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Abstract. Most of the realistic kinetic calculations for tokamak plasmas require now to
incorporate the effect of partially ionized high-Z elements arising either from uncontrolled influxes
of metallic impurities like tungsten in high input power regimes or from mitigation of runaway
electrons generated after possible major disruptions by massive gas injection. The usual electron-
ion Fokker-Planck collision operator must be therefore modified, since all atoms in the plasma are
not fully ionized, as it can be considered for light elements. This represents a challenge, in order
to perform fast but also accurate calculations, regardless the types of elements present in the
plasma, but also their local levels of ionization, while covering a wide range of electron energies
in a consistent way, from few keV to tens of MeV in plasmas whose electron temperature may
itself vary from ten eV to several keV. In this context, a unified description of the atomic models
is proposed, based on a multi-Yukawa representation of the electrostatic potential calibrated
against results obtained by advanced quantum calculations. Besides the possibility to improve
the description of inner and outer atomic shells in the determination of the atomic form factor, this
model allows to derive analytical formulations for both elastic and inelastic scattering which can
be then easily incorporated in kinetic calculations. The impact of the number of exponentials in
the description of the atomic potential is discussed, and the comparison with simple or advanced
atomic models is also performed.
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1. Introduction

The use of tungsten (W) as the plasma-facing material in present-day experimental fusion devices
such as WEST[1], EAST[2] and the International Thermonuclear Experimental Reactor (ITER)
currently being constructed [3], has raised the question of the impact of partially ionized high-
Z impurities on the performances of hot plasmas. For example, the ability to drive efficiently
the toroidal plasma current by Radio-Frequency (RF) electromagnetic waves may be reduced by
an enhanced electron pitch-angle scattering and electron-ion slowing-down due to tungsten, thus
limiting the capability of control for improved plasma performances [4]. In standard tokamak fusion
plasmas, the usual electron temperature Te is supposed to be in the range between 1 to 10 keV , such
that most of low-Z impurities are fully ionized over a large volume, except possibly in the outermost
regions near the separatrix. Conversely, high-Z elements remain partially ionized everywhere, even
in the core of the plasma, and the nucleus charge Zs of the species s may still be partially screened
by many bound electrons. For the tungsten element whose atomic number is Zs = 74, the mean
screened ion charge is Z0,s ≃ 42 in a plasma whose electron temperature is Te = 3 keV according
to the OPEN-ADAS database, as shown in Fig. 1, such that Ns ≃ 32 electrons are still bound [5].
Even at Te = 10 keV , as expected in ITER plasmas, Ns is still large for the tungsten element, of
the order of twenty†.

The role played by the screening of partially ionized high-Z elements has been first considered
to describe accurately the dynamics of runaway electrons in very cold post-disruptive plasmas but
also to investigate the possibility to mitigate them by massive gas injection of high-Z elements up
to argon. It is shown that the dynamics in momentum space of the non-thermal electrons can be
notably modified as compared to the traditional picture because of the partial screening, with a
signifiant impact on the critical electric field (Hastie-Connors) beyond which electrons may run away
[6–8]. This original work, implemented in the CODE code dedicated to runaway electrons physics in
almost zero-temperature post-disruptive plasmas [9], has been extended later to standard tokamak
regimes in the LUKE solver of the 3-D linearized bounce-averaged relativistic electron Fokker-
Planck equation [10], allowing to describe the consequences of uncontrolled impurity influxes of
high-Z metallic elements like tungsten on RF current drive for example [4]. More recently, kinetic
calculations have been carried out, showing that RF current driven by the Lower Hybrid wave is
moderately lowered despite a strong thermal collapse ascribed to an uncontrolled accumulation of
tungsten in the plasma core of WEST tokamak [11]. In both studies, a standard Yukawa potential
(single exponential) was used in the LUKE code.

Even if the atomic processes which must be described in CODE and LUKE kinetics codes
are rather similar, some differences specific to hot plasmas must be investigated. Indeed, while the
atomic physics of argon and elements with lower Zs values has been thoroughly studied by quantum
non-relativistic codes describing ground-state and mean excitation energies for different ionization
states [12–15], the knowledge of atomic properties for metallic elements with higher Zs values,
and in particular for tungsten, is much more sparse. This is the consequence of the relativistic
effects and the resulting complex orbitals coupling, which must be fully incorporated in quantum
calculations, making them considerably more difficult. Indeed, by combining the virial theorem
with the quantum uncertainty principle, relativistic effects become significant when the relativistic
Lorentz factor γs exceeds significantly unity, where γ2

s = (αZs)
2
+1 and α is the usual fine structure

†The mean screened ion charge is defined as Z0,s =
P

i f0,s,iZ0,s,i where f0,s,i is the local fraction of all ionization
states Z0,s,i. By definition,

P
i f0,s,i = 1, Z0,s,i ∈ {0, Zs}. The number of bound electrons is Ns,i = Zs − Z0,s,i and

the mean value is Ns =
P

i f0,s,iNs,i.
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constant. While for argon, relativistic corrections are negligible since γAr
s ≃ 1.0086, they become

more significant for tungsten, as γW
s ≃ 1.136. If the ground-state may be obtained for the field-free

tungsten element using the density functional theory (DFT) or the Multi-Configuration Dirac-
Hartree-Fock (MCDHF) approaches‡ implemented in GAUSSIAN and GRASP codes respectively
[12, 13] §, the mean excitation energies for all ionization states, which play an important role in
the inelastic electron-ion scattering processes, are still not available. Much in the same way, while
screening effects on bremsstrahlung by runaway electrons may be reasonably described using a
standard angular-averaged formula in the first Born approximation [18], such an approximation
cannot be considered for less energetic electrons resonantly accelerated by RF waves for example,
since the angular cone of emission is much larger [19]. Therefore, in order to cover continously the
range of kinetics energies from few keV to several tens MeV photons, a fully numerical integration
over the electron emission angle of the cross-section differential in photon energy and in photon and
electron emission angles must be carried out, which represents also a considerable numerical task.

In this context, the accurate incorporation of the atomic physics in kinetic codes, while keeping
computational effort at a reasonable level, is a serious challenge, especially for describing inelastic
scattering. A similar effort should concern the screening effects on the bremsstrahlung, a major
moment of the non-thermal distribution function for diagnosing fast electron dynamics. The use
of analytical formulas based of simple parametrized models is consequently the more suitable
approach, with absolute calibration against results obtained by advanced numerical quantum codes.
However, simple atomic models have usually a limited applicability, which prevents a systematic and
consistent use for all quantities that must be modified for taking into account of the atomic physics.
While the well-known Thomas-Fermi model [20], and its approximate formulations [21, 22] are well
suited for neutral or weakly ionized atoms, they give usually less accurate results when the number
Ns of bound electrons is small as compared to Zs. The charge density of inner shells is usually
better described by a Yukawa electrostatic potential [23], which itself is not relevant for neutral or
weakly ionized atoms, since the charge density fall-off is generally too sharp at large distance from
the nucleus as compared to DFT or MCDHF calculations. However, the Yukawa atomic model is
widely used for bremsstrahlung studies even if the target atom is neutral or weakly ionized, since
this physics process involves usually deep electronic shells to calculate radiation emission [24–28].
Consequently, a unified and accurate description of the atomic electrostatic potential that can be
used either in kinetic calculations or for bremsstrahlung without a significant degradation of the
numerical performances of the kinetic codes, whatever plasma conditions (cold or hot) and the type
of element, is of a great interest.

The purpose of this paper is therefore to propose a general and global approach for
incorporating the atomic physics in electron Fokker-Planck solvers, allowing existing codes to be
easily and robustly updated for realistic simulations, whatever the consequences on the fast electron
dynamics, which will be the object of a separate study.

This objective is addressed by expressing the atomic electrostatic potential as a series of
Yukawa potentials. It turns out to be a trade-off to keep codes fast and accurate over a wide
range of electron kinetic energies, regardless the ionization state of the elements, with a reasonably

‡In tokamak plasmas, The mean distance d = n−1/3 between particles, where n is the plasma density, is always
much greater than the atomic radius ranging approximately between Bohr radius a0 and 4 × a0 for neutral atoms
and less for corresponding ions. Therefore, for all elements and regardless their states, they can always be considered
as in vacuum or field-free, which simplifies considerably ground-state calculations. This is not the case in inertial
fusion plasmas [16].

§The FAC code based on the modified multiconfigurational Dirac-Hartree-Fock-Slater (MC-DHFS) procedure
may be also an interesting alternative tool [17]
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correct description of the physics involving both outer and inner electron shells. This approach has
already been successfully considered for modelling results of Hartree-Fock-Slater calculations for
neutral elements only, from Hydrogen to Uranium, using up to three exponentials [29], and was also
successfuly applied for deriving an analytical formula of the bremsstrahlung with screening effects,
valid from the classical to the fully relativistic limits [30, 31]. The modelling here considered,
so-called multi-Yukawa (MY), is basically an extension of the Moliere’s approach initially used
for describing the Thomas-Fermi potential of neutral elements as a linear combination of three
exponentials [32]. The great advantage of this method is the possibility to obtain easily analytical
derivations for many physical quantities of interest in the first Born approximation, owing to the
simple analytical expression of the Fourier transform of an exponential function in the calculation
of the atomic form factor, assuming a spherical symmetry for the density of bound electrons in the
ground state [29].

In Sec. 2, the multi-Yukawa atomic model is introduced, and the procedure of calibration is
explained in detail for an arbitrary number of exponentials. Comparison with DFT or MCDHF
calculations is presented. In Fokker-Planck calculations, the electron-ion collision operator is
described by a friction vector and a diffusion tensor resulting from elastic and inelastic collisions.
In presence of partially-ionized high-Z elements, inelastic electron-ion collisions must be also taken
into account, since free electrons of the plasma may loose part of their kinetic energy by either
atomic excitation or ionization. The latter process may have a critical impact on the early build-up
of electron avalanches which play a major role in the dynamics of a runaway electron population
in post disruptive plasmas [33]. The incorporation of the atomic physics in the Fokker-Planck
collision operator is first detailed in Sec. 3, either for elastic and inelastic processes. The screening
function describing the impact of partially ionized atoms on elastic Coulomb collisions is derived
in Sec. 4, using the multi-Yukawa atomic model. The inelastic electron-ion collisions are then
considered in Sec. 5, with the approximate approach based on the Bethe’s formula of the electron
energy losses per unit length [34, 35]. In this case, the atomic physics is described by the mean
excitation energy from the ground-state which can be calculated by several methods. This quantity
is also derived from a non-relativistic variational quantum approach but also with the classical Local
Plasma Approximation (LPA), both using the multi-Yukawa atomic model [36, 37]. Conclusions
are given in Sec. 6.

Though the impact of the screening on the bremsstrahlung can be described with the same
atomic form factor, as that used for the Mott relativistic cross-section, this problem will be addressed
in a separate paper.

2. Atomic model

2.1. Radial distribution of charge in the ground-state and form factor

Kinetic calculations with partially ionized high-Z atoms requires an atomic model that describes
accurately the spatial distribution of the bound electrons ρZ0,s

(r) in the ground state, regardless
the type of atom and its level of ionization, where r is the distance to the nucleus. Indeed, excited
states are transient and their lifetimes are generally much shorter than the mean time between
two collisions in standard tokamak plasmas¶. By definition,

´
V

ρZ0,s
dr = Ns = Zs − Z0,s where

V is a volume of reference characterizing the ion size, Ns is the number of bound electrons, Z0,s

is the screened ion charge and Zs is the atomic number. The screening effects are determined

¶This condition may be marginally fullfiled in very cold post-disruptive plasmas.
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by evaluating the form factor FZ0,s (q) ≡
´

V
exp (−iq · r/ℏ) ρZ0,sdr, where q is the usual recoil

momentum by Coulomb collisions. Since the kinetic energy is conserved in the elastic scattering
process and assuming that small-angle scattering predominates, |q| ≃ 2 |p| sin (θ/2), p being the
incoming electron momentum and θ the deflection angle. Here, q = pf − pi, where pi[f ] = ℏki[f ],
while ki[f ] are the wave vectors associated to the spinless wavefunctions |i [f ]⟩ = exp

�
iki[f ] · r

�
/
√

V
of the incoming |i⟩ and outgoing electron |f⟩ respectively, both being considered as plane waves
(1st Born approximation)∥. From the Fermi’s Golden rules, the relativistic Mott cross-section that
describes Coulomb collisions in kinetic calculations must be modified according to the simple rule
Zs → Zs − FZ0,s

(q) in order to account for the partial atomic screening. For low energy electrons,
since lim∥q∥→0 FZ0,s (q) = Ns, the ion is fully screened i.e. Zs → Z0,s = Zs − Ns, while conversely,
for very energetic electrons, it is fully stripped, since lim∥q∥→∞ FZ0,s (q) = 0 ∗∗. Within this
framework, the form factor FZ0,s

(q) is simply the Fourier transform of the spatial distribution of
the bound electrons, whose determination is the starting point for investigating the effect of atomic
screening in Fokker-Planck calculations.

