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The effect of finite-temperature magnetic excitations on the plasticity of body-centered cubic chromium is
studied. In chromium, the magnetic order is disrupted by the 1

2 〈111〉 Burgers vectors of dislocations, creating
magnetic frustrations partially resolved through the generation of magnetic faults. These faults may bear conse-
quences on plasticity, the controlling parameter being their energy. Through the inclusion of finite-temperature
magnetic excitations, we show in this work that these faults vanish below the Néel temperature, thus leaving
1
2 〈111〉 dislocations free to move. When the faults have disappeared, complex noncollinear magnetic structures
are stabilized, surrounding the region sheared by these dislocations, with a negligible excess magnetic energy.

DOI: 10.1103/PhysRevB.107.134105

I. INTRODUCTION

Chromium (Cr) is a body-centered cubic (bcc) transi-
tion metal with a magnetic order close to antiferromagnetic
(AF) below ambient temperature, namely, a quasisinusoidal
modulation of the magnetic moments along a 〈100〉 axis
of the crystal with a local AF order, called a spin-density
wave (SDW) [1]. With increasing temperature, magnetic fluc-
tuations gradually lead to the disappearance of long-range
magnetic order, with the paramagnetic (PM) phase appearing
above the Néel temperature TN = 311 K [2,3]. In this tem-
perature range, the motion of dislocations in Cr transitions
from the Peierls mechanism, governed by lattice friction, to
an athermal regime where lattice friction vanishes [4], thus
raising the question about the interplay between magnetic
excitations and plasticity at finite temperature.

Through comparison of the properties of 1
2 〈111〉 screw

dislocations predicted using ab initio calculations in the two
nonmagnetic (NM) and AF phases, it was concluded in pre-
vious studies [5,6] that the main impact of magnetism on
the plasticity of bcc Cr is the generation of magnetic faults
caused by the disruption of the magnetic order by the 1

2 〈111〉
Burgers vector of these dislocations. Due to the energy of
such a magnetic fault, 1

2 〈111〉 dislocations might be forced to
coexist and move pairwise, creating 〈111〉 superdislocations
corresponding to two 1

2 〈111〉 dislocations bounding a mag-
netic fault. But the existence of such 〈111〉 superdislocation
still requires experimental validation. Such a pairing of dislo-
cations was previously proposed by Marcinkowski and Lipsitt
[4], and is responsible for a magnetic strengthening caused
by the added friction due to the motion of the fault, its energy
controlling the magnitude of this effect. Using the fault energy
calculated by ab initio calculations at 0 K, γ = 16 meV/Å2

[5], a dissociation distance of about 6 nm is predicted for the
superdislocation, leading to an added friction stress of about
25 MPa impeding their motion. No experimental evidence of
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such strengthening was, however, reported close to TN [4],
possibly indicating the weak energy of the fault at these tem-
peratures. Therefore, a decrease of the fault energy is expected
from its 0-K value up to TN , where the magnetic fault might
have a negligible cost. Additionally, recent transmission elec-
tron microscope (TEM) observations at room temperature of
specimens compressed at 77 K [7] did not reveal the presence
of such paired 1

2 〈111〉 dislocations, which might not exist in
this temperature range.

So far, the impact of magnetism on the plasticity of bcc
Cr has only been discussed at 0 K. In an attempt to ratio-
nalize these observations, we study in this work the interplay
between magnetism and plasticity of bcc Cr at finite temper-
ature, below and above the Néel temperature TN . A particular
focus is made on the magnetic fault, identified as the main
impact of magnetism on Cr plasticity at 0 K, studying its be-
havior at finite temperature. Starting from the development of
a magnetic interaction model based on ab initio calculations,
we then study magnetic excitations in Cr through sampling
of equilibrium configurations found at finite temperature with
Metropolis Monte Carlo simulations. We then focus on the
bulk magnetic properties of Cr and the transition to the PM
phase, before moving on to the stability and energetics of
magnetic frustrations caused by a rigid 1

2 〈111〉 shearing and
by dislocations.

II. ENERGETIC MODELS AND SIMULATION TOOLS

Different energetic models are used for studying magnetic
properties of bcc Cr from 0 K to finite temperature: ab initio
calculations and a magnetic Heisenberg-Landau interaction
model developed specifically for this work.

A. Ab initio calculations

All ab initio calculations reported here were performed
within density-functional theory (DFT) using the VASP code
[8]. A projector augmented wave pseudopotential was used
to model Cr, including 12 valence electrons, with the
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exchange-correlation potential approximated using the GGA-
PBE functional [9]. A plane-wave basis with a cutoff energy
of 500 eV was used, and the Brillouin zone was sampled with
a k-point mesh centered on � with 20 points per inverse lattice
parameter unit length in all simulation cells.

Since Cr has an ordered magnetic ground state in the form
of a SDW [1], magnetism must be included in all calcula-
tions. As already thoroughly discussed in previous studies
[5,10–12], DFT calculations predict an AF magnetic ground
state instead of this SDW phase. However, we showed in
our previous work [5] that this complex SDW phase is well
approximated by the AF phase based on their close mag-
netic orders, energetics, and elastic properties. Magnetism is
treated within spin-polarized DFT in the collinear approxi-
mation. Constrained magnetism calculations are performed,
when necessary, to impose nonequilibrium magnetic moments
on atoms [13].

