first statistical model based on Random Forest (RF) regression

to transform the ancient DNAmethylation values inferred by DamMet,26 according to the values measured in

modern horses, and accounting for the sequence coverage achieved in each genomic window. We then fol-

lowed previous work37 and implemented a linear regression scheme relating modern and RF-transformed

ancient DNAmethylation values as a further mathematical transformation (Figure 2C). This two-steps proced-

ure significantly improved the correlation between ancient and modern DNAmethylation values (from 0.04 to

0.68 up to 0.83), despite maintaining a deficit of unmethylated and fully methylated sites.

Reassuringly, the transformed F-values proved sufficiently accurate to build a DNA methylation clock

model showing high correlation between the known and the predicted ages of 10 ancient horses (Pearson

correlation coefficient = 0.97; Figure 2D), with median absolute errors (MAE) of 1.94 years (Figure 2D). This

error range corresponds to approximately �6.5% of the average horse lifespan (�30 years), and �3.1% of

the longest-lived horse known to date (62 years). The underlying DNA methylation clock corresponds to a

linear and additive combination of the DNA methylation levels (following the two-steps transformation) at

29,113 CpG sites for the 10 ancient horses of known age-at-death, as assessed frompatterns of tooth wear,2

and normalized DNAmethylation values for 239modern horses of known date-of-birth (0.005–34 years old).

We assessed the prediction precision using bootstrap resampling of the CpG sites considered, given that

ancient DNA data often show uneven sequence coverage and patterns of missingness (100 pseudo-repli-

cates; Figure S1). It revealed overestimated ages for young horses below 5 years, and underestimated ages

for adults over 12 years (Figure 2E). Applying this clock model to 54 ancient horses of unknown age pre-

dicted ages spanning 2 to 18 years, with corresponding error margins of 0.37–0.79 years, consistent across

all age categories (Figure 2F).

Overall, the DNAmethylation clock model reconstructed here shows good performance but overestimates

the age of foals and underestimates the age of old adults. It, nonetheless, provides a reliable methodology

to sort ancient fragmentary remains according to increasing age categories, even in the absence of dental

remains allowing classical age determination in zooarchaeology.
In-solution target enrichment

DNA preservation of the vast majority of archaeological remains is not compatible with a cost-effective

characterization of high-quality genomes using shotgun sequencing.8 To expand the potential of our
iScience 26, 106144, March 17, 2023 3
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Figure 2. Age-at-death predictions based on WGS data

(A) Spearman correlation coefficient R between modern and raw ancient DNA methylation values (F%) centered at 31,836 CpG sites, for sample

GVA602_Fra_m25 and window sizes including 1 to 50 CpGs.

(B) Distribution of F values averaged across modern male individuals and raw F values predicted for sample GVA602_Fra_m25, and their Spearman

correlation coefficient R.

(C) Same as (B), after the two-step mathematical transformation of ancient F DNA methylation values.

(D) DNA methylation clock and performance in 10 ancient individuals of known age-at-death. Modern blood and liver DNA methylation values are shown in

light yellow and blue, respectively. Black horizontal bars indicate the temporal span of individual archaeological ages. Red vertical bars provide the precision

of predicted methylation age.

(E) Age prediction for 10 ancient individuals. Zooarchaeological ages-at-death are indicated in blue for comparison to those inferred using DNAmethylation

clocks (black).

(F) Precision of predicted age for 50 ancient individuals.

(G) Age mortality profiles in ancient DOM2 and non-DOM2 horses (left), ancient non-DOM2 males and females (center), and ancient DOM2 males and

females (right).

See also Figure S1, Table S2.
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Figure 3. Overview of prediction methods

Ancient DNA sequence data are converted into DNA methylation F values for a number of preselected CpG sites with

known DNAmethylation levels in modern horses. The age and castration status of modern horses are also known. Ancient

F values follow a two-steps mathematical transformation consisting of Random Forest (RF) and simple linear regressions,

before age-at-death prediction using a Generalized Linear Model explaining age-at-death as an additive function of DNA

methylation levels. The prediction of the castration status is based on several machine learningmodels trained on regions

differentially methylated in modern horses between castrated and non-castrated horses. The model showing best

prediction performance in a panel of 26 modern horses is finally applied on the transformed F values to predict the

castration status of each individual ancient horse.

See also STAR Methods.
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methodology to a wider range of ancient remains, we developed an in-solution target-enrichment

assay capturing the ancient DNA fragments present in libraries for a subset of 1,611 of the 31,836

CpG sites considered above (�5%, Table S3A, Figure S2). This approach was expected to significantly

reduce the experimental costs while increasing local sequence coverage by focusing sequencing efforts

only on a fraction of the sites. DNA probes were designed following Haak and colleagues (2015),38 and

consisted of two 60-mers flanking each targeted CpG site, plus two additional ones centered on the

CpG site, each carrying one of the two possible sequence variants (i.e. CpG and TpG). The latter two

were selected since methylated cytosines that are deaminated postmortem at CpG sites are

sequenced as TpGs following USER enzymatic treatment, while those left undamaged are sequenced

as CpGs.24

Our assay retrieved good sequence coverage across all targeted CpG sites (17.20- to 195.34-fold) for a

total of 33 ancient horse remains from France and spanning the last �2,300 years. The sequence data

proved sufficient to infer DNA methylation at 2,171 CpG sites, due to their physical proximity to the

1,611 CpG sites originally targeted. Repeating the methodology described above on the captured

sequence data, all the findings could be recapitulated, excepting that the correlation between the mod-

ern and the transformed ancient DNA methylation values was stronger than when using WGS data