2.2. Description of the multi-Yukawa electrostatic potential description

For the approximate formulation of the Thomas-Fermi atomic model as derived by Kirillov, et
al., [22], but also for a Yukawa electrostatic potential (single exponential), the form factor may be
expressed analytically in the same way according to the formula FZ0,s

(q) = Ns/
�
1 +

�
q aZ0,s

/2
�m�

,
where āZ0,s

≡ 2aZ0,s
/α following the notation used in Ref. [7], and q = q/ (mec) with q = ∥q∥.

Here, aZ0,s
may be considered as an effective radius of the ion of charge Z0,s which depends of

the chosen atomic model, α is the fine structure constant, c the speed of light, me is the electron
rest mass. While m = 3/2 with aZ0,s = 3N

2/3
s / (4Zs) for the approximate Thomas-Fermi model

[22], m = 2 and aZ0,s
= λ−1

Z0,s
for the Yukawa electrostatic potential, where λ−1

Z0,s
is a characteristic

screening length, its value being usually determined by a best fit of results obtained with advanced
atomic calculations using DHFS (Dirac-Hartree-Fock-Slater) codes [24–28]††.

The cloud of bound electrons is assumed to be spherically symmetric around the nucleus,
an approximation which turns out to be reasonably well satisfied for most ground states here
considered. Indeed, the level of spherical symmetry can be evaluated from the matrix elements of the
quadrupole moment rank-two tensor, directly obtained from DFT calculations [39], which measures
essentially the deviation of the charge distribution ρZ0,s (r) from spherical symmetry. It is evaluated
by a global parameter, ∆Θ = |(max (XX, Y Y, ZZ) − min (XX, Y Y, ZZ)) / max (XX, Y Y, ZZ)|
where the diagonal elements of the tensor are XX, Y Y , ZZ. According to this simple definition,
∆Θ = 0 is corresponding to a perfect spherical symmetry for which all diagonals elements are
identical. It turns out that this parameter is progressively increasing with the ionization level as
shown in Fig 2. It is always much lower than 0.15 for Z0,s ≤ 40, and very small for all noble
gas-like electronic configurations, regardless the Z0,s value. Above Z0,s = 40, some electronic
configurations exhibit larger departure from spherical symmetry, but they concern primarily few
values for Z0,s ≥ 56, which will be almost never found in tokamak plasmas.

∥The volume V is chosen such that ⟨i | i⟩ = ⟨f | f⟩ = 1, a condition to have a probabilistic interpretation of the
wave functions.

∗∗The procedure is general and may be applied to all cross-sections derived within the 1st Born approximation
like for bremsstrahlung.

††For a neutral atom of atomic number Zs and if the Thomas-Fermi model is used, λ0,s ≡ λZ0,s=0 = b−1
s =

4
�
9π2/2

�−1/3
Z

1/3
s a−1

0 ≃ 1.13Z
1/3
s a−1

0 , a value frequently found in the litterature [38]. Here, bs is the atomic radius
in the Thomas-Fermi model.
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For both approximate atomic models, calculations of the screening effects on elastic scattering
in kinetic calculations can be fully performed analytically [7]. However, the derivation of the
bremsstrahlung cross-section differential in photon energy and angle with partial screening effects,
which requires an angular integration over the deflection angle of the scattered electron [18], cannot
be carried out fully analytically with m = 3/2. An explicit analytical formulation can be obtained
with m = 2 only, as demonstrated for the case of a neutral atom [30, 40]. Therefore, with the
constraint to perform fast and accurate kinetic, but also bremsstrahlung calculations, based on
analytical formulas with a unified atomic model, the use of the Yukawa electrostatic potential is
unambiguously more appropriate. In order to keep its technical advantages without the intrinsic
limitations for neutral or weakly ionized atoms, the simplest approach is to consider, instead, a
generalized Yukawa potential, here named multi-Yukawa, which can be expressed as a series of
exponentials,

4πϵ0rUZ0,s (r) = − Z0,s −
X

i

AZ0,s,i exp
�
−λZ0,s,ir

�
, (1)

each of them describing accurately the charge distribution around the nucleus, either close or
far from it. From the Poisson’s equation △UZ0,s = ∇2UZ0,s = −ρZ0,s/ϵ0, the radial normalized
distribution of bound electrons is

ρZ0,s
(r) =

Zs − Z0,s

4πr

X
i

λ
2

Z0,s,i
AZ0,s,i

exp
�
−λZ0,s,i

r
�

, (2)

where the density ρZ0,s
(r) = ρZ0,s

(r) a3
0 is in atomic units, λZ0,s,i

≡ λZ0,s,i
a0 and AZ0,s,i

=

AZ0,s,i/ (Zs − Z0,s), λZ0,s,i being the inverse of the normalized characteristic length and AZ0,s,i

the weight of the ith Yukawa exponential respectively. Here, r ≡ r/a0, where a0 is the classical
Bohr radius. The corresponding form factor is therefore

FZ0,s
(q) = (Zs − Z0,s)

X
i

AZ0,s,i

1 +
�
q aZ0,s,i/2

�2 , (3)

where aZ0,s,i
≡ 2λ

−1

Z0,s,i
/α. By definition

P
i AZ0,s,i

= 1, which guarantees that FZ0,s
(0) =

Zs − Z0,s = Ns.
Such an approach has been considered long time ago to describe the Thomas-Fermi atomic

potential by Moliere using three exponentials [32]. The correspondence between coefficients (Bi, βi)
found in the litterature and

�
AZ0,s,i

, λZ0,s,i

�
is given in Appendix A. This method has been also

used to fit the density of bound electrons calculated by a DHFS code for neutral atoms only,
whose Zs value is ranging from 1 (hydrogen) to 92 (uranium) [29]. For most elements above argon
approximately, three exponentials are necessary to reproduce accurately the radial distribution of
charges when ionization is weak. Naturally, the analytical density given by Eq. (2) can only partially
reproduce the oscillations of the DHFS linear density 4πr2ρZ0,s

(r) associated with different inner
shell contributions. However, the approximate form factor FZ0,s

(q̄) given by Eq. 3 remains very
close to the numerical value determined from DHFS calculations, as core oscillations of the linear
density have a small spatial weight, which validates the overall procedure.

2.3. Absolute model calibration

In the present work, the method used in Ref. [29] is generalized to all ionization states of any type
of element. In this case, the effective number of exponentials used in (2) and (3) is determined by
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the possibility to find a full set of positive λZ0,s,ivalues. For some elements with an atomic number
larger than tungsten, like gold (Zs = 79), up to four exponentials can be found by the calibration
procedure, but for lower Zs values, the number of exponentials never exceeds three usually, as found
for tungsten. The determination of AZ0,s,i

and λZ0,s,i
cannot be performed using a conventional

least-squares fit method, because of the non-linearity of the problem and the existence of many
local minima in the function to be minimized [29].

The method is consequently based on a technique of moments which guarantees the uniqueness
of the solution with strict conditions, if it exists. However, the solution may not correspond to
the best adjustment of the numerical atomic density. Nevertheless, as shown by the rather good
agreement with quantum calculations, it is likely very close to it, by construction. The approach
considered here ensures that the elastic Born cross sections practically coincide with that derived
from the DFT or MCDHF calculations, because the error on the form factor is rather small, as this
term is an integral of the bound electron density.

The coefficients
�
AZ0,s,i , λZ0,s,i

�
of the multi-Yukawa description are determined from the

condition


rl

�
=



rl

�num,


rl

�num being the moment of order l calculated numerically from the
density of bound electrons ρnum

Z0,s
(r) obtained by advanced atomic quantum codes. Here, from the

multi-Yukawa density given by Eq. (2),

rl

�
=

X
i

λ
−l

Z0,s,i
AZ0,s,i

Γ (l + 2) = (l + 1)!
X

i

λ
−l

Z0,s,i
AZ0,s,i

(4)

where Γ (z) is the Gamma function. Defining Rl ≡


rl

�
/ (l + 1)!, a set of 2l equations depending

upon the number of parameters
�
AZ0,s,i

, λZ0,s,i

�
to be determined is obtained,

Rl =
X

i

AZ0,s,iλ
−l

Z0,s,i
(5)

and
�
AZ0,s,i

, λZ0,s,i

�
are calculated by solving the equation Rl = Rnum

l , where

Rnum
l =



rl

�num

(l + 1)!
=

1

(l + 1)!

4π

(Zs − Z0,s)

ˆ ∞

0

rl+2ρN
Z0,s

(r) dr (6)

the number l being an integer greater than −1.
For a fit with a single Yukawa potential, only two terms terms remain, and since

P
i AZ0,s,i = 1,

it can be deduced that AZ0,s,1
= 1 and λZ0,s,1

= RN
−1. For two exponentials, four equations with

four unknowns must be considered. By grouping the equations,

λZ0,s,1
+ λZ0,s,2

=
Rnum

1 − Rnum
−1 Rnum

2

(Rnum
1 )

2 − Rnum
2

(7)

λZ0,s,1
λZ0,s,2

=
1 − Rnum

−1 Rnum
1

(Rnum
1 )

2 − Rnum
2

(8)

and the values λ are therefore solutions of the quadratic equation�
(Rnum

1 )
2 − Rnum

2

�
λ

2 −
�
Rnum

1 − Rnum
−1 Rnum

2

�
λ +

�
1 − Rnum

−1 Rnum
1

�
= 0 (9)

If both roots are real and positive, they correspond to
�
λZ0,s,1

, λZ0,s,2

�
respectively, such that

AZ0,s,1
=

Rnum
−1 − λZ0,s,2

λZ0,s,1
− λZ0,s,2

(10)
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and AZ0,s,2 = 1 − AZ0,s,1 , otherwise, a single exponential must be considered for the modelization.
In this case, there is some loss of accuracy on the modeling of the bound electron density, but it has
a moderate impact on the form factor, regarding its definition given by Eq. 3. This is an intrinsic
limitation of this method, despite its robustness, highlighting that not all bound electron density
profiles may be described by a series of multiple exponentials. It arises principally for highly ionized
atoms, because highest moments Rnum

l are too small as compare to the lowest ones. The weight
of ρN

Z0,s
(r) at large r is therefore useless to identify a single exponential from this method. In this

case, it is worth noting that standard non-linear techniques usually do not converge.
The procedure may be extended to three exponentials, and all λ values must be real and

positive solutions of the polynomial equation λ
3 − X1λ

2
+ X2λ − X3 = 0 to ensure that the atomic

potential may be well described by a multi-Yukawa potential with the use of three exponentials.
Otherwise, two exponentials must be considered in the modeling procedure, thus removing useless
moments associated to three exponentials. Defining the vector X from coefficients {X1, X2, X3} of
the polynomial equation in λ,

X =

 X1

X2

X3

 =

 λZ0,s,1
+ λZ0,s,2

+ λZ0,s,3

λZ0,s,1λZ0,s,2 + λZ0,s,2λZ0,s,3 + λZ0,s,1λZ0,s,3

λZ0,s,1
λZ0,s,2

λZ0,s,3

 (11)

the coefficients AZ0,s,i
are determined from the matrix relation A = N−1MX, where parameters

AZ0,s,i
are components of the vector

A =

 AZ0,s,1

AZ0,s,2

AZ0,s,3

 (12)

with

M =

 1 −Rnum
1 Rnum

2

Rnum
1 −Rnum

2 Rnum
3

Rnum
2 −Rnum

3 Rnum
4

 (13)

and

N =

 λZ0,s,1 λZ0,s,2 λZ0,s,3

1 1 1

λ
−1

Z0,s,1
λ

−1

Z0,s,2
λ

−1

Z0,s,3

 (14)

Formally, it is possible to extend easily this method by recurrence to any number of
exponentials. The dimensions of X, N and M must be adjusted according to the number of
exponentials, as well as the degree of the polynomial equation in λ to be solved, its coefficients
being determined by expanding the product

Q
i

�
λ − λZ0,s,i

�
. In the numerical implentation of the

method of moments, the possibility to find up to four exponentials has been considered. However,
the larger number of exponentials is rarely found, only for few low ionization states of elements
heavier than tungsten, like gold. For tungsten, the maximum number of exponentials never exceeds
three, regardless its ionization state. As discussed previously, if no solution is found for a given set
of multiple exponentials, a solution is searched for a number of exponentials decremented by one
unity, and the procedure is repeated until a set of positive and real λ values is found. The case
with a single exponential corresponding to the standard Yukawa potential is the ultimate solution,
if a multi-Yukawa potential may not be found numerically.
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2.4. Comparisons between multi-Yukawa model and quantum relativistic calculations

Numerical calculations of the radial profiles of the bound electrons have been performed for most
of the elements that can be found in a plasma, regardless their ionization states using GAUSSIAN
and GRASP codes respectively [12, 13]. They are all implemented in the LUKE suite of codes
for studies of the atomic physics on fast electron dynamics in magnetized plasmas [10]. Details
about the parameters used for the simulations with GAUSSIAN and GRASP codes are given in
Appendix B. In Fig. 3, the radial profiles of the density of bound electrons for all ionizations states
of tungsten calculated by the GAUSSIAN code are displayed. For low ionization states, the density
exhibits clearly several bumps which correspond approximately to the principal quantum numbers
n of the atomic orbitals. Excellent agreement is found between the results of the two codes for all
ionization states, as shown for the neutral atom of tungsten and the ions W 10+, W 42+, W 56+ in
Fig. 4. Consequently, numerical densities of reference ρN

Z0,s
(r) of one of the two codes can be used

indifferently for determining the coefficients
�
AZ0,s,i

, λZ0,s,i

�
of the multi-Yukawa description.