Noncollinear spin-polarized DFT calculations have also
been performed to confirm the noncollinear magnetic struc-
tures predicted by the Heisenberg-Landau interaction model.
These calculations include spin-orbit coupling to incorporate
the dependence of the magnetic moments on crystallographic
directions. As shown in Table II, collinear and noncollinear
DFT calculations lead to the same equilibrium magnetic mo-
ment in the AF phase of Cr, the same excess energy of the
NM and SDW phases, and the same energy for a magnetic
fault lying in a {110} or a {112} plane of the AF phase.

B. Generalized Heisenberg model

We present in this section an effective magnetic interaction
model, used in the following to sample finite-temperature
magnetic excitations with a Metropolis spin Monte Carlo
sampling, where the spin subsystem is studied on a rigid fixed
lattice. As described below, two different sets of parameters
are defined for this magnetic model: Set1 which perfectly re-
produces ab initio calculations, and Set2 which gives a better
estimate of the experimental Néel temperature.

1. Model and parametrization

Let us consider a magnetic system of N atoms located
at fixed lattice sites i, each site having a magnetic moment
�mi. The Heisenberg-Landau (HL) Hamiltonian of the system,
only including magnetic contributions, is [14]1

Emag({ �mi}) =
N∑

i=1

[
A|| �mi||2 + B|| �mi||4

+
∑

j∈1NN(i)

J1 �mi. �mj +
∑

j∈2NN(i)

J2 �mi. �mj

]
. (1)

1The HL model considers noncollinear magnetism, i.e., magnetic
moments are 3D vectors with components (mx

i , my
i , mz

i ). However,
since spin-orbit coupling is not considered, the absolute orientation
of the magnetic moments is not defined with respect to the crys-
tal, only the relative orientations between magnetic moments are
relevant.

In the above Hamiltonian, A and B are the Landau param-
eters, controlling longitudinal excitations, i.e., variations of
the magnitude of the magnetic moments. J1 and J2 are the
Heisenberg exchange parameters, controlling transverse ex-
citations, i.e., the relative orientations of magnetic moments.
These exchange parameters are defined for a shell of nearest
neighbors (NN) of the bcc lattice, namely, J1 couples first NN
(1NN) and J2 second NN (2NN) atomic sites. Parameters A,
B, J1, and J2 are fitted to the magnetic energy of the three
possible collinear ground states of the model, namely, the AF,
FM, and B32 structures [15] (see upper row of Fig. 1), as a
function of the magnitude m0 of the magnetic moment. For the
FM and B32 magnetic phases, which are unstable, constrained
magnetism is used in DFT calculations [13]. Results of these
calculations are presented in Fig. 1.

Different values for the lattice parameter a0 are included in
the fit to describe the dependence of the parameters on the dis-
tance between atoms. The resulting parameters (A, B, J1, J2)
of the model are presented in Fig. 2(a) as a function of
a0. Through this procedure, the two A and B parameters
were almost constant. We therefore set them to a constant
value, which yields decreasing exchange couplings J1 and
J2 with increasing a0. The aim of this work being the study
of the interplay between magnetic excitations and plasticity,
we need to accurately describe the energy of a system which
differs from the perfect crystal. To do so, we incorporate a
distance dependence in the exchange coupling to consider a
system of N atoms located at positions �Ri, and for which the
Hamiltonian of Eq. (1) becomes

E ({ �mi}, { �Ri}) =
N∑

i=1

[
A|| �mi||2 + B|| �mi||4 +

∑
j∈NN(i)

J (ri j ) �mi. �mj

]

with ri j = || �Ri − �Rj ||, and J (r) =
3∑

n=0

jn rn, (2)

where parameters (J1, J2) have been replaced by a global
function J of the distance ri j between the two neighboring
atomic sites i and j, encapsulating both 1NN and 2NN inter-
actions. A polynomial function of the interatomic distance r
is chosen for J . This gives the best agreement with respect
to DFT data, as a function of both the lattice parameter a0

and the magnetic moment m0 [Fig. 2(c)]. However, a range
of distances r is not covered by the fit (between the orange
and green shaded regions), in which the variation of the ex-
change parameter J with r is a direct consequence of the
polynomial form chosen. A more physical expression can be
obtained in the frame of the Ruderman-Kittel-Kasuya-Yosida
(RKKY) theory [16], for which indirect exchange coupling is
expressed as

JRKKY(r) = J0
2kr cos (2kr) − sin (2kr)

rα
, (3)

where k is the Fermi wave vector, J0 defines the amplitude
of the exchange coupling, and the exponent α its decay with
increasing distance r. Results obtained from a fit to Eq. (3)
are plotted with dashed lines on Fig. 2(c). This theoretical
expression of the exchange parameter J leads to almost the
same variations as our empirical polynomial form, with only
a very slightly less satisfactory agreement with DFT data. The

134105-2



INTERPLAY BETWEEN MAGNETIC EXCITATIONS AND … PHYSICAL REVIEW B 107, 134105 (2023)

FIG. 1. (a) AF, (b) FM, and (c) B32 magnetic phases included in the fitting procedure of the HL model. Atoms in red (blue) have a
positive (negative) magnetic moment. Corresponding magnetic energies Emag are shown below as functions of the magnetic moment m0 at
three different lattice parameters a0. They are obtained with DFT (symbols) and the HL model (lines). Two different sets of parameters, Set1
(blue) and Set2 (red), are defined for the HL model. These sets lead to the same magnetic energy for the AF phase, but not for the FM and B32
phases.

variations of the exchange parameter obtained by our fitting
procedure are therefore fully consistent with RKKY theory,
both in the range of distances covered and not covered by
DFT data.