(Spearman correlation coefficient = 0.92 vs. 0.84; Figures 2C and 4C). In addition, genomic windows con-

taining 15–50 CpG sites (instead of 25–50) were found to be most appropriate for mathematical trans-

formation, likely due to the higher coverage achieved at each site after target enrichment

(Figures 4A–4C; Table S3B). Following target enrichment, the final DNA methylation clock was calibrated

for a total of 2,171 CpG sites and assessed by comparing the known and predicted ages in a subset of 25

ancient horses (Figures 4D–4G). It showed reasonable performance (Pearson correlation coefficient =

0.77), while the trend to overestimate (underestimate) young (old) age categories persisted. MAE
iScience 26, 106144, March 17, 2023 5
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Figure 4. Age-at-death prediction based on target-enrichment data

(A–F) same as Figure 2, except that 33 ancient horses from France were analyzed. Panels B and C compare F DNA methylation values averaged across

modern male individuals and those inferred prior to and after mathematical transformation in sample GVA602_Fra_m25.

(G) Age mortality profiles amongst ancient DOM2 horses found in four archaeological contexts.

See also Figures S1 and S2, and Table S3.
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were, however, inflated when compared to the clock model constructed from WGS data (2.99 years vs.

1.94 years, corresponding to �10.0% and �6.5% of the average life expectancy in horses, respectively).

This is due to the more limited number of sites that were included in the reconstructions (Figures 4D–4F).

In the future, we expect that extending our target-enrichment assay to the whole set of 31,836 CpG could

improve the prediction accuracy at rather moderate experimental costs. Our current assay provides,

however, the first cost-effective experimental solution to assess age mortality profiles of ancient horse

populations with a less-than-one-year precision across all age categories represented in our ancient

panel (Figures 4G and S1).
6 iScience 26, 106144, March 17, 2023
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Ancient age mortality profiles

Our DNAmethylation clocks provided a first opportunity to explore the age mortality profiles of 84 ancient

horse specimens, including 52 for which the age could not be determined frompatterns of dental wear (Fig-

ures 1 and 2; Table S2B). WGS data did not support statistically different agemortality profiles in 34 domes-

tic horses belonging to the DOM2 lineage, and 20 horses belonging to other genetic lineages (non-DOM2,

excluding four showing missing data levels >10%; Figure 2G; Kruskal-Wallis test, p-value = 0.54). In addi-

tion, no statistically significant difference was found between sex in both genetic lineages considered (p-

value = 0.78, and 0.69). The DOM2 lineage was domesticated in the lower Don-Volga region around�4,200

years ago,11 and rapidly spread across Eurasia together with new equestrian technologies, including war-

fare chariots, replacing almost all other ancient lineages. Their spread was accompanied with an over-rep-

resentation of males in the archaeological assemblages,39 possibly following the extension of rising gender

inequalities in Bronze Age societies to prestige animals such as horses. With only 30 DOM2 males and 4

DOM2 females, all sampled across a wide variety of archaeological contexts, the statistical power for de-

tecting possible difference in the age-at-death of DOM2 males and females is limited. Therefore, future

work should examine a more extensive panel of ancient horses, especially from sacrificial DOM2 sites,

before concluding that the over-representation of males detected in horse assemblages did not focus

on specific age categories.

Similarly, target-enrichment sequence data indicated no statistical differences in the age mortality profiles

of various Iron Age, Roman, Medieval, and pre-Modern archaeological contexts, encompassing a wide

range of activities, from sacrificial burial sites (Gondole/L’Enfer and Vertault; N = 12) to food wastes, util-

itarian, and secular deposits. At present, these data, thus, support Iron Age ritual sacrificial practices not

focused on old animals but on animals that were on average 11.18 years old and could, thus, still provide

important services to the community. In addition, while horses of almost all age categories (6 to 17 years

old) were found in rendering waste deposits at Beauvais, their vast majority consisted of animals older

than 10 years old (Figure 2G). These animals were likely even older given the trend of our methodology

to underestimate the age of old animals. This finding indicates that horses were extensively used in Medi-

eval and pre-Modern contexts up until they died.
Sex determination and castration

Males and females exhibit different DNA methylation patterns on the X chromosome,40 which provides an

additional opportunity to validate the mathematically transformed DNAmethylation values inferred for the

ancient horses. We used WGS data and X-to-autosomal coverage ratios to determine their genetic sex,

following the study by Schubert et al.41 Principal component analysis of DNA methylation at the 960

CpG sites located on the X chromosome present in our modern comparative panel revealed clear

clustering of 42 ancient males and 8 ancient females with modern animals of the same sex. Two of the

333 modern horses that were previously reported as males36 were, however, found to group with females,

likely indicating erroneous sex assignment in the original data repository (Figure 5A). These samples were,

thus, disregarded in the following analyses. Interestingly, modern males are characterized by an excess of

hypomethylated CpG sites on the X chromosome, while females show a larger fraction associated with

DNA methylation ranging between 20% and 80% (Figure 5B). The same profile was retrieved across the

50 ancient horses investigated, further confirming the quality of the DNA methylation values obtained

following the two-steps transformation procedure described above (Figure 5C).

DNA methylation patterns along the X chromosome appeared, however, similar between uncastrated (i.e.

intact stallions) and castrated males (Figures 5A and S3), precluding their use as castration markers. To

assess the potential of DNAmethylation for castration prediction, we instead relied on CpG sites identified

in a previous EWAS analysis (epigenetic-wide association studies) to show different aging trajectories in

uncastrated and castrated males42 (Tables S4A–S4C). Multidimensional scaling of DNAmethylation values

in modern horses confirmed the non-overlapping clustering of intact stallions and castrated males aged

above 11 years old (Figures 5D and S4). These sites failed, however, to discriminate younger males accord-

ing to their castration status (Figure 5E). We, thus, restricted our analyses to the 8 males withWGS data that

were inferred to have died at a minimal age of 11 on the basis of our DNA methylation clock (WGS data).