In the literature, a comparison between the DFT and simple atomic models frequently used
in the publications has been carried out. Here, the radial dependencies of the density of bound
electrons are evaluated for the neutral tungsten and the ion W 42+ using the Thomas-Fermi model
but also the standard Yukawa one (single exponential). For the latter, two inverse screening lengths
have been considered : λB

0,s ≃ 0.9Z0.42
s a−1

0 from a fit of the Herman-Skillman potentials determined
by solving the Dirac-Hartree-Fock-Slater (DHFS) equations [38] and λT F

0,s = b−1
s ≃ 1.13Z

1/3
s a−1

0 ,
where bs is the reference length in the Thomas-Fermi model. As shown in Fig. 5, a good quantitative
agreement is observed between the DFT and the Thomas-Fermi model for the neutral tungsten, as
expected from the theory, while the agreement is poor with the standard Yukawa model, regardless
the inverse screening length. Conversely, the agreement for W 42+ between the DFT and standard
Yukawa model is better than with the Thomas-Fermi model. This highlights the fact that none
of the simple models have a wide range of application for describing accurately the atomic physics
in kinetic and radiation calculations, since the types of elements in the plasma may change with
operating conditions, while their states of ionization can also vary considerably with the temperature
of the plasma.

Using results obtained with the DFT model, the set of coefficients
�
AZ0,s,i

, λZ0,s,i

�
has been

determined for up to four exponentials, but for elements lighter than gold, the maximum number of
exponentials never exceed three, like for tungsten. The full list for all ionization states of tungsten is
given as a reference in the Table 1. For very weakly ionized states, Z0,s ≤ 5 , three exponentials are
found by the numerical procedure, because of the different slopes in the radial density, as shown in
Fig. 3, while the number of exponentials is usually lower for larger Z0,s values, since the decrease of
the radial density from the nucleus is becoming more regular and generally steeper. A comparison
of the impact of the number of exponentials on the density profile for neutral tungsten is shown in
Figs. 6. With the use of three exponentials, an excellent quantitative agreement is found between
ρN

Z0,s
(r) determined by the DFT and the approximate multi-Yukawa description ρZ0,s

(r) at almost
all radii. With a reduced number of exponentials, the agreement tends to deteriorate and is poor
for a single exponential corresponding to the standard Yukawa description. It is interesting to note
that the Molière’s description of the Thomas-Fermi model is also in very good agreement with the
results of the DFT, which is consistent with results shown in Fig. 5. Even if the radial dependence
of the density from the nucleus is well reproduced, in the core of the atom, oscillations of the
linear density 4πr2ρnum

Z0,s
(r) cannot be well reproduced by a series of exponentials, as shown in Fig.

7. Such an intrinsic limitation has already been observed in Ref. [29], where the same approach
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is considered but with another reference atomic model (DHFS). Since the discrepancy occurs for
r < 0.5, its impact on the form factor remains however small, as displayed in Fig. 8, as far as the
normalized recoil momentum q̄ is less than 0.1. Knowing that most of the Coulomb collisions occur
principally for very low q̄ values corresponding to the first Born approximation, the multi-Yukawa
description is therefore remarkably robust for very weakly ionized atoms.

For higher ionization states, the advantage of the multi-Yukawa description is that it remains
accurate for describing both the density and the form factor. An example is given in Fig. 9 for
W 42+. In this case, the agreement is very good either for two or three exponentials, while the
standard Yukawa description with a single exponential has rather a poor agreement with the radial
dependence of the density determined with the DFT. However, as expected, the discrepancy is less
pronounced as compared to the case of the neutral atom due to the small remaining bumps of the
radial density. As for the neutral atom case, the small oscillations of the numerical linear density
4πr2ρnum

Z0,s
(r) are not well reproduced by the series of exponentials, as shown in Fig. 10, but the

departure from ρnum
Z0,s

(r) has again a very small impact on the form factor (see Fig. 11).
In Table 2, the set of values

�
AZ0,s,i , λZ0,s,i

�
obtained for the neutral tungsten from DFT and

DHFS methods are given for comparison [29]. The coefficients of the Molière’s method are also
reported [32]. Even if the methodology is similar to the one detailed in Ref. [29], the coefficients for
the three exponentials case have a quite significant difference. Nevertheless, as shown in Fig. 13, the
approximate multi-Yukawa linear densities remain fairly close to the value obtained by the DFT,
even if all the oscillations cannot be well reproduced. The differences between the coefficients are
resulting from their large sensitivity due to small changes, illustrating the ill-conditionned nature
of the problem here addressed. This justifies a posteriori the chosen method, as compared to a
standard least-squares fit procedure which cannot converge when multiple close solutions exist [41].
In Fig. 12, the usual coefficient of determination R2 is displayed for all the ionization states of
tungsten to illustrate how well the multi-Yukawa reproduces the results of DFT for the atomic
density‡‡. The fact that R2 > 0.44 regardless the number of exponentials indicates that the MY is
an appropriate simplified atomic model for describing quantum code outputs. As expected, with a
single exponential, R2 gradually increases up to unity for the hydrogen-like atom, indicating that
the standard Yukawa model is more appropriate for highly ionized atoms. It illustrates also the
limits of this model for very weakly ionized atoms, which justified the need of the multi-Yukawa
description. Conversely, for up to three exponentials, R2 remains always upper than 0.8, and often
close to unity even for the neutral or weakly ionized atom. Between Z0,s = 45 and Z0,s = 55, but
also in the interval Z0,s = 64 − 68 , the method of moments is not able to identify a set of two
or three exponentials, because the density ρZ0,s

(r) fall-off with the distance from the nucleus has
a nearly single exponential dependence. In this case, the R2 coefficient is lower, as shown in Fig.
12, and the density of bound electrons is therefore less accurately decribed as compared to other
ionization states. Nevertheless, detailed calculations have shown that the impact on the atomic
form factor remains still moderate. The fact that R2 ≥ 0.7 indicates that the MY model still
remains well consistent with the results of DFT or MCDHF codes, even for these more difficult
cases.

‡‡The coefficient of determination is calculated according to the standard formula R2 = 1 − SSres/SStot where

SSres =
P

j

�
ρnum

Z0,s
(rj) − ρZ0,s

(rj)
�2

is the residual sum of squares and SStot =
P

j

�
ρnum

Z0,s
(rj) −

D
ρnum

Z0,s

E�2
is the

total sum of squares. The sum is performed on all radial locations rj . Here
D

ρnum
Z0,s

E
=

�
1/Ngridpoint

� P
j ρnum

Z0,s
(rj)

is the mean of the calculated bound electron density. With this definition, 0 ≤ R2 ≤ 1 if the model is consistent with
numerical data. Zero indicates a very poor agreement, and if R2 = 1, the agrement is perfect.
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In order to illustrate the capability of the method to identify a best fit with more than three
exponentials, the case of the weakly ionized gold atom Au1+ is shown in Fig. 13. Some differences
can be seen in the inner part of the bound electron density between three and four exponentials,
especially when r < 0.5, but they have no impact on the atomic form factor. The coefficient
of determination increases from R2 = 0.4223 for a single exponential to R2 = 0.6597 for two
exponentials, R2 = 0.8546 for three and finally to R2 = 0.9646 for four exponentials, indicating
that the multi-Yukawa solution with the highest possible number of exponentials gives a better
agreement with DFT or MCDHF calculations.

Though the Yukawa model fails to provide an accurate description of quantum relativistic
calculations, except for rather highly stripped atoms, it is interesting to evaluate, with the
procedure here detailed, the ratio λ2

Z0,s
/λ2

0,s = φs (x) describing the relative change of the screening
length with the normalized ionization state, i.e., x = Z0,s/Zs. For the approximate Thomas-
Fermi model derived by Kirillov et al. [22], φs (x) = (1 − x)

−4/3, while from a fit of DHFS
calculations, an heuristic dependency of the form φs (x) =

�
1 − xns+1

�
/ (1 − x) was guessed with

ns = Zs (1/3 − 0.0020 × Zs) [26, 28]. As shown in Fig. 14, λ2
Z0,s

/λ2
0,s is an increasing function of

Z0,s/Zs whose order of magnitude is reasonably well reproduced by the approximate Thomas-Fermi
model. If the heuristic dependence in Ref. [26, 28] is far from the numerical calculations based on
DFT, it is found that a modified formulation φs (x) =

�
1 − xns+1

�
/ (1 − x)

3/2 gives a much better
agreement. This improvement is valid for all elements, whatever Zs, in particular for light elements.
Nevertheless, it should not hide the fact that the Yukawa model with a single exponential is not
appropriate for describing the density of bound electrons for weakly ionized elements, even if the
variation of the relative quantity λ2

Z0,s
/λ2

0,s with Z0,s/Zs can be reasonably well reproduced.

3. Generalized electron-ion collision operator

3.1. Elastic scattering

The Coulomb collision operator in kinetic calculations may be expressed formally as dfe/dt|coll ≡P
s

P
Z0,s

Ce,Z0,s

�
fe, fZ0,s

�
+ Ce,e (fe, fe) where Ce,Z0,s

�
fe, fZ0,s

�
describes the interactions

between the momentum distribution function fe (t, x, p) of test electrons and the momentum
distribution function fZ0,s

(t, x, ps) of atoms of species s with an ionization state Z0,s, while
Ce,e (fe, fe) is the linearized electron-electron collision operator§§ [10]. Here, all ionization states
present in the plasma must be considered, with Z0,s ranging from zero for the neutral atom to Zs for
the fully stripped one. The density nZ0,s

(t, x) =
´

fZ0,s
(t, x, ps) d3ps of ions with a net charge Z0,s

at the spatial location x is resulting from the local balance between ionization and recombination

§§The Fokker-Planck collision operator here used describes electron dynamics in plasmas whose temperatures are
ranging from a few eV to several keV. Test electrons may be classical or relativistic when the Belaiev-Budker e − e
collision operator is considered. When the distortion of the distribution function from a Maxwellian represents a
small fraction of the electron population, it is possible to linearize the electron-electron collision operator and by
construction the Maxwellian is an eigenfunction of it. To account of self-collisions between fast electrons and the
thermal bulk is particularly important for an accurate quantitative estimates of the rf-driven or Ohmic current source
[42, 43]. It is an integral term usually determined to conserve particles and momentum, but not energy. Therefore,
the electron temperature of the plasma must be a given parameter (by transport code for example), which is assumed
to change slowly at the scale of the collision time. The full self-consistency between the bulk electron temperature
and the fast electron energy losses may be obtained, but requires always the use of an external transport code.
Therefore, the possible radiative cooling of the bulk electrons must be a part of the transport code, but not of the
Fokker-Planck calculations themselves, thanks to the linearization. If time scales of radiative cooling of the bulk
electrons and collisions are similar, the time ordering will fail, and the whole approach should be revisited.