Since we aim at the study of finite-temperature magnetic
excitations, a good reproduction of the Néel temperature TN

of bcc Cr must be ensured by the model. As obtained from
a direct fit to DFT data, with perfect agreement in the 0-K
magnetic properties (see Set1 on Fig. 1), a Néel temperature
TN = 1050 K is predicted by the model, using Monte Carlo
simulations (see next section). The model overestimates this
temperature, with experiments reporting TN = 311 K for pris-
tine single crystals [1], and ranging between 300 and 450 K
depending on the metallurgical state of the sample (grain size,
dislocation density, and whether the material is a powder,

single, or polycrystalline) [2,3]. This overestimation of TN is
caused by various errors inherent to the DFT calculations,
mainly the inability to predict the correct SDW magnetic
ground state of bcc Cr (common to all DFT calculations
reported in the literature, using various exchange-correlation
functionals [10–12]), and the subsequent overestimation of
the bulk magnetic moment m0 (see Table II).

To lower the predicted TN , the energies of the two unstable
FM and B32 magnetic phases were lowered by a factor 1

4
with respect to the reference DFT data. Otherwise, the same
DFT database is used, without changing the energy of the
ground state AF phase of the model. These new parameters
are referred to as Set2, the original parameters being Set1.
The resulting fit to the energies of the three collinear phases
is also presented in Fig. 1, showing lower energies for the

FIG. 2. Variation of the parameters (A, B, J1, J2) of the HL model with the lattice parameter a0 for (a) Set1 and (b) Set2. (c) Global
exchange coupling J with respect to the interatomic distance r using Set1 and Set2 parameters. Results of a fit to Eq. 3 are plotted in dashed
colored lines.
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TABLE I. Different possible sets of parameters of the HL model
[Eq. (2)]. Exchange parameters J1 and J2 are given for the equilib-
rium lattice parameter of the AF phase a0 = 2.865 Å.

Parameters (meV) HL (Set1) HL (Set2)

A 209.0 53.0
B 9.4 9.4
J1 38.0 11.7
J2 11.8 2.7
j0 −1.75 −1.63
j1 1.94 1.71
j2 −0.67 −0.58
j3 0.07 0.06

two FM and B32 phases than with Set1. This yields a lower
predicted TN = 384 K, in the range of experimental values.
However, such an adjustment degrades properties of the model
associated with the high-energy FM phase and some magnetic
excitation modes, discussed in the next section. We also note
different variations of the exchange coupling J for the two
sets [see Fig. 2(c)] across the range between 1NN and 2NN.
The values for the two sets of parameters of the model are
presented in Table I.

2. Validation on 0-K properties

At finite temperature, magnetic fluctuations operate
through excitation modes of the spin structure in the form of
elementary spin spirals called magnons, defined by their wave
vector �q. These spirals describe the energetic cost of inducing
a disorientation in the magnetic order of the system, while
the magnitude of the spins along the propagation of the spiral
remains constant. In bulk bcc Cr, these noncollinear structures
are known to be highly unstable for any wave vector [12,18].
A direct ab initio evaluation of their energy over the whole
Brillouin zone would thus be very costly since one needs to
account for noncollinear effects in constrained magnetism cal-
culations. A few ab initio points were, however, evaluated for
small disorientations of the AF order. Such constrained cal-
culations are less costly in the tight-binding (TB) formalism,
thus allowing for direct evaluation of the magnon spectrum,
i.e., the energy of spirals of wave vector �q spanning the entire
Brillouin zone. Results of both DFT and TB calculations were
obtained using the generalized Bloch’s theorem [19], more de-
tails about these calculations being presented in Appendix B.
The TB results were obtained using the model proposed by
Barreteau et al. [20] for transition metals, which has proven
its ability to describe the magnetic properties of bcc Cr in
previous works [12,21,22]. Since the PM phase of bcc Cr
above TN is mostly characterized by an orientational disorder
between magnetic moments [23], an accurate reproduction of
these noncollinear spirals is required to have a satisfactory
description of magnetic excitations.

Using the HL model, the energy E (�q, m0) of a spin spiral
of wave vector �q and a constant magnetic moment m0 has an
analytical expression [24]

E (�q, m0) = A m2
0 + B m4

0 +
∑

k∈iNN

∑
j∈kNN

J (rk j )m
2
0

× [1 − ei �q.( �Rk− �Rj )], (4)

which corresponds to a sum over the shells of nearest
neighbors included in the model. The following expression
is obtained considering the two 1NN and 2NN nearest-
neighboring shells:

E (�q, m0) = A m2
0 + B m4

0 − 8J1 m2
0

[
1 − cos

(a0qx

2

)

× cos
(a0qy

2

)
cos

(a0qz

2

)]
− 2J2 m2

0

× [3 − cos (a0qx ) − cos (a0qy) − cos (a0qz )].