We next used three machine learning approaches aimed at classifying castrated males and intact stallions

(Figure 3). These approaches included Support Vector Machine (SVM), Random Forest (RF), and General-

ized k-Nearest Neighbors (GKNN) algorithms, and were trained on the panel of 26 modern males.36 We
iScience 26, 106144, March 17, 2023 7
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Figure 5. Sex and castration predictions based on ancient DNA methylation

(A) PCA on DNA methylation values at 960 CpG sites located on the X chromosome. Modern females, and (un)castrated males are indicated, as well as

ancient males (ancM) and females (ancF). Two black circles in the central cluster at the bottom of the figure highlight those modern females likely mislabeled

as males.

(B) Distribution of five DNA methylation quantiles in modern males and females for the X chromosome.
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Figure 5. Continued

(C) Same as B), but reporting transformed F values for 50 ancient horses.

(D–F) Castration prediction based on ancient DNA methylation for the 59 candidate CpGs selected considering association level |R| R0.55. D) MDS

clustering of modern castrated and uncastrated males (>11 years-old). (E) Same as (D), for younger horses. (F) Machine learning predictions of the male

castration status. The barplot indicates the DNAmethylation age of 26 modern and 8 ancient males. Pie chart proportions reflect the probability for a male to

be castrated (C), or not (M).

See also Figures S3 and S4 and Table S4.
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assessed the prediction accuracy using a cross-validation approach based on a training set of 80% of the

individuals and performing predictions for the remaining 20% (Table S4C). We caution that the data avail-

able for training should be extended in a larger number of male individuals, especially in castrated males,

before the exact performance of each methodology can be fully appreciated. Both RF and GKNN returned

substantial classification errors, and average assignment probabilities below 0.25 and 0.425, respectively

(Figure 5F). In contrast, SVM only returned the expected predictions, with high average assignment prob-

abilities to both categories (0.93 for intact stallions, and 0.96 for castrated males; Figure 5F). Therefore, we

used the SVM approach to assess the castration status of 8 ancient horses aged above 11 and showing suf-

ficient WGS data. None of these specimens were predicted to be castrated, including three Pazyryk horses

from Berel’, Kazkhstan, a 2,300-year-old funerary ritual site known for the sacrifice of males.43 These results,

thus, contradict previous contention based on the slenderness of post-cranial skeletal elements,44 which

portrayed these males as castrated. Since the horses buried encompassed a full range of coat coloration

and age categories (18; this study), and did not represent a full family genealogy, we conclude that the exact

ritual practices underlying Pazyryk horse sacrifice remain to be deciphered.

Conclusions

In this study, we present both wet-lab and dry-lab procedures aimed at improving DNA methylation infer-

ence in ancient horse specimens. Our methodology returns estimates for the age-at-death that correlate

with standard estimates based on patterns of dental wear. It shows reasonable precision, within less than

one year based on both the full set of CpG sites and the reduced panel targeted in our DNA capture assay.

In contrast to standard approaches, our methodology is not restricted to teeth only, but can be applied to

other osteological remains, including the most fragmentary, provided that ancient DNA is preserved. We

also extend the current zooarchaeological toolkit for identifying castrated individuals. This work paves

the way for a more thorough characterization of past husbandry practices, taking full advantage of standard

archaeological approaches as well as genetic evidence, revealing phenotypes, admixture and selection

practices, and epigenetic inference, informing on age-at-death and castration. Extended to human archae-

ological remains, our approach holds the potential to measure changing age mortality profiles in past

societies in the face of major epidemiological outbreaks, as well as cultural and demographic transitions.

Limitations of study

While the horse DNA methylation clocks considered here are largely consistent in two somatic tissues,

DNA methylation values for modern horses are not yet available for osseous remains, such as those used

to gather ancient DNA sequence data. Future work should focus on generating DNA methylomes from

modern horse osseous and dental tissues to avoid possible tissue-specific changes in aging trajectories.

Furthermore, the DNAmethylation clocks considered here were constructed using the elastic linear regres-

sion between DNA methylation and age, as most commonly done. Whether other approaches, including

nonlinear models, can improve prediction remains to be tested. Finally, castration predictions are based

on a limited panel including 26 modern horse individuals, only four of which are castrated. More extensive

panels must be considered before the performance of the method presented can be fully assessed.
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Deleuze, J.-F., et al. (2021). Heterogeneous
hunter-gatherer and steppe-related
ancestries in late neolithic and bell beaker
genomes frompresent-day France. Curr. Biol.
31, 1072–1083.e10. https://doi.org/10.1016/j.
cub.2020.12.015.

28. Rasmussen, M., Li, Y., Lindgreen, S.,
Pedersen, J.S., Albrechtsen, A., Moltke, I.,
Metspalu, M., Metspalu, E., Kivisild, T.,
Gupta, R., et al. (2010). Ancient human
genome sequence of an extinct Palaeo-
Eskimo. Nature 463, 757–762. https://doi.
org/10.1038/nature08835.

29. Gokhman, D., Mishol, N., de Manuel, M., de
Juan, D., Shuqrun, J., Meshorer, E., Marques-
Bonet, T., Rak, Y., and Carmel, L. (2019).
Reconstructing Denisovan anatomy using
DNA methylation maps. Cell 179, 180–
192.e10. https://doi.org/10.1016/j.cell.2019.
08.035.