12 A unified description of the atomic physics for electron Fokker-Planck calculations

processes, assuming in general that fZ0,s is a Maxwellian distribution. The relative fraction of
partially ionized atoms is given by the ratio nZ0,s (t, x) /ns (t, x), where ns (t, x) =

P
Z0,s

nZ0,s
(t, x)

may be obtained by considering a local collisional-radiative equilibrium, as for the OPEN-ADAS
database in the LUKE code [5, 10].

The incorporation of the partial screening effects for elastic scattering in kinetic calculations
requires to re-express the friction vector and diffusion tensor AZ0,s and DZ0,s of the Fokker-Planck
formulation of the collision operator, assuming that small angle scattering still predominates for
Coulomb collisions, which remains a good assumption even in presence of high-Z impurities [7],

Ce,Z0,s

�
fe, fZ0,s

�
≃ −∇p

�
AZ0,s

fe (t, x, p)
�

+ ∇p∇p

�
DZ0,s

fe (t, x, p)
�

(15)

with

AZ0,s
=

1

∆t

ˆ
d△pPZ0,s

∆t (x, △p, p) △p (16)

and

DZ0,s
=

1

2

1

∆t

ˆ
d△pPZ0,s

∆t (x, △p, p) △p△pT (17)

where PZ0,s

∆t is the transition probability describing the fact that an electron is at phase space point
(x, p) and time t, given that it was at point (x − △x, p − △p) at time t−∆t, due to a collision with
a partially ionized atom. By definition,

´
d△pPZ0,s

∆t (x, △p, p) = 1, which states that all electrons
are taken into account, irrespective of the initial phase space location (x − △x, p − △p). Here △pT

is the transposed vector of △p, with △p = p − ps, for all ps values and all scattering directions
with respect to p directions, where ps is the momentum of the ion of net charge Z0,s. Since the
transition probability is proportional to the product of the elementary cross-section dσe,Z0,s

(p) with
the density of targets per unit surface us∆tfZ0,s

(t, x, ps), where us is the relative velocity before
the scattering process between the test electron and the atoms of species s with a net ionization
state Z0,s, the friction vector is

AZ0,s
=

ˆ
d3psfZ0,s

(t, x, ps)

ˆ
dΩ

dσe,Z0,s

dΩ
us△p (18)

while the diffusion tensor is

DZ0,s
=

1

2

ˆ
d3psfZ0,s

(t, x, ps)

ˆ
dΩ

dσe,Z0,s

dΩ
us△p△pT (19)

Here, the Møller relative velocity us normalized to the speed of light c is given by the relation

us = |us| =

q
(v − vs)

2 − (v × vs)
2

1 − v · vs
(20)

where v = p/γe is the electron (or test particle) velocity¶¶ and vs = psme/mZ0,s
is the ion velocity

of mass ms,Z0,s ≃ ms, since me is much less than the ion nucleus mass ms. Here, ps = ps/ (mec)
and p = p/ (mec). However, since |vs| ≪ |v|, because of the large difference of mass beween me

and ms, the relative velocity may be simplified and us ≃ |v − vs|, even for run-away electrons.
Indeed, in tokamak plasmas, for an ion temperature of 5.11 keV , vth

s ≃ 2 × 10−3 for hydrogen and

¶¶The Møller relative velocity which is the numerator term in Eq. (20) must be corrected by (1 − v · vs)−1 in
order to guarantee that the interaction rate is unchanged by a Galilean transformation [44].
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ten times less for tungsten. Møller corrections to us are therefore always negligible, since the energy
of these electrons cannot exceed 30 MeV , because of synchrotron radiation losses [45].

The fully screened relativistic Mott cross-section of collision between an electron and an ion of
charge Z2

s,0 is

dσe,Z0,s

dΩ
= Z2

0,s

r2
e

4

�
1 − x2

�
p2 + 1

p4x4
(21)

where x = sin (θ/2), θ being the usual deflection angle of the electron and re is the classical electron
radius. Spin and relativistic corrections are negligible in the non-relativistic limit, and when p2 ≪ 1,
the Mott cross-section merges with the usual Rutherford expression [46, 47]. Since p = γβ, where
β = v =

p
1 − 1/γ2 and γ is the Lorentz factor, for 200 keV slide-away electrons, p2 ≃ 0.93, while

for 20 MeV run-away electrons, p2 ≃ 1610.
Knowing that |△p| = 2 |p| sin (θ/2) and that the angular integral is taken over

´
dΩ =´ xmax

xmin
sin θdθ

´ 2π

0
dϕ, where ϕ is the azimuthal angle in the center of mass frame, the fully screened

friction vector AZ0,s and diffusion tensor DZ0,s are

AZ0,s = −Υ

ˆ
d3vsfZs (t, x, vs)

ûs

u2
s

ˆ xmax

xmin

dx

�
1 − x2

�
p2 + 1

x
Z2

0,s (22)

and

DZ0,s =
1

2
Υ

ˆ
d3vsfZ0,s (t, x, vs)

1

us
(I − ûsûs)

×
ˆ xmax

xmin

dx

�
1 − x2

�
p2 + 1

x

�
1 − x2

�
Z2

0,s (23)

where Υ = 4πr2
ec, while x[min] max =

�
1 + b

2

[max] min

�−1/2

, b = b/b90 being the normalized impact
parameter of the Coulomb collision, with respect to the perpendicular deflection impact parameter
b90 = reZ2

0,sβ−2. Here, the electron velocity normalized to the speed of light is linked to the Lorentz

factor by the relation γ =
�
1 − β2

�−1/2. The values of b[max] min are discussed in the Appendix C.
In Eq. (23), the term (I − ûsûs) is the usual perpendicular collision operator.

Since both definite integrals
´ xmax

xmin
... dx/x in Eqs (22) and (23) give the same value, one obtains,

ˆ xmax

xmin

...
dx

x
≃ γ2

ˆ xmax

xmin

dx

x
=

�
p2 + 1

�
ln

bmaxq
1 + b

2

min

(24)

where ln Λe,Zs,0
= ln

�
bmax/

q
1 + b

2

min

�
is the Coulomb logarithm. Therefore, taking xmin =

1/Λe,Z0,s
and xmax = 1, Eqs. (22) and (23) may be approximated by

AZ0,s
≃ −Υ

ˆ
d3vsfZ0,s

(t, x, vs)
ûs

u2
s

�
p2 + 1

� ˆ 1

1/Λe,Z0,s

Z2
0,s

dx

x
(25)

and

DZ0,s
≃ 1

2
Υ

ˆ
d3vsfZ0,s

(t, x, vs)
1

us
(I − ûsûs)

�
p2 + 1

� ˆ 1

1/Λe,Z0,s

Z2
0,s

dx

x
(26)
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The calculation of the Coulomb logarithm ln Λe,Z0,s is discussed in the Appendix C.
The partial screening is taken into account by replacing Z2

0,s →
��Zs − FZ0,s (q)

��2 in Eqs. (25)
and (26), where q = 2p sin (θ/2) = 2px, and following the definition in Ref. [7], the Fokker-Planck
screening function gZ0,s

(p) is defined as
ˆ 1

1/Λe,Z0,s

��Zs − FZ0,s
(q)

��2 dx

x
≡ Z2

0,s ln Λe,Z0,s + gZ0,s (p) (27)

or

gZ0,s (p) =

ˆ 1

1/Λe,Z0,s

���Zs − FZ0,s (q)
��2 − Z2

0,s

� dx

x
(28)

since

Z2
0,s

ˆ 1

1/Λe,Z0,s

dx

x
= Z2

0,s ln Λe,Z0,s
(29)

The formulation (28) guarantees that
´ 1

1/Λe,Z0,s

��Zs − FZ0,s
(q)

��2
dx/x = Z2

0,s ln Λe,Z0,s
for

weakly energetic electrons, while conversely, for very energetic ones, it is Z2
s ln Λe,Zs

. However,
as pointed out in Ref. [7], partial screening cannot be described in a strict Fokker–Planck sense
other than in the complete and no screening limits. In order to keep dominant screening terms
and avoid unphysical behaviour for partial screening, only terms to the lowest order in x must be
considered, which allows q to be significant for large electron energies, and take consequently the
full form of FZ0,s

(q). The corresponding Fokker–Planck operator is then equivalent to the first
Legendre mode of the Boltzmann operator at non-relativistic energies, and differs by a factor of
order 1/ ln Λe,Z0,s

in the ultra-relativistic limit.
In the limit of an almost zero ion temperature, as in a post-disruptive regime in tokamaks,

fZ0,s (t, x, vs) ≃ nZ0,s (t, x) δ (vs) /
�
4πv2

s

�
where δ (vs) is the Dirac function, thus assuming that

ions are at rest. In this case, the integration over vs may be performed analytically, and expressions
in Ref. [7] may be retrieved. However, the implementation of the screening effects in kinetic
codes for studying standard regimes like in the LUKE code is slightly different, because of the
finite ion temperature which requires to express AZ0,s

and DZ0,s
in term of Rosenbluth potentials,

allowing a convenient conservative formulation of the collision operator. Knowing that ∇v (1/us) =
∂ (1/us) /∂v = −ûs/u2

s, ∇vus = ûs and ∇v∇vu = (I − ûsûs) /us, the integral
´

d3vs may be
permuted with the derivatives ∂/∂v, and the term

�
p2 + 1

� h´ 1

1/Λe,Z0,s

��Zs − FZ0,s
(q)

��2
dx/x

i
itself,

which is independent of us, so

AZ0,s
≃ −Υ

�
p2 + 1

� "ˆ 1

1/Λe,Z0,s

��Zs − FZ0,s
(q)

��2 dx

x

#
∂

∂v
HZ0,s

(t, x, v) (30)

where

HZ0,s
(t, x, v) =

ˆ
d3vsfZ0,s

(t, x, vs)
1

us
(31)

while

DZ0,s ≃ 1

2
Υ

�
p2 + 1

� "ˆ 1

1/Λe,Z0,s

��Zs − FZ0,s (q)
��2 dx

x

#
∂

∂v̄

∂

∂v̄
GZ0,s (t, x, v) (32)
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with

GZ0,s
(t, x, v̄) =

ˆ
d3vsfZ0,s

(t, x, vs) us (33)

In the coordinate system (p, ξ, φ) used by the LUKE Fokker-Planck solver in momentum space
[48], where ξ is the cosine of the pitch-angle, the expression of the collision operator in terms of a
divergence of the electron flux in momentum space ∇p · Scoll

p (fe) is

Scoll
p = − Dcoll

pp

∂fe

∂p
+

p
1 − ξ2

p
Dcoll

pξ

∂fe

∂ξ
+ F coll

p fe (34)

Scoll
ξ = − Dcoll

ξp

∂fe

∂p
+

p
1 − ξ2

p
Dcoll

ξξ

∂fe

∂ξ
+ F coll

ξ fe (35)

assuming a local axisymmetric plasma. By symmetry, Dcoll
pξ = Dcoll

ξp = F coll
ξ = 0. The contribution

of elastic electron-ion collisions in the non-zero diffusion and friction terms Dcoll
pp and F coll

p which
describes momentum exchange between particles is always very small as compared to the one of
the electron-electron collisions, because of the very large difference of mass between electrons and
ions, and may be therefore neglected. The single large non-zero term arising from electron-ion
collision is Dcoll

ξξ , which is proportional to Z2
0,s ln Λe,Z0,s

. Consequently, introducing the partial
screening in kinetic calculations requires simply to make the transformation Z2

0,s ln Λe,Z0,s →
Z2

0,s ln Λe,Z0,s
+ gZ0,s

(p) for the pitch-angle diffusion Dcoll
ξξ , with a careful account for the Coulomb

logarithm ln Λe,Zs,0
with Z0,s, as discussed in the Appendix C. Here, Dcoll

ξξ incorporates the
contribution of all ion species present in the plasma and their respective ionization states.