(5)

The magnon spectrum of bcc Cr over the Brillouin zone
is presented in Fig. 3(a) at the equilibrium ab initio lattice
parameter a0 = 2.865 Å and magnetic moment m0 = 1.1 μB,
obtained with Eq. (5) for the HL model, and compared to TB
calculations and a few DFT data. The magnon energies are
plotted with respect to the AF ground state of the model, i.e.,
E (�q, m0) − Emag

AF (m0), to highlight the excitation energy they
represent. The special points � and H of the Brillouin zone
correspond to the FM and AF magnetic phases, respectively,
which are the two extrema of the magnon spectrum according
to the three energetic models considered. The magnon den-
sity of states (mDOS) g(E ), shown in Fig. 3(b), is obtained
through integration of the spectrum over the entire Brillouin
zone.

We report a very satisfactory agreement between the TB
spectrum and the few DFT data calculated near the H point,
showing spirals having intermediate energies located be-
tween points � and H . These TB results are thus used as a
reference to test the validity of the two sets of parameters for
the HL model. The spectrum obtained using Set1 (blue) is in
good agreement with TB calculations, except near P where a
cusp in the energy of magnons is predicted. Nevertheless, the
agreement is particularly satisfactory since the HL model was
adjusted on energetics of collinear magnetic phases only. Us-
ing the second set of parameters Set2 (red), the model predicts
a lower energy for these magnons, with, however, the same
variation with �q as obtained with Set1. Before moving on to
magnetic properties at finite temperatures, we further test the
ability of the HL model to reproduce the 0-K magnetic proper-
ties of bcc Cr obtained with ab initio calculations. The energy
of infinite {110} and {112} magnetic faults, obtained by shear-
ing the crystal by a fault vector 1

2 〈111〉 in these two planes,
are presented in Table II for DFT and the HL model with
the two sets of parameters. We find a very good agreement
of the magnetic fault energy γ between ab initio calculations
and Set1 parameters of the HL model, and a less satisfactory
agreement with parameters Set2, a direct consequence of the
fitting procedure used to construct it. Indeed, such magnetic
faults originate from a ferromagnetic frustration in the two
planes located in the direct vicinity of the fault plane, where
spins of the same direction are forced to face each other. Since
the energy of this highly unstable FM phase has been lowered
in the fitting of Set2 parameters, the energy of the fault is
lower.
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FIG. 3. (a) Magnon spectrum of bcc Cr E ( �q, m0 ) − Emag
AF (m0) obtained with constrained ab initio DFT calculations (orange dots), the TB

model (thick gray lines), and the HL model with Set1 (blue) and Set2 (red) using Eq. (5). Energies are obtained at the equilibrium lattice
parameter a0 = 2.865 Å and magnetic moment m0 = 1.1 μB of the AF phase, along the high-symmetry path � − H − P − � − N − P −
N − � of the Brillouin zone (see inset [17]), with � = (0, 0, 0) (FM phase), H = (1,−1, 1) (AF phase), P = ( 1

2 , 1
2 , 1

2 ), and N = (0, 0, 1).
(b) Magnon density of states (mDOS) g(E ) of the HL model with Set1 and Set2.

III. FINITE-TEMPERATURE MAGNETIC PROPERTIES

A. Monte Carlo simulations

To explore equilibrium magnetic states allowed by finite-
temperature excitations, Monte Carlo simulations are per-
formed on a system of N atoms, arranged on rigid lattice sites
(which can differ from the perfect bulk structure2) with mag-
netic moments �mi∈[1,N] and whose energy is described by the

2Since magnetic degrees of freedom are much faster than atomic
vibrations, such an adiabatic approximation appears legitimate. To
treat both atomic and magnetic degrees of freedom, one would need
an interatomic potential on top of which is plugged, for instance, an
effective magnetic interaction model such as developed here, which
is not the scope of this study.

TABLE II. Computed properties of the HL model, compared to
collinear (“Col.”) and noncollinear (“NC”) DFT calculations and ex-
perimental data: bulk magnetic moment m0 of the AF phase, energy
of the NM and SDW (of period 20 a0) phases with respect to the
AF phase, energy γ of the magnetic fault in {110} and {112} planes,
and Néel temperature TN . All quantities have been calculated for a
lattice parameter a0 = 2.865 Å. The experimental magnetic moment
is given for the peak magnitude of the SDW.

DFT HL model

Col. NC Set1 Set2 Expt.

m0 (μB) 1.10 1.10 1.14 1.14 0.62 [25]
�ENM (meV/atom) 12.5 12.5 12.5 12.5
�ESDW (meV/atom) 10.4 10.4 8.6 4.8
γ{110} (meV/Å2) 16.2 16.2 15.1 8.7
γ{112} (meV/Å2) 16.1 16.4 15.1 8.7
TN (K) 1 050 384 311 [1]

HL model of Eq. (2). Periodic boundary conditions are used
in all directions. The system is equilibrated at the simulated
temperature T through a number of Metropolis Monte Carlo
steps consisting in a random change of the three Cartesian
components of one of the N spins. At each step, the change δE
in the energy of the system is evaluated, and the transition is
then accepted or rejected based on the probability distribution:

p(δE ) =
{

1, if δE � 0

exp
[
− δE

η(T )

]
, if δE > 0.