30. Horvath, S. (2013). DNA methylation age of
human tissues and cell types. Genome Biol.
14, R115–R120. https://doi.org/10.1186/gb-
2013-14-10-r115.
iScience 26, 106144, March 17, 2023 11

https://doi.org/10.1016/j.jas.2015.02.036
https://doi.org/10.1016/j.jas.2015.02.036
https://doi.org/10.30861/9780860541929
https://doi.org/10.30861/9780860541929
https://doi.org/10.1016/j.applanim.2021.105356
https://doi.org/10.1016/j.applanim.2021.105356
https://doi.org/10.2993/0278-0771-36.3.554
https://doi.org/10.2993/0278-0771-36.3.554
https://doi.org/10.1016/j.jasrep.2020.102313
https://doi.org/10.1016/j.jasrep.2020.102313
https://doi.org/10.1038/s41598-019-41033-3
https://doi.org/10.1002/2688-8319.12100
https://doi.org/10.1002/2688-8319.12100
https://doi.org/10.1038/s43586-020-00011-0
https://doi.org/10.1038/s43586-020-00011-0
https://doi.org/10.1016/j.jhevol.2014.06.015
https://doi.org/10.1016/j.jhevol.2014.06.015
https://doi.org/10.1038/s41576-020-0225-0
https://doi.org/10.1038/s41576-020-0225-0
https://doi.org/10.1038/s41586-021-04018-9
https://doi.org/10.1038/s41586-021-04018-9
https://doi.org/10.1126/science.aaf3161
https://doi.org/10.1126/science.aaf3161
https://doi.org/10.1038/s41586-022-04824-9
https://doi.org/10.1073/pnas.1901169116
https://doi.org/10.1073/pnas.1901169116
https://doi.org/10.1016/j.cell.2019.03.049
https://doi.org/10.1016/j.cell.2019.03.049
https://doi.org/10.1126/science.abo3503
https://doi.org/10.1126/science.abo3503
https://doi.org/10.1073/pnas.2100901118
https://doi.org/10.1073/pnas.2100901118
https://doi.org/10.1126/science.aam5298
https://doi.org/10.1126/science.aam5298
https://doi.org/10.1038/ncomms1644
https://doi.org/10.1038/ncomms1644
https://doi.org/10.1007/s003359900264
https://doi.org/10.1007/s003359900264
https://doi.org/10.1016/j.cub.2021.11.052
https://doi.org/10.1038/srep38548
https://doi.org/10.1038/srep38548
https://doi.org/10.1007/13836_2018_18
https://doi.org/10.1007/13836_2018_18
https://doi.org/10.1101/gr.163592.113
https://doi.org/10.1126/science.1250368
https://doi.org/10.1093/gigascience/giz025
https://doi.org/10.1093/gigascience/giz025
https://doi.org/10.1016/j.cub.2020.12.015
https://doi.org/10.1016/j.cub.2020.12.015
https://doi.org/10.1038/nature08835
https://doi.org/10.1038/nature08835
https://doi.org/10.1016/j.cell.2019.08.035
https://doi.org/10.1016/j.cell.2019.08.035
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1186/gb-2013-14-10-r115


ll
OPEN ACCESS

iScience
Article
31. Larison, B., Pinho, G.M., Haghani, A., Zoller,
J.A., Li, C.Z., Finno, C.J., Farrell, C., Kaelin,
C.B., Barsh, G.S., Wooding, B., et al. (2021).
Epigenetic models developed for plains
zebras predict age in domestic horses and
endangered equids. Commun. Biol. 4, 1412.
https://doi.org/10.1038/s42003-021-02935-z.

32. Horvath, S., Lu, A.T., Haghani, A., Zoller, J.A.,
Li, C.Z., Lim, A.R., Brooke, R.T., Raj, K., Serres-
Armero, A., Dreger, D.L., et al. (2022). DNA
methylation clocks for dogs and humans.
Proc. Natl. Acad. Sci. USA 119. e2120887119.
https://doi.org/10.1073/pnas.2120887119.

33. Hanghøj, K., Seguin-Orlando, A., Schubert,
M., Madsen, T., Pedersen, J.S., Willerslev, E.,
and Orlando, L. (2016). Fast, accurate and
automatic ancient nucleosome and
methylation maps with epiPALEOMIX. Mol.
Biol. Evol. 33, 3284–3298. https://doi.org/10.
1093/molbev/msw184.

34. Brusgaard, N.Ø., Dee, M.W., Dreshaj, M.,
Erven, J., van den Hurk, Y., Raemaekers, D.,
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