3.2. Inelastic scattering

In presence of partially ionized high-Z atoms in the plasma, energetic electrons may loose a part
of their kinetic energy by interacting with the bound electrons of a partially ionized atom which
jumps consequently in a transient excited state. The slowing-down process which is taken into
account by Fokker-Planck calculations is therefore the sum of multiple terms, the usual one from
e − e collisions, described in the LUKE kinetic code by the relativistic Belaiev-Budker collision
operator [10, 49], the Abraham-Lorentz-Dirac reaction force for very energetic electrons arising
from synchrotron radiation losses [45] and the new one from e − i excitation. The latter can be
deduced from the Bethe’s stopping-power formula describing the losses of energy dE per unit length
dx [35, 50]

−dE

dx

����
Z0,s

= 4πr2
enZ0,s (Zs − Z0,s)

mec2

β2

�
ln BZ0,s − β2

�
(36)

with

BZ0,s =

√
2γβ

√
γ − 1


ℏωZ0,s

�
/mec2

(37)

where


ℏωZ0,s

�
is the mean excitation energy for the ion of net charge Z0,s. Since the energy loss

over a distance △x is equivalent of the work of an effective drag force F excitation
p (p) over that

distance, its expression in Fokker-Planck calculations in simply

F excitation
p (p) = −

X
s

X
Z0,s

dE

dx

����
Z0,s

(38)
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The validity of the Bethe slowing down formula holds principally for fast electrons, whose
kinetic energy E is much larger than the mean excitation energy



ℏωZ0,s

�
. In that case, the

logarithm term always predominates over the small spin corrections given the −β2 term or possible
very small additional terms. For electrons whose kinetic energy is becoming low as compared to
the mean excitation energy, the Bethe formula indicates that the stopping power tends to decrease.
In this limit, the dominant inelastic term is coming from e − e collisions, as Bethe formula goes to
zero. Unfortunately, the Bethe formula may reverse sign, a non physical effect which is an intrinsic
limitation of the Bethe’s approach. This problem was identified in Ref. [7], and bypassed by
performing an interpolation. In this case, ln BZ0,s

in Eq. 36 is replaced by ln
�

1 + BnB

Z0,s

�
/nB , with

nB an integer that is chosen heuristically to be 5. When BZ0,s ≫ 1, ln
�

1 + BnB

Z0,s

�
/nB ≃ ln BZ0,s ,

and the Bethe’s formula is well retrieved. The Bethe-like expression guarantees that in the limit
p = γβ → 0, ln

�
1 + BnB

Z0,s

�
/nB − β2 is always positive and is smoothly becoming very small. The

exact value of ln
�

1 + BnB

Z0,s

�
/nB −β2 is not critical, since the dominant inelastic term is from e−e

collisions. Another approach, is also to enforce inelastic collisions from excitation of high-Z elements
to zero, when ln BZ0,s

− β2 becomes negative∗ ∗ ∗. Both methods are equivalent numerically.
Regarding the formulation of the Fokker-Planck solver in the LUKE code as shown Eqs. (34,

35) in [10, 45, 48], the drag force F excitation
p (p), as given by Eq. (38), may be readily incorporated

in F coll
p .

4. Fokker-Planck screening function

From the definition of the Fokker-Planck screening function given by Eq. (28), and making the
change of variable y = q̂/x = 2p/α, where p = p/ (mec), gZ0,s

(p) may be expressed as the sum of
two terms gZ0,s,1 (p) and gZ0,s,2 (p) where

gZ0,s,1 (p) = 2Zs

ˆ y

y/Λ

�
Ns − FZ0,s

(q̂)
� dq̂

q̂
(39)

and

gZ0,s,2 (p) =

ˆ y

y/Λ

�
F 2

Z0,s
(q̂) − N2

s

� dq̂

q̂
(40)

Here, Λ ≡ ΛZ0,s
, in order to simplify notations.

The form factor given by Eq. (3) may be recast in the simple form

FZ0,s
(q̂) = Ns

X
i

A0,s,i

1 +
�
q̂aZ0,s,i

�2 (41)

since aZ0,s,i
= αāZ0,s,i

/2 and αq̂ = q̄. Therefore

gZ0,s,1 (p̄) = 2Zs

ˆ y

y/Λ

 
Ns − Ns

X
i

A0,s,i

1 +
�
q̂aZ0,s,i

�2

!
dq̂

q̂
(42)

∗ ∗ ∗For low energy electrons, γ ≃ 1 + β2/2, such that
√

γ − 1 ≃ β/
√

2. In this limit BZ0,s
≃ 2E/

D
ℏωZ0,s

E
. The

term ln BZ0,s
− β2 becomes negative if ln BZ0,s

< β2 which leads to a transcendental equation in E for determining
this threshold.
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or

gZ0,s,1 (p̄) = Zs (Zs − Z0,s)
X

i

A0,s,i ln
�

1 +
�
p̄āZ0,s,i

�2
�

(43)

assuming that the condition 2paZ0,s,i/ (αΛ) = paZ0,s,i/Λ ≪ 1 holds. It is always valid in tokamak
plasmas since the Debye sphere has a large number of particles.

Much in the same way,

gZ0,s,2 (p̄) = + N2
s

X
i

A
2

0,s,iegZ0,s,2,i (p̄) + N2
s

X
i

X
j ̸=i

A0,s,iA0,s,jegZ0,s,2,i,j (p̄) (44)

where

egZ0,s,2,i (p̄) =

ˆ y

y/Λ

1 −
�

1 +
�
q̂aZ0,s,i

�2
�2

�
1 +

�
q̂aZ0,s,i

�2
�2

dq̂

q̂
(45)

and

egZ0,s,2,i,j (p̄) =

ˆ y

y/Λ

1 −
�

1 +
�
q̂aZ0,s,i

�2
� �

1 +
�
q̂aZ0,s,j

�2
�

�
1 +

�
q̂aZ0,s,i

�2
� �

1 +
�
q̂aZ0,s,j

�2
� dq̂

q̂
(46)

which can be integrated analytically such that

egZ0,s,2,i (p̄) = −1

2

�
p̄āZ0,s,i

�2

1 +
�
p̄āZ0,s,i

�2 − 1

2
ln

�
1 +

�
p̄āZ0,s,i

�2
�

(47)

while

egZ0,s,2,i,j,2 (p̄) = − 1

4
ln

���1 + p2
�

a2
Z0,s,i

+ a2
Z0,s,j

�
+ p4a2

Z0,s,i
a2

Z0,s,j

���
+

a2
Z0,s,i

+ a2
Z0,s,j

2
√

∆

ln

������
4a2

Z0,s,i
a2

Z0,s,j
p2 + 2

�
a2

Z0,s,i
+ a2

Z0,s,j

�
−

√
∆

4a2
Z0,s,i

a2
Z0,s,j

p2 + 2
�

a2
Z0,s,i

+ a2
Z0,s,j

�
+

√
∆

������
− ln

������
2

�
a2

Z0,s,i
+ a2

Z0,s,j

�
−

√
∆

2
�

a2
Z0,s,i

+ a2
Z0,s,j

�
+

√
∆

������
 (48)

with p
∆ = 2

���a2
Z0,s,i

− a2
Z0,s,j

��� (49)

Gathering all terms,

gZ0,s
(p̄) = Zs (Zs − Z0,s)

X
i

A0,s,i ln
�

1 +
�
p̄āZ0,s,i

�2
�

− (Zs − Z0,s)
2

2

X
i

A
2

0,s,i

 �
p̄āZ0,s,i

�2

1 +
�
p̄āZ0,s,i

�2 + ln
�

1 +
�
p̄āZ0,s,i

�2
�!

+ 2 (Zs − Z0,s)
2

X
i

X
j>i

A0,s,iA0,s,jegZ0,s,2,i,j (p̄) (50)
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with

egZ0,s,2,i,j (p̄) = − 1

2

a2
Z0,s,i

+ a2
Z0,s,j

a2
Z0,s,j

− a2
Z0,s,i

ln

�����1 + p̄2a2
Z0,s,j

1 + p̄2a2
Z0,s,i

�����
− 1

4
ln

���1 + p2
�

a2
Z0,s,i

+ a2
Z0,s,j

�
+ p4a2

Z0,s,i
a2

Z0,s,j

���
+

a2
Z0,s,i

+ a2
Z0,s,j

4
���a2

Z0,s,i
− a2

Z0,s,j

���
×

ln

������
2a2

Z0,s,i
a2

Z0,s,j
p2 +

�
a2

Z0,s,i
+ a2

Z0,s,j

�
−

���a2
Z0,s,i

− a2
Z0,s,j

���
2a2

Z0,s,i
a2

Z0,s,j
p2 +

�
a2

Z0,s,i
+ a2

Z0,s,j

�
+

���a2
Z0,s,i

− a2
Z0,s,j

���
������

− ln

������
�

a2
Z0,s,i

+ a2
Z0,s,j

�
−

���a2
Z0,s,i

− a2
Z0,s,j

����
a2

Z0,s,i
+ a2

Z0,s,j

�
+

���a2
Z0,s,i

− a2
Z0,s,j

���
������
 (51)

and, as expected, limp̄→0 gZ0,s (p̄) = 0 is verified regardless the element and its ionization state
Z0,s,.

In the case of a single exponential corresponding to the standard Yukawa atomic potential, Eq.
(50) simplifies to the usual form

gZ0,s =
1

n

"�
Z2

s − Z2
0,s

�
ln

�
1 +

�
p̄āZ0,s,1

�n�
− (Zs − Z0,s)

2

�
p̄āZ0,s,1

�n

1 +
�
p̄āZ0,s,1

�n

#
(52)

where n = 2, since A0,s,1 = 1, while egZ0,s,2,i,j (p̄) = 0 by definition. Using the Thomas-Fermi-
Kirillov model [22], n = 3/2, and Eq. 6 in Ref. [6] is well retrieved. The difference is generally
small for tungsten, few percent, between the MY and Thomas-Fermi-Kirillov models.

The analytical expression of gZ0,s
(p̄) may be easily implemented in Fokker-Planck solvers,

allowing fast and accurate kinetic calculations, whatever p̄ and the type of elements and its level of
ionization. As shown in Fig. 15, gZ0,s (p̄) from Eq. (50) for neutral tungsten with the use of three
exponentials is very close to the numerical estimate gnum

Z0,s
(p̄) directly obtained in the limit p̄ ≫ 1,

from DFT calculations using results of the GAUSSIAN code. Its formula is

gnum
Z0,s

(p̄) =
�
Z2

s − Z2
0,s

�
(ln (2p̄/α) + γEM − 1)+2ZsNsÎ1,Z0,s

+N2
s

�
1

2
− Î2,Z0,s

�
(53)

where

Î1,Z0,s ≡ 4π

Ns

ˆ ∞

0

ρ̄num
Z0,s

(r̄1) r̄2
1 ln r̄1dr̄1 (54)

with

Î2,Z0,s =
4π2

N2
s

ˆ ∞

0

ρ̄num
Z0,s

(r̄1) Ĵ2,Z0,s (r̄1) r̄1dr̄1 (55)

and

Ĵ2,Z0,s
(r̄1) =

ˆ ∞

0

ρ̄num
Z0,s

(r̄2) r̄2dr̄2

�
(r̄1 + r̄2)

2
ln (r̄1 + r̄2) − (r̄1 − r̄2)

2
ln |r̄1 − r̄2|

�
(56)

from Ref. [7], γEM being the Euler-Mascheroni constant [51].
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Since Eq. (53) is derived in the limit p̄ ≫ 1, it is consequently not valid at low p̄, and gnum
Z0,s

(p̄)
does not converge towards zero when p̄ ≤ 0.5, as shown in Fig. 16 for the neutral atom of tungsten.
When the number of exponentials is reduced, gZ0,s

(p̄) is always lower than gN
Z0,s

(p̄). The relative
error is about 13 % at p̄ = 1 for a single exponential. This tendency is similar for an ionized atom
as shown for W 42+ in Fig. 17. In this case, only two exponentials are necesseary to accurately
reproduce the atomic potential. For ionization states ranging between W 45+and W 55+, where only
a single exponential can be found by the MY procedure described in Sec. 2, the relative deviation
of gZ0,s (p̄) from gnum

Z0,s
(p̄) remains small whatever the p̄ value, of the order of few percent, even

if the coefficient of determination R2, shown in Fig. 12, is lower. This results from the fact that
gZ0,s (p̄) is itself an integral, which smoothes out possible errors.

5. Mean excitation energy

The mean excitation energy


ℏωZ0,s

�
is the key parameter to describe enhanced slowing down of

the electrons by transferring energy to partially ionized high-Z elements in a hot plasma. It is
formally defined as



ℏωZ0,s

�
= (1/Z0,s)

P
ik fik ln (ℏωik), where fik is the dipole oscillator strength

of the transition ωik for the atomic system between quantum states |i⟩ and |k⟩, according to
the Bethe’s theory [34, 52]. Its determination from first principles calculations is a considerable
challenge, so except for elements that do not require relativistic corrections,



ℏωZ0,s

�
is generally

obtained from empirical laws constrained by measurements for neutral atoms only [53–56]. Recent
advanced calculations carried out by a non-relativistic Multi-Configurational Self-Consistent Field
(MCSCF) code have allowed to estimate



ℏωZ0,s

�
for all ionization states of the elements lighter

than argon Zs ≤ 18 [14, 15, 57]. Though this result represents a considerable progress, the accurate
determination of



ℏωZ0,s

�
for much higher-Z elements like tungsten is still missing, which represents

a difficulty for studying the impact of inelastic processes by electron-ion interaction in a hot plasma.
In this context, several simple models have been introduced to compare their impact on kinetic
calculations.