(6)

This probability depends on the statistics η(T ) used in the
simulation, which within classical statistics is the Boltzmann
distribution given by η(T ) = kBT .

However, since the energy of magnetic excitations de-
scribed by the model is continuous, this allows for fluctuations
in the magnitude and orientation of the spins even at low tem-
peratures where quantum effects should prevent it, yielding
nonphysical thermodynamic properties [26]. Considering dis-
crete energy levels, in the form of magnons, these continuous
thermal excitations are not allowed at low temperature. This
quantification of the energy levels can be accounted for, using
the method described in Refs. [26,27], by the approximate
quantum statistics:

ηQ(T ) =
∫ ∞

0

E

exp
(

E
kBT

) − 1
g(E , T )dE , (7)

where E is the magnon energy, and g(E , T ) is the mDOS
at temperature T and energy E . The key to construct such
quantum statistics is thus the knowledge of the temperature-
dependent mDOS, g(E , T ), which is derived from the 0-K
results presented in Fig. 3(b) following the method of Woo
et al. [27]. Details about the construction of this finite-
temperature mDOS and results of this quantum statistics are
given in Appendix A. In the following, magnetic excitations
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will be studied using the approximate quantum statistics of
Eq. (7) at low temperature, i.e., below TN , and classical Boltz-
mann statistics above TN .

The Monte Carlo sampling with temperature T then allows
to access thermodynamic equilibrium properties of the system
through ensemble average of the magnetic internal energy
Emag at T . The magnetic free energy F mag of the system
is evaluated through its thermodynamic integration, however
requiring to set a reference at which its value is known. This
reference is set at a temperature Tref, whose choice depends
on the system. For this purpose, it is convenient to work with
the inverse temperature β = 1/kBT to express thermodynamic
quantities of interest, resulting in

βF mag(β ) − βrefF
mag(βref ) =

∫ β

β ′=βref

Emag(β ′)dβ ′. (8)

Now considering a system containing a defect, like a magnetic
fault or a dislocation dipole, the excess magnetic internal
�Emag and free �F mag energies are

�Emag(β ) = Emag
defect(β ) − Emag

bulk (β ),

�F mag(β ) = F mag
defect(β ) − F mag

bulk (β ),
(9)

where Emag
defect and Emag

bulk refer to the energy of the simulation
cell containing the defect and the perfect crystal, respectively.
Applying Eq. (8) to these excess magnetic energies, we obtain

β�F mag(β ) − βref�F mag(βref ) =
∫ β

β ′=βref

�Emag(β ′)dβ ′.

(10)

Two different defects are studied in bcc Cr using this method:
magnetic faults caused by a 1

2 〈111〉 shear, and the magnetic
contribution to the core energy of 1

2 〈111〉 screw dislocations.
In both cases, we assume that �F mag(βref ) = 0 setting the ref-
erence temperature above the Néel temperature Tref = 5TN/4,
where the system is in the disordered PM phase. We then
checked that the excess magnetic energy contained in a faulted
simulation cell is zero at this temperature, i.e., the system has
the same magnetic energy whether a defect is present or not.
In this case, the magnetic free energy �F mag of the defect can
be expressed as

�F mag(β ) = 1

β

∫ β

β ′=βref

�Emag(β ′)dβ ′. (11)

All simulation cells have periodic boundary conditions in all
directions, and contain approximately 14 000 atoms, allowing
for magnetic fluctuations to occur without boundary effects.
The system is equilibrated using 108 Metropolis Monte Carlo
steps at each temperature, ensuring convergence of thermo-
dynamic properties. For 0-K calculations, magnetic structures
are relaxed using an infinite quench where only events leading
to a decrease of the energy are accepted.

B. Finite-temperature bulk magnetic properties

A first step to test the presented model is the evaluation of
the Néel temperature TN , and thus the properties of the PM
phase where magnetic long-range order (MLRO) vanishes. A
measure of MLRO is obtained through an order parameter O
defined as the sum of the average magnetizations over the two

FIG. 4. (a) Measure of magnetic long-range order through the or-
der parameter of Eq. (12) (gray) compared to experimental data from
Ref. [1] (black), and the average MSRO between first (orange) and
second (green) nearest neighbors, all as a function of temperature.
(b) Average magnetic moment 〈|| �mi||〉 as a function of temperature.
Results are obtained using Set2 parameters for the HL model. The
absolute temperature scale above the plots is the theoretical one.

sublattices S1 and S2 of the AF order, i.e., with spins ↑ and ↓,
respectively:

O = 1

m0

[∥∥∑
i∈S1

�mi

∥∥
N/2

+
∥∥∑

j∈S2
�mj

∥∥
N/2

]
, (12)

with m0 the 0-K bulk magnetic moment, and N the number
of atoms contained in the simulation cell. When the system is
in its AF ground state, the order parameter is equal to 1, with
all magnetic moments of magnitude m0 and opposite signs
on each sublattice. The evolution of the order parameter with
temperature using Set2 parameters and the quantum statistics
is presented in Fig. 4(a) (gray), and compared with experi-
mental data [1] (black), with a predicted Néel temperature
TN of 384 K. As a reference, the experimental TN of perfect
single crystal of bcc Cr is 311 K [1]. We note that quantization
of magnetic excitations yields a slow decrease close to 0 K,
in good agreement with experiments, with a drop at TN . To
fully qualify the magnetic properties of the PM phase, another
important quantity is the remaining magnetic short-range or-
der (MSRO), which is measured as the average correlations
between magnetic moments of neighboring atoms:

MSROnNN = 1

m0
2
〈 �mi. �mj〉

= 1

m0
2

⎡
⎣ 1

N

N∑
i=1

1

Zn

∑
j∈nNN(i)

�mi. �mj

⎤
⎦, (13)

where nNN is the nth shell of nearest neighbors containing
Zn sites. The correlation between two magnetic moments is
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calculated as the scalar product between them. The temper-
ature variation of the average MSRO between first-nearest
(1NN, in orange) and second-nearest (2NN, in green) neigh-
bors are presented in Fig. 4(a). Remaining MSRO has been
observed experimentally up to approximately 11 bcc unit cells
at 700 K (i.e., 2.25 × TN ) by Grier et al. [28] using neutron
diffraction. Other references, using similar neutron scattering
experiments, showed persistence of magnetic order in the PM
phase up to lower temperatures of approximately 500 K (i.e.,
1.6 × TN ) [25,29]. Results presented in Fig. 4(a) show the
disappearance of long-range order and a remaining MSRO
above TN , in qualitative agreement with experiments, with
stronger correlations between 1NN than 2NN neighbors.

Neutron diffraction [28,30,31] and x-ray photoelectron
spectroscopy [23] experiments also demonstrated the persis-
tence of atomic magnetic moment above TN in this disordered
PM phase of Cr. To study this effect, the variation of the
average magnetic moment with temperature is presented in
Fig. 4(b), which shows a slow decrease from its value m0

at 0 K up to TN , at which it starts increasing again. This
effect is caused by the decreasing MSRO, which yields mag-
netic frustrations, partially resolved through a reduction in
their magnetic moments. Above TN , thermal energy allows
higher magnitude of the magnetic moments, which gradually
increase. This demonstrates that the magnetic disorder in the
PM phase is rather orientational, and not associated to a drop
in the magnetic moment.

All results obtained at finite temperature presented here
were obtained using Set2 parameters. Qualitatively similar
results were, however, obtained using Set1 parameters of the
model, with a shifted temperature scale given the higher Néel
temperature TN = 1 050 K predicted using these parameters.
Both Set1 and Set2 parameters are intended for different prop-
erties: Set1 gives better 0-K energies with respect to ab initio
calculations, while Set2 gives a good reproduction of the ex-
perimental value of TN , with less satisfactory 0-K properties.

IV. MAGNETISM AND PLASTICITY OF CHROMIUM AT
FINITE TEMPERATURE

We now study the temperature evolution of the magnetic
frustrations generated by 1

2 〈111〉 shear up to TN , both looking
at magnetic faults and dislocation dipoles. A previous work
[5] based on results obtained at 0 K concluded that these faults
are the only significant impact of magnetism on the plasticity
of Cr, their energy being the main controlling parameter. All
presented results are obtained using Set2 parameters of the HL
model unless otherwise specified.

A. Infinite magnetic faults

The magnetic energy of such infinite magnetic fault is
evaluated as the excess energy of a crystal sheared in a plane
by a 1

2 〈111〉 vector with respect to the perfect crystal. The
simulation cell has periodicity vectors X = 8 × [121], Y =
11 × [111], and Z = 13 × [101] for the perfect crystal, and
the (101) and (121) magnetic faults are modeled by adding a
1
2 [111] component respectively to the Z and X periodicity vec-
tors. The internal and free energies of the obtained magnetic
faults are presented in Fig. 5 as a function of temperature.

FIG. 5. Magnetic fault energy �Emag (first row) and free energy
�F mag (second row) of the two infinite {110} (red) and {112} (green)
magnetic faults as a function of temperature upon (a) heating and
(b) cooling the system.

The heat cycle is shown in Fig. 5(a), where temperature is
increased from 0 K with all magnetic moments initialized
to the AF ground state in all three Cartesian directions, i.e.,
mx

i = my
i = mz

i = m0/
√

3, where m0 is the 0-K bulk magnetic
moment. Similarly, the cooling cycle is presented in Fig. 5(b),
where the system is initialized in its disordered PM phase at
temperature 5TN/4, before being cooled down to 0 K. The
same behavior is observed for both {110} and {112} faults.