osteological remain this study GVA1107_Fra_1650

osteological remain this study GVA1108_Fra_1650

osteological remain this study GVA1109_Fra_1650

osteological remain this study GVA1111_Fra_1650

osteological remain this study GVA1112_Fra_1650

osteological remain this study GVA1113_Fra_1650

osteological remain this study GVA1117_Fra_1650

osteological remain this study GVA1119_Fra_1650

osteological remain this study GVA1122_Fra_1650

osteological remain this study GVA3_Fra_110

osteological remain this study GVA34_Fra_110

osteological remain this study GVA37_Fra_110

osteological remain this study GVA602_Fra_m25

osteological remain this study GVA603_Fra_m25

osteological remain this study GVA607_Fra_m25

osteological remain this study GVA609_Fra_m25

osteological remain this study GVA610_Fra_m25

osteological remain this study GVA630_Fra_m25

osteological remain this study GVA639_Fra_2

osteological remain this study GVA643_Fra_m25

osteological remain this study GVA647_Fra_m25

osteological remain this study GVA649_Fra_m25

osteological remain this study GVA652_Fra_m25

osteological remain this study GVA661_Fra_m25

osteological remain this study GVA69_Fra_110

osteological remain this study GVA226_Fra_250

osteological remain this study GVA373_Fra_1550

osteological remain this study GVA758_Fra_1800

osteological remain this study GVA764_Fra_1800

osteological remain this study GVA768_Fra_1800

osteological remain this study GVA827_Fra_150

osteological remain this study GVA839_Fra_1675

osteological remain this study GVA980_Fra_1100

Chemicals, peptides, and recombinant proteins

Proteinase K 100 MG Thermo Fisher Scientific Cat# 10103533

H2O, Molecular Biology Grade,

Fisher BioReagents

Thermo Fisher Scientific Cat# 10490025

Tween 20 100 ML Thermo Fisher Scientific Cat# 10113103

Ethanol, Absolute, Mol Biology Grade Thermo Fisher Scientific Cat# 10644795

5M Sodium Chloride 100 ML Thermo Fisher Scientific Cat# 10609823

USER Enzyme New England Biolabs Cat# M5505L

NEBNext End Repair Module New England Biolabs Cat# E6050L

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Bst DNA Polymerase New England Biolabs Cat# M0275L

NEBNext Quick Ligation Module New England Biolabs Cat# E6056L

BSA Molecular Biology Grade New England Biolabs Cat# B9000S

N-Lauroylsarcosine solution 30% 500 mL Dutscher N-Lauroylsarcosine solution 30% 500 mL

ACCUPRIME PFX DNA POLYMERASE 100 mL Thermo Fisher Scientific Cat# 10472482

Agencourt AMPure XP - 60 mL Beckman Coulter Cat# A63881

Buffer PE QIAGEN Cat# 19065

Buffer PB QIAGEN Cat# 19066

Buffer EB QIAGEN Cat# 19086

EDTA 0.5M pH 8.0 Fisher Thermo Fisher Scientific Cat# 10182903

Tris HCl, 1M, pH 8.0, 100 ML Thermo Fisher Scientific Cat# 10336763

dNTP Set 100 mM 100 mL Thermo Fisher Scientific Cat# 10336653

Critical commercial assays

Tapestation screenTape D1000 HS Agilent Cat# 5067-5584

MinElute PCR Purification kit QIAGEN MinElute PCR Purification kit

Mybaits R V5.02 target capture kit Daicel Arbor Biosciences Cat# 502

Deposited data

ENA this study PRJEB56293

Software and algorithms

DamMet (Hanghøj et al., 2019)26 https://github.com/grenaud/gargammel

mapDamage2 (Jonsson et al., 2013)45 https://ginolhac.github.io/mapDamage

R (Team, 2013)46 https://www.R-project.org/

AdapterRemoval2 (Schubert et al., 2016)47 https://github.com/MikkelSchubert/

adapterremoval

PALEOMIX (Schubert et al., 2014)48 https://github.com/MikkelSchubert/paleomix

Bowtie2 (Langmead et al., 2012)49 https://bowtie-bio.sourceforge.net/bowtie2/

index.shtml
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources, material and reagents should be addressed and will be ful-

filled by the lead contact, Ludovic Orlando ludovic.orlando@univ-tlse3.fr.
Materials availability

This study did not generate new unique reagents.

Data and code availability

The sequence data reported in this paper have been deposited to the European Nucleotide Archive (ENA:

PRJEB56293). All other previously published genomic data used in this study are available at the sources

referenced in the quantification and statistical analysis section. The code used in this study is listed in

the key resources table. Code produced from this study is available via Github (https://github.com/

xuefenfei712/MethylationAge).
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Archaeological information

The 33 bone remains new to this study were collected from nine archaeological sites in present-day

France (Table S1), whose archaeological contexts were fully described in previous work (Lepetz et al.,
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2021): Vertault (25 BCE; N=5), Gondole/Enfer (Orcet - La Roche Blanche - L’Enfer, Le Cendre – Gondole –

Les piots; 1st century BCE – 1st century CE; N=7), Chartres Roman (Boulevard de la Courtille C277.2; 1st-2nd

century CE, �110 CE; N=4), Amiens (Rue Legrand Daussy; 2nd-3rd century CE, �150 CE; N=1), Boves (La

Vallée de Glisy; 2nd-3rd century CE, Z250 CE; N=1), Chambly (Impasse du Moulin; 11th-13th century CE,

�1100 CE; N=1), Beauvais (Villiers-de-l’Isle Adam, 16 th-17th century CE, �1550 CE; Abord du Théâtre,

17 th-18th century CE, �1650 CE; N=10), Saint-Quentin (18 rue des Faucons; 17 th-18th century CE, Z1675

CE; N=1), and Bernolsheim Momenheim (Plateforme Départementale Activité zone Sud, 18th-19th century

CE, �1800 CE; N=3). In downstream analyses, samples showing similar dates and geographical locations

were grouped together (i.e. samples from Chartres Roman, Amiens and Boves were labelled ‘‘Chartres Ro-

man’’, and samples from Beauvais, Chambly, Saint-Quentin and Bernolsheim Momenheim were consid-

ered as the ‘‘Beauvais’’ group). All bone remains consisted of petrosal bones, excepting the radius bone

from the Chambly site. The horse bones collected at the two Iron Age sites of Gondole/Enfer and Vertault

were the only ones found within well-established horse sacrificial ritual deposits.50–53 Bones collected at the

urban sites of Beauvais (Abords du Théâtre) and Chartres Roman (Boulevard de la Courtille C277.2) were

excavated within constructions aiming at draining humid zones.50 Other horse bones were found in rural

elite (Boves, secular deposit), rural civil (Chambly, food waste and Bernolsheim Momenheim, rendering

waste) and urban civil (Amiens, food waste and Saint-Quentin, rendering waste) contexts.50,51

All samples were collected under the official agreement signed between the sample providers (SL and BC,

Natural History Museum, Paris, France) and the Centre for Anthropobiology and Genomics of Toulouse

(CAGT, France), where the analyses were carried out.