In general, MCSCF calculations show that


ℏωZ0,s

�
has an exponential-like dependence with

Z0,s, which can be easily determined at the two limits, i.e. for the neutral atom and for the
hydrogen-like atom characterized by a single valence electron. For low-Z neutral elements,



ℏωZ0,s

�
has a rather complex structure, while it is becoming almost proportional to Zs for Zs > 18, i.e.
ℏ



ωZ0,s

�
≃ 10Zs eV , this relation being known as the Bloch relation [53]. For Zs < 18,



ℏωZ0,s

�
oscillates with Zs and tends to increase up to 50 % approximately as its value decreases. The Zs

dependence of


ℏωZ0,s

�
for neutral atoms can be well described by a statistical approach of the

energy loss process, known as the Local Plasma Approximation (LPA) [37, 53]. On the other limit
corresponding to a single bound electron,



ℏωZ0,s

�
= Z2

s IH eV , where IH = 14.9916 eV is obtained
from non-relativistic quantum calculations [14, 58]. Consequently,



ℏωZ0,s

�
may be approximated

by the simple heuristic relation

ln


ℏωZ0,s

�
≃ ln

�
IH

10
Zs

�
Z0,s

Zs − 1
+ ln (10Zs) (57)

where Z0,s is the charge of the fully screened ion, and ℏωZ0,s
is expressed in eV units. This relation

can be considered as an upper bound of


ℏωZ0,s

�
, since electron-electron correlations tend to reduce

the mean excitation energy [14]. It has been used to quantify the impact of tungsten on the toroidal
plasma current driven by the RF wave at the Lower Hybrid frequency in tokamaks [4].
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As shown for argon in Fig. 18, the exponential interpolation given by Eq. (57) is in good
agreement for both weakly and highly ionized states as compared to MCSCF calculations [14]. In
between, results obtained with the MCSCF code are lower, especially in the interval Z0,s = [10 − 15].
However, the difference never exceeds a factor two.

More refined approaches may be considered, taking into account for the density of bound
charges calculated in the ground-state. Indeed, since excited states are transient with a
characteristic time generally much smaller than the mean collision time, elements in the plasma are
principally in a ground-state from which atom transitions must be considered to evaluate



ℏωZ0,s

�
.

Two models are interesting for this purpose, the LPA approach [37], dedicated principally for
very weakly ionized atoms, and a variational quantum description [36]. Though restricted to non-
relativistic elements, the latter may be an interesting alternative even for high-Z elements, as it is
expected to be valid within a larger range of Z0,s values. For both approaches, the multi-Yukawa
description of the density of bound electrons may be used, allowing a unified description of the
atomic physics in kinetic calculations, not only for elastic Coulomb collisions but also for inelastic
processes.

5.0.1. Local Plasma Approximation The Local Plasma Approximation (LPA) has been widely
used for calculating the mean excitation energies of neutral atoms [53]. It can be extended to any
ionization state, according to the relation

ln


ℏωZ0,s

�
=

4π

Ns

ˆ ∞

0

r2ρZ0,s
(r) ln

�
γLP A

√
4πα2mec2

q
ρZ0,s

(r)
�

dr (58)

The LPA formula gives generally poor results when the ionization state is high and a few number
of electrons remain bound, because of the basic difficulties encountered when one tries to derive
this scheme from first principles, i.e., starting with the standard definition of the oscillator strength
in terms of dipole matrix elements and carrying out a systematic deduction [59]. In particular, the
choice of γLP A is rather arbitrary, and its value, from heuristic arguments, is generally set to

√
2.

Incorporating Eq.(2) into Eq.(58) with γLP A =
√

2,

ln


ℏωZ0,s

�
=

X
i

λ
2

Z0,s,i
AZ0,s,i

ˆ ∞

0

r exp
�
−λZ0,s,i

r
�

× ln

√
2α2mec2

s
Zs − Z0,s

r

X
j

λ
2

Z0,s,j
AZ0,s,i

exp
�
−λZ0,s,j

r
� dr(59)

As shown for argon in Fig. 18, which is the highest-Z elements for which advanced numerical
quantum calculations are available [14], a good quantitative agreement is found between LPA
calculations using Eq. (59) and MCSCF ones for the neutral atom. The value from NIST database
is also consistent with LPA level [60]. As the ion charge Z0,s is increasing, the departure from the
results of the numerical quantum calculations is more and more pronounced, and with the LPA, the
limit for the hydrogen-like ion is never recovered, indicating that the model fails completely in this
regime. For the case of tungsten, the lack of quantum calculations prevent an accurate comparison
as for argon. Nevertheless, the departure from the hydrogen-like limit is also very large, while for
the neutral atom, the agreement between the value given by the NIST database and the estimate
from the Bloch relation is very good, as shown in Fig. 19.
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5.0.2. Variational quantum description The non-relativistic variational quantum model to
calculate the mean excitation energy, initially derived for inertial fusion experiments, is an
interesting approach to get a more accurate estimate



ℏωZ0,s

�
as a function of Z0,s. According to

Ref. [36], the mean excitation energy from the ground state is given by the relation ln


ℏωZ0,s

�
=

1
2 ln S (1) /S (−1) where S (−1) = 2mea2

0



r2

�
/

�
3ℏ2

�
and S (1) = 4K0/3. The functions S are

moments of the strength distribution of oscillators [52], which may be expressed as a function of K0,
the averaged kinetic energy of the cloud of bound electrons, and



r2

�
= (4π/Ns)

´ ∞
0

r4ρZ0,s
(r) dr

or


r2

�
= 6R2 from Eq. (6). Therefore


ℏωZ0,s

�2
= 2

K0

r2

�α2mec2 (60)

where α2mec2 ≃ 27.21 eV , which is about twice the Rydberg unit of energy. The calculation of
K0 is performed using the virial theorem, 2K0 ≃ −



UZ0,s

�
, where UZ0,s

is the atomic potential
related to the density of bound charge ρZ0,s

by the Poisson’s equation, as given by Eq. (1), using
the multi-Yukawa description. Therefore, since


UZ0,s

�
= − Zs − Ns

4πϵ0a0

X
i

λZ0,s,i
AZ0,s,i

− Ns

4πϵ0a0

 
1

2

X
i

A
2

Z0,s,i
λZ0,s,i

+
X

i

X
j ̸=i

AZ0,s,i
AZ0,s,j

λ
2

Z0,s,i

λZ0,s,i
+ λZ0,s,j

 (61)

one obtains 

ℏωZ0,s

�
=

α2mec2q
6

P
i λ

−2

Z0,s,i
AZ0,s,i

×

"
(Zs − Ns)

X
i

λZ0,s,i
AZ0,s,i

+

+ Ns

X
i

A
2

Z0,s,i

λZ0,s,i

2
+

X
i

X
j ̸=i

AZ0,s,iAZ0,s,j

λ
2

Z0,s,i

λZ0,s,i + λZ0,s,j

1/2

(62)

by reporting Eq. (61) in the expression Eq. (60). In Eq. (62), parameters
�
A0,s,i, λZ0,s,i

�
are those

obtained from the method of moments discussed in Sec. 2.3.
For a single exponential, Eq. (62) simplifies to



ℏωZ0,s

�
= α2mec2

q
λ

3

Z0,s,1
Ns/12, and for

neutral atoms, i.e. when Ns = Zs,


ℏωZ0,s

�
= 9.44Zs eV , considering the Thomas-Fermi model for

which λ̄Z0,s,1 = 1.13Z
1/3
s , as defined in Sec. 2.2. With a similar approach based on an approximate

description of the Thomas-Fermi model [21], the same value is found, as shown in Ref. [36]. Both
relations are very close to the heuristic Bloch relation which can be also well reproduced by the
LPA model [53]. Another approximate description of the Thomas-Fermi model given in Ref. [22]
gives



ℏωZ0,s

�
≃ 12.10Zs eV , about 12 % larger than the value given by the exact Thomas-Fermi

model, but still close to the Bloch relation [53].
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As shown for argon in Fig. 18, the quantitative agreement between the non-relativistic
variational quantum model and the results of the MCSCF code is good, especially above Z0,s = 8.
The analytical model has the correct dependency up to the hydrogen-like atom, which is an
important assessment of the method. With the multi-Yukawa description of the atomic potential,
small departures are observed at low Z0,s, even if it never exceeds 20 % approximately for the
neutral atom. This discrepancy arises from the large sensitivity of



ℏωZ0,s

�
to the atomic model in

this limit. Indeed, when


ℏωZ0,s

�
is calculated using the approximate Thomas-Fermi atomic models

instead of the multi-Yukawa one, the agreement with the Bloch relation for neutral atoms is much
better, within 5 %.

When applied to the case of tungsten, as displayed in Fig. 19,


ℏωZ0,s

�
exhibits globally a

consistent agreement with the expected limits for a neutral atom and an almost fully stripped
one. As for the argon, the agreement is less accurate near Z0,s = 0, with a similar relative error.
Conversely to the LPA model,



ℏωZ0,s

�
has a correct variation with Z0,s when its value is close

to Zs, making the variational quantum description more appropriate, even if relativistic effects are
not considered.

From estimates of


ℏωZ0,s

�
using the LPA and the variational quantum descriptions, both

using the multi-Yukawa atomic model for the ground-state, a trade-off for an accurate estimate of

ℏωZ0,s

�
whatever Z0,s would be to consider the largest of the values given by both models. Such

an approach would allow to describe accurately atomic physics in kinetic calculations, either for a
cold plasma like after a major disruption, and a standard hot magnetized plasma expected during
regular tokamak operation. This option is considered in the 3-D linearized relativistic bounce-
averaged Fokker-Planck code LUKE for studying both the physics of post-disruptive runaway and
slide-away RF-driven electrons [10, 45].

6. Conclusion

The incorporation of the atomic physics in kinetic calculations is becoming mandatory in order to
study the impact of high-Z elements in fusion plasmas. The multi-Yukawa approach for describing
the atomic potential, regardless the ionization state, is particularly convenient to obtain consistent
analytical solutions for both elastic and inelastic scattering processes that occur in a plasma. It
allows fast and accurate kinetic calculations while the full atomic physics can be incorporated, over
a very wide range of plasma regimes and electron kinetic energies. With this approximate and
accurate atomic model, the dynamics of electrons in a plasma can be studied from the runaway
energy range (few ten MeV) in very cold post-disruptive plasmas to slide-away electrons in hot
plasmas without changing the atomic model depending upon the studied physics.

The great advantages of the method proposed here are its robustness and flexibility. Indeed,
the calibration procedure against advanced numerical atomic codes is rigorous and the parameters
defining the multi-Yukawa atomic potential are unique, as their identification do not rely on a non-
linear least-square fit procedure which is inappropriate for the non-linear problem here addressed.
The method, initially restricted to neutral atoms, has been extended here to any ionization state
of any types of elements, making it universal. While it was initially developped for up to three
exponentials, it has been extended for an arbitrary number of them. However, for all the elements
with an atomic number less than 74 (tungsten), the method does not find more than three
exponentials, regardless their ionization states. This method is also flexible, since the impact of
most advanced atomic simulations can be investigated without changing the structure of the kinetic
codes, but just by modifying the coefficients of the multi-Yukawa potential. Though simple, the
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method allows having a more realistic description of the atomic physics as compared to simplified
atomic models like the well-known Thomas-Fermi model and all its approximate representations.