Upon heating the system, the energy of the magnetic fault
[upper panel in Fig. 5(a)] starts at the 0-K value for the two
{110} (red) and {112} (green) planes, before decreasing up
to approximately 140 K. Above, the excess magnetic energy
in the simulation cell stays constant, before vanishing at TN ,
where the disappearance of long-range magnetic order does
not allow such fault to exist anymore. The situation is dif-
ferent when the system is cooled from temperatures above
TN , showing a constant magnetic excess energy as soon as
magnetic order is recovered, all the way down to 0 K. The
excess magnetic energy is the same as found upon heating the
same system in the temperature range between 140 K (i.e.,
� TN/3) and TN . The free energy of the magnetic faults in
{110} and {112} planes is presented in the lower panels of
Fig. 5. When the system is heated from 0 K, we report a steep
decrease of the excess magnetic energy up to approximately
140 K, and a linear decrease above. Upon cooling the system,
the magnetic free energies show a linear increase with T as
soon as magnetic order is retrieved at TN , matching the profiles
found above 140 K upon heating.

Following the two thermal cycles presented in Fig. 5, the
magnetic structure of the system takes two different configu-
rations, which are presented in Fig. 6. Results are only shown
for the {110} structure, however, identical structures are found

134105-7



BIENVENU, FU, AND CLOUET PHYSICAL REVIEW B 107, 134105 (2023)

FIG. 6. Structure of the {110} (a) magnetic fault, and (b) non-
collinear structure obtained at 0 K upon cooling, with the profiles of
the three Cartesian components of the magnetic moments �mi along
the [101] direction normal to the fault plane. The fault planes are in-
dicated by dashed vertical black lines. Relaxation using noncollinear
ab initio calculations leads to identical structures.

for a {112} fault plane. We first consider the collinear structure
(upper row in Fig. 6), which corresponds to the configuration
of the system below 140 K upon heating. The variation of
the magnetic moments �mi along the direction orthogonal to
the fault plane shows that all three Cartesian components of
the spins decrease down to zero in the vicinity of the fault
plane (indicated by black vertical dashed lines), with mx

i =
my

i = mz
i . This structure is identical to the one obtained at 0 K

with ab initio calculations [5]. The fault is thus confined in the
vicinity of the sheared plane, with an similar structure upon
heating up to 140 K.

Now considering the magnetic structure found between
140 K and TN upon heating, or below TN upon cooling,
it is noncollinear, with a structure similar to a spin spiral
(Fig. 6, lower panel). These spirals are defined by a relative
disorientation of the magnetic moments, keeping a constant
magnitude along their propagation direction. In this configu-
ration, the perturbation spreads over the entire simulation cell,
instead of being localized in the fault plane. The periodicity
of the spiral is dictated by the length of the simulation cell
in the direction perpendicular to the initial fault plane dcell.
With the inclusion of noncollinear magnetism, another possi-
bility to resolve the magnetic frustration is indeed to induce

a disorientation of magnetic moments, keeping a constant
magnitude, in the direction orthogonal to the fault plane,
keeping a local AF magnetic order in each stacked plane. The
energy cost associated with such disorientational perturbation
is less than a local reduction of the amplitude of the magnetic
moments in the vicinity of the fault plane, as can be noted
from Fig. 5. These spirals thus correspond to the true mag-
netic ground state of the faulted crystal, with lower magnetic
energies than collinear faults.

Similar to a propagating wave, the nodes of the spiral in the
three Cartesian components of the magnetic moments �mi can
be located anywhere along its propagation direction since they
are not bounded to any topological defect. Such a magnetic
structure with nonzero excess energy with respect to the AF
ground state is thus stabilized upon cooling the system due
to the constraint imposed by the periodicity vectors of the
simulation cell, which are sheared by the same amount as
the fault plane, thus forcing two spins with the same sign to
face each other. Looking at this noncollinear structure, it is
clear that the perturbation is not localized in a defined plane
and does not correspond to a fault. It is better described as
a spiral, identical to a magnon excitation located between
special points H and � of the Brillouin zone on the spectrum
of Fig. 3. We then checked with ab initio calculations, in-
cluding noncollinear magnetism and spin-orbit coupling (see
details in Appendix B), that these spiral structures predicted
by the HL model are indeed stable. The relaxed magnetic
structures are found identical to the predictions of the HL
model, as for instance presented in Fig. 6 for the {110} plane.
The orientation of the ab initio magnetic moments is given
with respect to the given crystal directions. On the other
hand, since spin-orbit coupling is not accounted for by the
HL model, the choice for the orientation of the magnetic
moments obtained from the model are therefore arbitrary with
respect to the lattice, which we chose to match the ab initio
results for representation. To highlight that these noncollinear
structures do indeed not correspond to a fault, we study their
energies at 0 K as a function of the distance dcell, and compare
the results with the case of the collinear magnetic fault. The
magnetic energies are presented in Fig. 7 in both {110} and
{112} planes, using the HL model, and compared to the results
of ab initio calculations. As opposed to the magnetic fault,
whose energy γfault converges to a constant nonzero value, the
surface energy of the noncollinear structure tends to zero for
an infinite separation distance dcell between periodic images
of the fault, in both {110} and {112} planes. The slope of this
decreasing excess energy is the same in both planes, with a
very good agreement between DFT and the HL model for
Set1 parameters, 237 and 224 meV/Å, respectively, with DFT
predicting a small offset for infinite distances. Description of
this noncollinear structure as a fault thus does not hold since
convergence of its energy cannot be achieved by increasing
the length dcell. As detailed above, these noncollinear struc-
tures are similar to spin spirals. Thus, when the length dcell