Age-at-death of horse individuals previously published43 and those new to this study were estimated

through morphological examination of the remains by SL and BC, following the methodology from,2 based

on patterns of tooth wear and dental eruption.
METHOD DETAILS

Ancient DNA extraction, library construction and sequencing

Wet-laboratory procedures were conducted at CAGT, following protocols outlined by Seguin-Orlando and

colleagues,27 Fages and colleagues15 and Librado and colleagues.11 Pre-PCR steps, including sample dril-

ling, DNA extraction and sequencing library construction, were performed in lab facilities strictly dedicated

to the analysis of ancient remains, and located in separate buildings from those where modern and post-

PCR molecules are manipulated. In brief, around 210-790mg of bone powder was generated using the

Mixel Mill MM200 (Retsch) Micro-dismembrator or a mortar; DNA was then extracted following the Y2 pro-

cedure recommended by Gamba and colleagues.54 The DNA extracts were subjected to Uracil-Specific

Excision Reagent (USER, NEB), removing uracil residues generated by the post-mortem deamination

of non-methylated cytosines.55 Double-stranded DNA templates were built into Illumina sequencing

libraries, with two internal indexes added at the adapter ligation step and one external index incorporated

during the PCR enrichment reactions, following a protocol described in.56,57 After AMPure-bead purifica-

tion and quantification using both the Qubit (HS assay) and TapeStation (D1000 assay) instruments, 25–50

DNA sequencing libraries were pooled and sequenced at low depth on a MiniSeq instrument at the CAGT

(High-Output 80 Paired-Endmode) to screen for equine library content. For samples GVA602, GVA607 and

GVA661, extra sequencing libraries were produced and further deep sequenced on the Illumina HiSeq4000

instrument (76 Paired-End mode) at the Genoscope (France Génomique), resulting in 502.3, 378.8 and

415.7 million sequences, respectively (Table S1). Extra sequencing data were generated in the same

conditions to increase the genome coverage for samples GVA53 and GVA60, previously published in,15

resulting in 389.0 and 408.7 million sequences and a final average depth-of-coverage of 6.94- and

7.04-fold, respectively (Table S1).
In-solution target enrichment

DNA capture probes were designed at CAGT to target 1,611 genomic CpG sites showing age-dependent

profiles in horses,36 following the procedure described in Haak and colleagues (2015).38 Those regions

overlapped with a total 2,171 CpG sites informing on DNA methylation clock, 34% of which were distrib-

uted in introns, 24% in intergenic regions, and 11% in promoters (Figure S2A). Probes were synthesized

as single-stranded biotinylated DNA oligonucleotides by Daicel Arbor Biosciences (Ann Arbor, MI, USA)

(Table S3A).
16 iScience 26, 106144, March 17, 2023
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Sequencing libraries showing endogenous horse DNA content above 50% were selected for target enrich-

ment. To ensure sufficient amount of DNA templates for in-solution capture, each library was amplified in

two consecutive rounds of eight parallel 25 mL PCR reactions. Aliquots of 2uL of the non-amplified library

were PCR-amplified for a first round of 8 cycles, following the conditions described in11. After a MinElute

column purification step (QIAGEN), aliquots of 1 to 3 mL of each of the 25uL eluates were subjected to a

second round of 10 PCR cycles using IS5 and IS6 primers.58 Final products were pooled, purified on a single

MinElute column, using elution volumes of 25mL, and quantified using both the Qubit (HS assay) and

TapeStation (D1000 assay) instruments. Amplified libraries were sent to Daicel Arbor Biosciences as

pools of four libraries in six separate batches. Upon arrival, the pools were quantified via a spectrofluoro-

metric assay to measure total DNA concentration and via a qPCR assay to quantify properly adapted

molecules. At least 1 mg of each pool was taken through to capture following the protocol outlined in

the myBaits Expert Human Affinites v1 manual (https://arborbiosci.com/wp-content/uploads/2021/03/

myBaits_Expert_HumanAffinities_v1.0_Manual.pdf).

After the first hybridization, the capture supernatant was collected and saved. After the second round of

capture, the pools were amplified using i5 and i7 indexing primers to re-write the external indexes of

the libraries. The amplified captured library pools were visualized on the TapeStation (Agilent) instrument.

For each batch, a sequencing pool was prepared from all captures in equimolar ratios. Sequencing was

performed on the NovaSeq 6000 platform (S4 lanes, 150 Paired-End mode), producing 9.8–55.6 million se-

quences per library (Table S1). Demultiplexed, but otherwise raw, FASTQ files were delivered electronically

to the CAGT.

QUANTIFICATION AND STATISTICAL ANALYSIS

Whole genome sequencing data collection

We gathered a total of 54 ancient horse genomes characterized at medium-to-high-coverage. These rep-

resented 51 genomes that were obtained from previously published data,11,15,18,57,59 including three newly

sequenced for this study and two for which additional sequence data were generated. Detailed information

is provided in Table S1.