The work presented here has been restricted to microscopic collision processes for kinetic
calculations. However, it can be extended to other physical quantities, in particular those who are
derived in the first Born approximation, as already shown for the bremsstrahlung of fast electrons on
neutral atoms, where partial screening effect may be also important. It is likely that this method can
be extended to many more processes, like ionization and knock-on collisions by energetic electrons
(beyond Fokker-Planck approximation), opening the possibility of a unified and rigorous description
of most of the atomic physics in kinetic descriptions of plasmas.
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Z0 AW,1 AW,2 λW,1 λW,2 λW,3

0 0.0964 0.7058 40.7776 4.7464 1.2612
1 0.1129 0.6490 36.2792 4.8617 1.5970
2 0.1134 0.5416 35.9580 5.4016 2.1100
3 0.0872 0.4628 42.7872 6.4409 2.4903
4 0.0447 0.3844 66.8955 8.5866 2.8794
5 0.2404 0.7595 22.7136 3.4038 -
6 0.2001 0.7998 25.9976 3.6903 -
7 0.1916 0.8084 27.0553 3.8056 -
8 0.1691 0.8309 29.60311 4.0558 -
9 0.1540 0.8460 31.8430 4.2397 -
10 0.1336 0.8673 35.4275 4.4711 1.8417
11 0.1321 0.8786 36.0567 4.5467 2.7534
12 0.0781 0.9219 53.8146 5.0492 -
13 0.0735 0.9265 56.8908 5.1789 -
14 0.0703 0.9297 59.4299 5.3019 -
15 0.0683 0.9317 61.3319 5.4187 -
16 0.0464 0.9536 84.5389 5.7162 -
17 0.0217 0.9783 65.8142 6.0570 -
18 0.0195 0.9805 84.0652 6.1945 -
19 0.0181 0.9819 98.7309 6.3284 -
20 0.0173 0.9827 208.1839 6.4596 -
21 0.0172 0.9828 211.7881 6.5890 -
22 0.0179 0.9821 205.6840 6.7123 -
23 0.0191 0.9809 195.1947 6.8342 -
24 0.0208 0.9791 181.9760 6.9551 -
25 0.0232 0.9768 166.6728 7.0732 -
26 0.0260 0.9740 152.0133 7.1919 -
27 0.0293 0.9707 138.2625 7.3109 -
28 0.03330 0.9667 125.1738 7.4282 -
29 0.0371 0.9629 115.1210 7.5611 -
30 0.0409 0.9591 106.6938 7.7017 -
31 0.0449 0.9551 99.6147 7.8511 -
32 0.0488 0.9511 93.6306 8.0104 -
33 0.0529 0.9471 88.4122 8.1797 -
34 0.0569 0.9431 84.1192 8.3633 -
35 0.0603 0.9397 80.8589 8.5669 -
36 0.0634 0.9366 78.2547 8.7894 -

Z0 AW,1 AW,2 λW,1 λW,2 λW,3

37 0.0657 0.9342 76.5450 9.0381 -
38 0.0668 0.9332 75.9433 9.3208 -
39 0.06723 0.9328 75.6537 9.6390 -
40 0.09735 1.0166 58.6355 9.3206 6.8896
41 0.07858 0.9464 67.6093 10.1206 6.1217
42 0.05895 0.9532 82.4553 10.8159 6.0350
43 0.04067 1.0524 108.3990 11.2870 8.6963
44 0.07209 -0.3479 83.3834 21.2223 13.5253
45 1 - 16.3046 - -
46 1 - 16.7547 - -
47 1 - 17.1551 - -
48 1 - 17.5828 - -
49 1 - 18.0408 - -
50 1 - 18.5337 - -
51 1 - 19.0654 - -
52 1 - 19.6402 - -
53 1 - 20.2658 - -
54 1 - 20.9494 - -
55 1 - 21.7004 - -
56 0.01499 0.9850 383.7327 17.0332 -
57 0.03214 0.9679 203.7360 17.4369 -
58 0.05357 0.9464 139.5996 17.9070 -
59 0.08041 0.9196 106.6274 18.4671 -
60 0.1128 0.8872 87.0463 19.1924 -
61 0.1501 0.8499 74.3800 20.1958 -
62 0.1813 0.8187 67.0734 21.8502 0.0069
63 0.05328 0.9327 113.6346 27.6518 12.2918
64 1 - 34.3729 - -
65 1 - 36.1418 - -
66 1 - 38.3347 - -
67 1 - 41.1288 - -
68 1 - 44.8359 - -
69 0.03841 0.9616 333.5709 38.6642 -
70 0.1713 0.8287 152.9629 38.0016 -
71 0.5829 0.4171 94.1997 34.8665 -
72 -0.1893 1.1893 311.7230 127.7285 -
73 -0.2028 1.2028 305.1938 128.8713 -

Table 1: Table of multi-Yukawa coefficients (3 exponentials) for the different ionization states of
tungsten, based on DFT calculations done with GAUSSIAN code for the density of reference [12].
Note that AW,3 = 1−AW,2−AW,1 by definition and in the case of two exponentials, AW,1+AW,2 = 1.
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Method Molière (Thomas-Fermi) DHFS (3 exp.) DFT (3 exp.)
λW,1 28.4633 28.6330 40.7776

λW,2 5.6926 4.2426 4.7464

λW,3 1.4231 1.2340 1.2612

AW,1 0.1 0.15 0.0964

AW,2 0.55 0.6871 0.7058

AW,3 0.35 0.1629 0.1978

Table 2: Table of the coefficients
�
λZ0,s,i

, AZ0,s,i

�
for the neutral tungsten, as determined by the

Molière’s method of the Thomas-Fermi model [32], by the DHFS method from Ref. [32], and
by the DFT using the GAUSSIAN code as the density of reference [12]. All methods use three
exponentials.
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Figure 1: Relative fraction of different screened ion charges for tungsten at different plasma electron
temperatures using the OPEN-ADAS database [5].
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Figure 2: Deviation of the bound electron density of from spherical symmetry as estimated by the
parameter ∆Θ for all the screened charges of tungsten, from DFT calculations using GAUSSIAN
code [12]. When ∆Θ = 0, the cloud of bound electrons is spherically symmetric around the nucleus.
∆Θ is very small for all nobel gas-like electronic configurations.
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Figure 3: Density of bound electrons for all ionization states of tungsten calculated by the DFT
method using the GAUSSIAN code [12]. The upper red line corresponds to neutral atom. Details
of the simulations are given in the Appendix B.
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Figure 4: Comparison between radial densities of bound electrons for neutral tungsten W 0 and
ionized states W +10, W +42 and W +56, as calculated by GAUSSIAN (DFT method, red lines) and
GRASP (MCDHF method, blue symbols) codes. An excellent agreement in found between the two
quantum relativistic codes. Details of the simulations are given in the Appendix B.
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Figure 5: Comparison between densities of bound electrons for neutral tungsten W 0 (upper plot)
and the ionized state W +42 (lower plot) as calculated by GAUSSIAN (DFT method, red line) and
simple atomic models: Thomas-Fermi (blue dotted line), Yukawa with the inverse screening length
λB

0,s ≃ 0.9Z0.42
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0 [38] (blue dotted-dashed line) and Yukawa with with the inverse screening length
λT F

0,s ≃ 1.13Z
1/3
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0 [24, 27, 38, 61, 62] (blue dashed line). Details of the simulation for the DFT
calculation are given in the Appendix B.
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Figure 6: Atomic density for neutral tungsten element, Z0,s = 0, calculated from DFT (red full
line) using GAUSSIAN code [12] and approximated using the method of moments with a single
exponential (blue dashed line), two exponentials (green dotted dashed line) and three exponentials
(pink dashed line) [29]. The Moliere’s solution, as given in the Appendix A is also displayed (black
full line) [32].



32 A unified description of the atomic physics for electron Fokker-Planck calculations

0 0.5 1 1.5 2 2.5 3 3.5 4
Ion radius [a0]

0

20

40

60

80

100

120

140

Li
ne

ar
 d

en
si

ty
 o

f b
ou

nd
 e

le
ct

ro
ns

 [a
-1 0

]

Tungsten (Zs = 74, Zs,0 = 0)

DFT (GAUSSIAN code)
Multi-Yukawa/DFT (3 exp.)
Multi-Yukawa/DHFS (3 exp.)
Moliere-Thomas-Fermi (3 exp.)

Figure 7: Atomic linear density 4πr2ρZ0,s
(r) for neutral tungsten element, Z0,s = 0, calculated from

DFT (red full line) using GAUSSIAN code [12] and approximated using the method of moments
with a single exponential (blue dashed line), two exponentials (green dotted dashed line) and three
exponentials (pink dashed line) [29]. The Moliere’s solution, as given in the Appendix A is also
displayed (black full line) [32].
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Figure 8: Atomic form factor for neutral tungsten element, Z0,s = 0, calculated from DFT (red full
line) using GAUSSIAN code [12] and approximated using the method of moments with a single
exponential (blue dashed line), two exponentials (green dotted dashed line) and three exponentials
(pink dashed line) [29]. The Moliere’s solution, as given in the Appendix A is also displayed (black
full line) [32]. Only the three exponentials case is very close to the DFT solution when q ≥ 0.08.
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Figure 9: Atomic density for charged tungsten element, Z0,s = 42, calculated from DFT (red full
line) using GAUSSIAN code [12] and approximated using the method of moments with a single
exponential (blue dashed line), two exponentials (green dotted dashed line) and three exponentials
(pink dashed line) [29].
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Figure 10: Atomic linear density 4πr2ρZ0,s
(r) for charged tungsten element, Z0,s = 42, calculated

from DFT (red full line) using GAUSSIAN code [12] and approximated using the method of
moments with a single exponential (blue dashed line), two exponentials (green dotted dashed line)
and three exponentials (pink dashed line) [29].
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Figure 11: Atomic form factor for charged tungsten element, Z0,s = 42, calculated from DFT (red
full line) using GAUSSIAN code [12] and approximated using the method of moments with a single
exponential (blue dashed line), two exponentials (green dotted dashed line) and three exponentials
(pink dashed line) [29]. Only the three exponentials case is very close to the DFT solution when
q ≥ 0.08.
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Figure 12: Coefficient of determination R2 as a function of all screened ion charges Z0,s for tungsten
to illustrate how well the multi-Yukawa reproduces the results of DFT calculated by the GAUSSIAN
code [12]: red circles (single exponential), blue crosses (two exponentials) and green x-marks (three
exponentials). When points exactly overlap in the figure, it means that despite the method is
searching three exponentials, only solution with two or one exponentials are found.



38 A unified description of the atomic physics for electron Fokker-Planck calculations

0 0.5 1 1.5 2 2.5 3
Ion radius [a0]

0

50

100

150

200

Li
ne

ar
 d

en
si

ty
 o

f b
ou

nd
 e

le
ct

ro
ns

 [a
-1 0

]

Gold (Zs = 79, Z0,s = 1)

DFT (GAUSSIAN code)
Multi-Yukawa/DFT (1 exp.)
Multi-Yukawa/DFT (2 exp.)
Multi-Yukawa/DFT (3 exp.)
Multi-Yukawa/DFT (4 exp.)

Figure 13: Linear density (lower plot) 4πr2ρZ0,s
(r) for gold ion, Z0,s = 1, calculated from DFT

(red full line) using GAUSSIAN code [12] and approximated using the method of moments with
the use of atomic linear density 4πr2ρZ0,s

(r) for charged gold element, Z0,s = 1, calculated from
DFT (red full line) using GAUSSIAN code [12] and approximated using the method of moments
with a single exponential (blue dashed line), two exponentials (green dotted dashed line), three
exponentials (pink dashed line) and four exponentials (cyan full line).
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Figure 14: Relative evolution of the square of the inverse normalized screening length as a function
of the normalized ion charge. Red circles : numerical value from the multi-Yukawa description
of the atomic potential with a single exponential; blue dashed line : approximate Thomas-Fermi
model from Kirillov et al [22]; green dotted dashed line : φs (x) =
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�
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a fit of the Hartree-Fock-Slater potential [26, 28]; magenta dotted line : modified formulation
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3/2 of the fit of the Hartree-Fock-Slater (HFS) atomic potential.
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Figure 15: Normalized Fokker-Planck screening function for the neutral tungsten element, Z0,s = 0,
as a function of the normalized momentum p = p/ (mec), calculated from DFT results (red circles)
using GAUSSIAN code [12] for ρ̄num

Z0,s
and Eq. (53) and approximated using the method of moments

(multi-Yukawa) given by Eq. 50 with a single exponential (blue dashed line), two exponentials (green
dotted dashed line) and three exponentials (pink dashed line).
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Figure 16: Normalized Fokker-Planck screening function for the neutral tungsten element, Z0,s = 0,
as a function of the normalized momentum p = p/ (mec) between p = [0, 1] calculated from DFT
results (red circles) using GAUSSIAN code [12] for ρ̄num

Z0,s
and Eq. (53) and approximated using

the method of moments (multi-Yukawa) given by Eq. 50 with a single exponential (blue dashed
line), two exponentials (green dotted dashed line) and three exponentials (pink dashed line). When
p < 0.4, the numerical value of the normalized Fokker-Planck screening function falls off more
rapidly that the multi-Yukawa expression with the use of three exponentials, and does not converge
towards zero for p ≈ 0, as expected from theory.
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Figure 17: Normalized Fokker-Planck screening function for the charged tungsten element, Z0,s =
42, as a function of the normalized momentum p = p/ (mec), calculated from DFT results (red
circles) using GAUSSIAN code [12] for ρ̄num