Read processing, trimming and alignment

Sequencing reads were processed as described by Librado and colleagues.11 Briefly, fastQ sequencing

reads were demultiplexed, collapsed and trimmed using AdapterRemoval2 (version 2.3.0; –barcode-

mm-r[12] 1 –minlength 25 –trimns –trimqualities –minadapteroverlap 3 –mm 5).47 In PALEOMIX version

1.2.13.2,48 collapsed, truncated and paired reads were aligned against the horse reference genome

EquCab3,60 supplemented with the Y-chromosomal contigs from Felkel et al. 2019.61 This was achieved us-

ing Bowtie249 and the parameters from.62 BAM alignments were realigned locally around indels. Reads

showingmapping quality below 25 and PCR duplicates were filtered out. Post-mortemDNA damage levels

were measured on 100,000 random reads per library using the mapDamage2 software (version 2.0.8)45 to

verify that the nucleotide mis-incorporation and fragmentation profiles exhibited features expected for

USER-treated ancient DNA molecules.

Detection of DNA methylation levels

We assessed DNA methylation levels using DamMet,26 with genomic windows centered on each of the

31,836 (WGS data) or 2,171 (capture data) CpG sites underlying the HorvathMammalMethylChip40

mammalian methylation array.36 Calculations were performed from cytosine deamination profiles at

CpG and Cp[ACT] sites, accounting for sequencing errors, and considering genomic windows containing

1 and up to 50 CpGs (Figures 2A and 4A; 1_CpG, 2_CpG, 3_CpG, 4_CpG, 5_CpG, 6_CpG, 7_CpG, 8_CpG,

9_CpG, 10_CpG, 15_CpG, 20_CpG, 25_CpG, 30_CpG, 35_CpG, 40_CpG, 45_CpG and 50_CpG).

Increasing percentages for the expected average cellular methylation levels were also considered from

70% to 95% (step-size = 5%).

Ancient DNA methylation inference

The normalized methylation data for modern horses based on the HorvathMammalMethylChip40 array36

were downloaded from Gene Expression Omnibus (Accession Number GSE174767). The ancient genomes

used in the present study are sequenced from tooth or bone DNA extracts. As no reference methylation

maps for modern horses are available for these specific tissues, we used averaged values over all tissues,
iScience 26, 106144, March 17, 2023 17
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based on the assumption that bone and tooth methylation levels are similar to mean methylation levels

across tissues.63 Spearman correlation levels between untransformed ancient and modern DNA methyl-

ation levels for different average cellular methylation fractions (70%–95%), and CpG window sizes (from

1 to 50 CpGs), are shown in Table S2A.
Mathematical transformation of ancient DNA methylation values

The major obstacles to correlating modern and ancient DNAmethylation levels pertain to the biases intro-

duced by the different detection methods used (DNA sequencing for the former and DNA methylation

array for the latter), but also to the lack of fine-scale resolution of ancient methylation maps.64 To improve

ancient DNA methylation inference, we applied mathematical transformation of DamMet methylation

scores based on a two-step procedure. This first step built on a previously-described machine learning

approach,65 which we extended to output DNA methylation percentage values instead of binary 0 and 1

categories. To achieve this, we used the randomforest (RF) package66 in R4.167 and regressed the DNA

methylation values inferred by DamMet26 from ancient DNA sequence data against those measured in

modern horses, accounting for the sequencing depth of the ancient data for each CpG site. Separate RF

models were constructed for ancient WGS and capture data. We used a 10-fold cross-validation approach,

with 500 ntree (the total number of trees to grow in the forest) andmtry (the number of variables randomly

sampled as candidates at each split) set as default, to obtain the best regression parameters. More specif-

ically, the parameter (X) leading to highest regression for a given individual were obtained for the following

function:

ðmodFÞX = ðancFÞ2 + ancF +Dep + ancF � Dep (Equation 1)

with:modF representing the matrix of DNAmethylation values averaged for modern males (females), if the

ancient individual considered is a male (female), ancF the DNA methylation values inferred by DamMet for

a given ancient individual, Dep the sequencing depth for each site. The interaction effect between ancF

and Dep (ancF*Dep in R) was also included in the model.

We built separate RFmodels for ancient WGS and capture data using the same procedures. For modelling,

we excluded age-dependent CpG sites as well as those diagnostic for castration, leading to input datasets

of 29,655 sites for WGS and 1,902 sites for capture data. Input data were randomly split into a training set

(90% of the samples) and a test set (10%) for validation. The best X parameter identified and Equation 1

were the used to transform DNA methylation values for the 31,836 sites considered for WGS data, or the

2,171 sites considered for DNA capture.

As a further transformation step, we conducted a Simple Linear Regression (SLR),37 following the formula

below, where Predict(RF) represents the predicted value obtained from the model optimized following RF

and described in 1:

modF = a3predictðRFÞ+b (Equation 2)

Sites with residual errors above one standard error were excluded for later analysis. Furthermore, four in-

dividuals showing >10% missingness across the CpG sites considered were disregarded (CGG101397_

Rus_1825, CGG10022_Rus_m40610, CGG10023_Rus_m14170, and Batagai_Rus_m3136). Additionally, a

total of 2,723 sites that were missing after transformation in more than 10% of the remaining ancient indi-

viduals (WGS data) were also disregarded, resulting in a final set of 29,113 CpG sites. For capture data, no

individuals were dismissed, but 112 sites were excluded due to missingness. When less than 10% of the

sites were missing for a given individual, missing values were imputed using k-nearest neighbor (KNN),

with default parameters.68 This provided the transformed ancient DNA methylation values that were

considered in downstream analyses.
Principal component analysis

Principal component analysis (PCA) of DNA methylation values was performed using the R function

prcomp,46 on the merged dataset of samples passing the filtering criteria (333 modern individuals and

84 ancient individuals, Figure S2B). DNAmethylation values for modern individuals corresponded to those

measurements returned by the HorvathMammalMethylChip40 array,36 while those of ancient specimens

were the values inferred by DamMet,26 following the transformation procedures described above.
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Building DNA methylation clocks

We developed two DNA methylation clocks, one based on WGS data (29,113 CpG sites, after filtering for

missingness) and one based on capture data (2,059 CpG sites, after filtering for missingness). They were

both built using generalized linear models through the glmnet package in R.67 Modern DNA methylation

data for 239 individuals of known date-of-birth were retrieved from blood and liver tissues only, as these

were previously reported to provide highly accurate modern epigenetic clocks.36 DNA methylation avail-

able for other tissues were, thus, disregarded.

We first used DNAmethylation data to optimize alpha, the elastic net mixing parameter of the generalized

linear model relating DNA methylation and biological age, by investigating values ranging from 0 (Ridge)

to 1 (Lasso), using 0.1 increments. Those ancient individuals for which biological ages could be determined

based on anatomical features were retained for DNAmethylation clock calibration, together with the mod-

ern individuals. Transformed DNA methylation values for the 10 horses with WGS data and the 25 horses

with capture data were merged with the untransformed DNA methylation values for 239 modern horses,

resulting in two respective matrices underlying two different DNA methylation clocks (Tables S2B and

S3C). The returned optimized value of 0.9 was used in downstream analyses. Penalty parameters lambda

minimizing mean errors were determined automatically by using a 10-fold internal cross-validation

(cv.glmnet),69 following.36 To assess the accuracy of our DNA methylation age estimators, we used the

‘‘leave one out cross-validation’’ (LOOCV) scheme, applying the glmnet with the best optimal parameters

leaving one sample out and predicting the age of that sample. The procedure was then iterated over all

samples. All sites showing glmnet coefficients equal to zero were removed for predictions, following pre-

vious work.35

Both Pearson’s correlation coefficients and Mean Absolute Errors (MAE) were used to measure the robust-

ness and accuracy of the DNAmethylation clocks reconstructed. The Pearson’s correlation R was calculated

between biological and methylation age, following.70 The MAE metric measures the average absolute dif-

ferences between predictions and true values. Bootstrapping across CpG sites allowed us to evaluate the

95% Confidence Intervals of age predictions (calculated with the Rmisc package; N=100). The age

precisions for modern and ancient samples are shown in Figures 3E, 4E, and S1.
Sex detection from DNA methylation data

Due to X-chromosome inactivation in females,71 males and females can be differentiated on the basis of

their levels of DNA methylation along this chromosome. We used DNAmethylation data from 333 modern

horses of known sex, and 50 ancientWGS data whose molecular sex was determined by the X-to-autosomal

coverage ratio, following41 (Table S1). We first calculated the ratio of DNA methylation values between au-

tosomes and X-chromosome in different categories of modern horses, considering females, castrated

males and intact stallions (i.e. non-castrated males) (Figure S3). We then estimated the distribution of

DNA methylation values within 20% intervals, which was used for PCA to classify horses according to their

labelled category (Figure 5A). We found one modern horse that was labeled as an intact stallion and one

modern horse reported as castrated clustering with females (Figure S3), which likely identifies mislabeling

issues in the original data repository.
Machine learning classification of castrated and males

We explored the possibility of detecting castration in ancient individuals from the delay in their epigenetic

age incurred from castration. Previous work on modern horses reported that castration shows a significant

impact on DNAmethylation age in individuals older than 11 years old.36 Thus, to select sites that are differ-

entially methylated in castrated and intact males, we only retained modern horses older than 11 years old,

resulting in a total of 22 castrated males and 4 intact stallions, for which blood DNA methylation data were

available from HorvathMammalMethylChip40 array.36

We then carried out some Epigenome-wide association studies of castration (EWAS) using the R function

‘‘standardScreeningBinaryTrait’’ from the WGCNA R package,42 categorizing males as either intact

stallions (uncastrated) or castrated. CpG sites with Pearson’s correlation |R|R 0.5 (Figure S4), orR0.55 (Fig-

ure 5), were included in the underlying machine learning models. These corresponded to 122 and 59 CpG

sites, respectively (Tables S3A and S3B and Figure S3).
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We further attempted to classify castrated males and intact stallions based on DNA methylation values at

these CpG sites. For this, we explored the performance of threemachine learningmethods: Random Forest

(RF), Support Vector Machine (SVM) and Generalized k-Nearest Neighbors (GKNN) (Figure 3). We divided

the original dataset providing the DNA methylation values of 26 modern samples for the 122 and 59 CpG

sites considered into a training (80%) and a test (20%) dataset. The RF-based classifier was built using the

randomForest R package based on the algorithm of Breiman and Cutler.66 A first preliminary RF model was

built for the association between methylation values and castration status, for all sites in the training set,

using ntree=200 and default values for mtry and cv.fold. The optimized value for the mtry parameter

was determined by exploring mtry values comprised between 1 and the number of sites (122 or 59), and

selecting the one minimizing the error rate across all sites. We optimized the ntree number following a

similar procedure, considering ntree values between 1 and 200. The optimal values of mtry=1 (122 sites),

mtry=5 (59 sites) and ntree=120 and 60 were then implemented in the final RF model used for prediction.

The SVM procedure was implemented in the e1071 package in R,72 using the svm function in classification

mode (castrated males vs. intact stallions), with a linear function kernel and the following parameters:

cost=2^(-9) and cross=10. For GKNN, we used the gknn function in e1071, with the manhattan method

for distance computation73 and default parameters. The classifications returned by the three models are

presented on an MDS plot and a pie chart reporting individual assignment probabilities (Figure 5 and

Table S4).
ADDITIONAL RESOURCES

Our study has not generated or contributed to a new website/forum and it is not part of a clinical trial.
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