Z0,s
and Eq. (53) and approximated using the method

of moments (multi-Yukawa) given by Eq. 50 with a single exponential (blue dashed line), two
exponentials (green dotted dashed line) and three exponentials (pink dashed line).
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Figure 18: Variation of the logarithm of the mean excitation energy in eV units for argon, as a
function of the level of ionization. Black dotted dashed line : exponential interpolation determined
from neutral atom and hydrogen-like ion according to Eq. (57); green circles : numerical results from
MCSCF quantum code [14]; blue dashed line : LPA model from Eq. (59) with γLP A =

√
2 using the

multi-Yukawa atomic model with the use of three exponentials calibrated against DFT calculations
(GAUSSIAN code) [37]; red full line : variational quantum model from Eq.(62) using the multi-
Yukawa atomic model with the use of three exponentials calibrated against DFT calculations
(GAUSSIAN code) [36]; black star : mean excitation energy for the neutral atom from NIST
database [60].
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Figure 19: Variation of the logarithm of the mean excitation energy in eV units for tungsten,
as a function of the level of ionization. Black dotted dashed line : exponential interpolation
determined from neutral atom and hydrogen-like ion according to Eq. (57); blue dashed line :
LPA model from Eq. (59) with γLP A =

√
2 using the multi-Yukawa atomic model with the use

of three exponentials calibrated against DFT calculations (GAUSSIAN code) [37]; red full line :
variational quantum model from Eq.(62) using the multi-Yukawa atomic model with the use of
three exponentials calibrated against DFT calculations (GAUSSIAN code) [36]; black star : mean
excitation energy for the neutral atom from NIST database [60].
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Appendix A. Moliere’s model

From the Moliere’s description of the Thomas-Fermi model [32], the atomic charge density may be
expressed as ρM

Z0,s
(r̂) = (Zs − Z0,s)

P
β2

i Bi exp (−βir̂) /
�
4πr̂b3

s

�
with βi and Bi independent of the

atomic number Zs, where the distance r to the nucleus is normalized to the Thomas-Fermi atomic
characteristic length bs, i.e. ř = r/bs. The conversion to atomic units may be easily obtained,
i.e. βiř → βi (r/a0) (a0/bs) ≡ λ

M

Z0,s,i
r such that λ

M

Z0,s,i
= βia0/bs = βi/b̄s = βiZ

1/3
s /αT F or

βi = b̄sλ
M

Z0,s,i
where b̄s = αT F Z

−1/3
s and αT F =

�
9π2/2

�1/3
/4 ≃ 0.885. Much in the same way,

β2
i Bi/

�
řb3

s

�
=

�
λ

M

Z0,s,i

�2

Bi/
�
ra3

0

�
and AM

Z0,s,i
= Bi.

Therefore, for tungsten (Z = 74), since Z
1/3
s = 4.1983 while B1 = 0.1, B2 = 0.55, B3 = 0.35,

and β1 = 6.0, β2 = 1.20, β3 = 0.30 from Ref. [32], coefficients which are used in plots for
Figs. 6, 13 and 8 are

�
λW −M

1 , AW −M
1

�
= (28.4633, 0.1),

�
λW −M

2 , AW −M
2

�
= (5.6926, 0.55) and�

λW −M
3 , AW −M

3

�
= (1.4231, 0.35). Comparisons with values for a three exponentials representation

of the atomic density obtained with DHFS and DFT models are given in Table 2.

Appendix B. Quantum simulations

Appendix B.1. GAUSSIAN code

Density functional theory (DFT) is a computational quantum mechanics modelling method used
in physics, chemistry and materials science to investigate the electronic structure, principally the
ground state, of many-body systems, in particular atoms. Using this theory, the properties of a
many-electron system can be determined by using functionals, i.e. functions of another function,
which is the spatially dependent electron density in this case.

The DFT is the method of reference in order to calculate the number density of bound electrons
averaged over solid angle as a function of the radius for all ionization states of any atom. There are
many tools dedicated to DFT calculations, and among them, the commercial code GAUSSIAN
is one of reference [12]. The version g09 has been used for the calculations described in the
present paper. Regarding the simplicity of the atomic configuration in a tokamak plasma, i.e.
field-free atom, results obtained with this tool are likely independent of the code version. The
excellent agreement with the results obtained with the latest version of the GRASP code described
in Appendix B.2 validates this assumption.

The settings of the DFT calculations can be summarized as follows: the atomic model
PBE1PBE describing the hybrid-exchange correlation functional is chosen. The basis set on which
the solution is determined may be internal to the GAUSSIAN code (6-311G, cc-pVDZ or AUG-cc-
pVDZ, AUG- standing for augmented), as for most atoms which do not require relativistic quantum
calculations (up to Krypton approximately). It may be also external to the GAUSSIAN code, like
the natural orbital-relativistic correlation consistent basis set ANO-RCC, when quantum relativistic
calculations must be performed (accessible from the www.basissetexchange.org website) [63]. In
the latter, the calculations are performed by solving the Douglas-Kroll-Hess second order scalar
relativistic Hamiltonian for the Dirac equation, instead of solving the usual Schrödinger equation.
More advanced details may be obtained from the on-line GAUSSIAN code documentation accessible
from the gaussian.com website.

In the calculations, the spin multiplicity requires a special care. It may be obtained from Hund’s
rules for low-Z elements, but is usually obtained from the NIST database (physics.nist.gov/asd)
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[60]. It is important to note that for six ionization states of the tungsten ranging from W 49+ to
W 50+, no spin multiplicity is given likely because of the energy closeness of the different shells
due to strong spin-orbit coupling. These ions require therefore a specific treatment to perform
GAUSSIAN calculations.

Once GAUSSIAN calculations are carried out, results are post-processed using the Multiwfn
program that can be downloaded from the sobereva.com/multiwfn website [64].

Appendix B.2. GRASP code

MCDHF calculations have been done with the General Relativistic Atomic Structure Package
(GRASP), version 2018 [13, 65]. The FORTRAN 95 code can be downloaded from the website
github.com/compas/grasp and easily compiled. Specific scripts have been written from the
documentation, using predefined ion configurations [1] : He (1s(2) = 2 electrons; [2]: Ne ([He]
+ 2s(2)2p(6) = 10 electrons; [3] : Ar ([Ne] + 3s(2)3p(6) = 18 electrons; [4] : Kr ([Ar] +
3d(10)4s(2)4p(6) = 36 electrons; [5] : Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons; [6] : Rn ([Xe] +
4f(14)5d(10)6s(2)6p(6) = 86 electrons, in order to minimize duration and memory requirements for
the calculations. This is especially important for weakly ionized high-Z elements like tungsten. Once
the radial wavefunctions have been calculated, the atomic density of bound electrons is determined
using the dedicated module RDENSITY which can be downloaded from the CPC Library and
compiled like all other modules of the GRASP code [66].

Appendix C. Coulomb logarithm

The Coulomb logarithm ln Λe,Zs,0
= ln

�
bmax/

q
1 + b

2

min

�
from Eq. (24) may be explicitly

evaluated, taking into acccount of the plasma conditions, the type of element and its net charge.
Since the Coulomb potential is screened at a distance larger than the Debye length λD, the upper
limit is bmax = λD/b90. For multispecies plasmas, λD → λe−i

D ≃ λe
D (1 + Zeff Te/Ti)

−1/2, where
λe

D is the usual electron Debye length, and Zeff =
P

s

P
Z0,s

nZ0,s
Z2

0,s/ne is the effective charge,
knowing that

P
s

P
Z0,s

nZ0,s
(t, x) Z0,s = ne from electroneutrality. It is assumed usually in most

kinetic calculations that all ion species have the same temperature Ti whatever their net charge.
The value of bmin depends of the ratio bq/b90 where bq is deduced from uncertainty principle. If

bq/b90 ≫ 1, quantum effects predominate and ln Λq
e,Z0,s

≃ ln (λD/bq), otherwise the classical limit
corresponding to bmin = 0 can be taken, and ln Λc

e,Zs,0
≃ ln (λD/b90) [67, 68]. Consequently,

ln Λq
e,Z0,s

is less than ln Λc
e,Z0,s

. The quantum limit may be determined from the uncertainty
principle △p△x > ℏ/2 where the momentum increment is approximated by △p = µsus,
µs = mems/ (me + ms) being the reduced mass between colliding particles. Therefore, assuming
△x ≃ bq, the impact parameter is bq ≈ ℏ/ (2µsus) or bq ≈ (λC/4π) (me/µs) /us, where λC is
the Compton length. The ratio bmin = bq/b90 = us/ (2Z0,sα) since b90 = re

�
Z0,s/u2

s

�
(me/µs)

for Coulomb collisions and λC/re = 2π/α. A rough estimate of the smooth transition between
classical and quantum limits may be obtained by averaging ūs over the electron and ion distribution
functions. In this case, the square root of the mean square velocity is ⟨⟨ūs⟩⟩ ≃

p
3T e where

T e = Te/
�
mec2

�
and the normalized plasma temperature threshold above which quantum effects

are significant is T
q

e,Z0,s
= 4Zs,0α2/3. For Z0,s = 1, T q

e,Z0,s
= 36 eV , such that the quantum

limit must be always taken in standard tokamak plasma conditions with isotopes of hydrogen.
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For Z0,s = 42, corresponding to the net ionization of tungsten at Te = 3 keV , then T q
e,Z0,s

is
much larger, T q

e,Z0,s
= 64 keV , and the classical limit is conversely always valid in tokamak

plasmas. Since me ≪ ms, µs ≃ me, and ln Λc
e,Z0,s

≃ ln λD/re + 2 ln ūs − ln Z0,s, while
ln Λq

e,Z0,s
≃ ln λD/re + ln ūs + ln (2α). If ln Λq

e,Z0,s
and ln Λc

e,Z0,s
are both heavily weighted by

the ratio λD/re, the regime dominated by quantum effects concerns principally fast electrons for
partially ionized high-Z elements whose kinetic energy is greater than T

q

e,Z0,s
. In the quantum limit,

Λa
e,Z0,s

is independent of the ion net charge Z0,s.
In standard MKSA units, with λD = λe

D, ln Λq
e,Zs,0

= 0.5 ln Te [keV ] − 0.5 ln ne

�
1020 m−3

�
+

ln ūs + 18.61 and the thermal value is ln Λq−th
e,Z0,s

≃ ln Te [keV ] − 0.5 ln ne

�
1020 m−3

�
+ 16.04. Using

λe−i
D , the Coulomb logarithm must be reduced by the term −0.5 ln (1 + Zeff Te/Ti), and for a pure

hydrogen plasma with Te = Ti, ln Λq−th
e,Z0,s

≃ ln Te [keV ] − 0.5 ln ne

�
1020 m−3

�
+ 15.7, a value very

close to those found in the litterature [67, 69]. Additional small differences may arises from the
choice of the averaged velocity. For relativistic electrons, ūs ≃ v̄, since ions may be considered at
rest, ln Λq−rel

e,Z0,s
≃ ln Λq−th

e,Z0,s
+ ln p − 0.5 ln T e − 0.5 ln 3, as far as p >

p
3T e or Ec ≫ 3T e/2, where

Ec is the kinetic energy normalized to the electron rest mass energy. Following Ref. [7], ln Λq
e,Z0,s

may be approximated by ln Λq
e,Z0,s

≃ ln Λq−th
e,Z0,s

+ ln

�
1 +

�
p/

�p
3T e

��k
�

/k with k = 5, in order

to have a smooth transition from the thermal limit of the Coulomb logarithm.
Conversely to the quantum limit, ln Λc

e,Z0,s
in the classical limit is weakly dependent of the

ion charge Z0,s and is more sensitive to Te, since ln
�

Λc
e,Z0,s

/Λq
e,Z0,s

�
= ln (ūs/ (2αZ0,s)). In

MKSA units, ln Λc−th
e,Z0,s

= 1.5 ln Te [keV ] − 0.5 ln ne

�
1020 m−3

�
− ln Zs,0 + 17.69 and ln Λc−rel

e,Z0,s
=

ln Λc−th
e,Z0,s

+2 ln p−ln T e −ln 3. It can be also approximated by the expression ln Λc
e,Z0,s

≃ ln Λc−th
e,Z0,s

+

ln
�

1 +
�
p2/

�
3T e

��k
�

/k. The choice of the electron-ion Coulomb logarithm, ln Λe,Z0,s

�
p, T e

�
,

depends therefore of the type of elements s, its local ionization state Z0,s and the temperatures Te

and Ti at the same location in the plasma.
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