of the simulation cell increases, the disorientation imposed
between each atomic layer by the faulted periodicity vec-
tors decreases, tending to zero for an infinite length, where
the AF order is retrieved. The excess energy of this struc-
ture thus falls to zero, a behavior confirmed by ab initio
calculations.
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FIG. 7. (a) Energy γfault at 0 K of the magnetic fault (left), and the
noncollinear structure (right) as a function of the separation distance
dcell between {110} (circles) and {112} (squares) fault planes obtained
with ab initio calculations (orange) and the HL model with Set1
(blue) and Set2 (red) parameters. (b) Temperature Tv at which the
{110} magnetic fault vanishes as a function of the separation distance
dcell obtained with Set2 parameters of the HL model.

Since the excess magnetic energy of the noncollinear struc-
ture decreases with the length of the simulation cell, the
temperature at which the collinear magnetic fault destabilizes
in favor of this noncollinear perturbation also depends on
the size of the simulated volume. The dependence of this
vanishing temperature Tv as a function of the distance dcell

is studied using various simulation cells with axis x ‖ [121],
y ‖ [111], and z ‖ [101], keeping a constant simulated vol-
ume, but varying the length dcell in the z direction, with a
rigid 1

2 [111] shearing. All magnetic moments are initialized
at their AF ground-state configuration, and the systems are
then heated starting from 0 K. The temperature Tv at which
the 0-K magnetic fault vanishes in favor of the noncollinear
structure, presented in in Fig. 7(b), shows an increase up to
approximately 2TN/3 in the limit of an infinitely long simula-
tion cell. The magnetic faults therefore become unstable well
below the Néel temperature, with relaxation to a noncollinear
structure.

B. Dislocation dipole

We now study the magnetic structure of a crystal sheared
by a 1

2 〈111〉 screw dislocation dipole as a function of tem-
perature. We showed in the previous section that the shearing

of an infinite crystal by 1
2 〈111〉 could be accommodated by a

noncollinear magnetic structure differing from a fault, which
we now intend to extend to the case of a magnetic frustration
caused by dislocations.

The simulation cell is constructed in a similar way to
supercells used for ab initio calculations on 1

2 〈111〉 screw
dislocations in bcc metals [32], with periodicity vectors �p1 =
21/2 [121] − 39/2 [101], �p2 = 21/2 [121] + 39/2 [101], and
�p3 = 6 × 1

2 [111], containing a total of 14 742 atoms. The
dislocation dipole is introduced in a quadrupolar arrangement
using anisotropic elasticity theory, with the magnetic fault
laying in the (101) plane, with a distance d = 74 Å between
the two dislocations. The cell is 6b high, which is sufficiently
large to allow for magnetic fluctuations in each direction with-
out periodic boundary effects. The structure of the magnetic
fault bounded by the two 1

2 [111] screw dislocations of the
dipole is presented in Fig. 8 at three different temperatures,
recorded upon heating the system starting from 0 K and
initializing all magnetic moments to their AF configurations,
with mx

i = my
i = mz

i = m0/
√

3.
The collinear magnetic fault found at 0 K, contained in

the (101) plane [Fig. 8(a)], has an identical structure to the
infinite fault shown in the previous section, with a reduction of
the magnetic moments in the vicinity of the fault plane in the
region bounded by the two 1

2 [111] dislocations to accommo-
date the magnetic frustration. We also note that this structure
is similar to the fault obtained using ab initio calculations
at 0 K [5]. As the temperature is increased up to 150 K
[see Figs. 8(b) and 8(c)], the region where each of the three
Cartesian components of the magnetic moments cancels starts
to fluctuate in space. Through magnetic excitations, the fault
caused by the dislocations is allowed to take a noncollinear
structure where the frustration is partially resolved by induc-
ing a disorientation of the spins in the region bounded by
the two 1

2 [111] screw dislocations, similar to the case of the
infinite fault. The magnitude of the spins is constant almost
over the whole simulation cell, except in the direct vicinity
of the dislocation cores where the strong lattice distortion
causes a local reduction of the magnetic moments. Even if
there is a signature of a magnetic fault, since the perturba-
tion remains bounded by the two dislocations, its structure
differs from the infinite case, which is here an orientational
perturbation rather than a drop in the magnetic moments. At
higher temperatures, the progressive spreading of this non-
collinear perturbation leads to the vanishing of the magnetic
fault.

The noncollinear magnetic structure obtained upon cooling
the system from the high-temperature PM phase above TN

down to 0 K is presented in Fig. 9. Profiles of the mag-
netic moments along the thick yellow dashed lines reveal
the magnetic structure in directions orthogonal and contained
in the plane defined by the two 1

2 [111] screw dislocations
of the dipole, showing a similar but more complex structure
as obtained in the infinite case of the previous section. In-
deed, the three components of the spins show a modulation
differing from a sinusoidal wave in the direction orthogonal
to the plane defined by the two dislocations, especially for
the mz

i component as shown in the upper panel of Fig. 9(c).
Another important feature of this structure, which is better
visualized on the spin maps of Figs. 9(a) and 9(b), is that
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FIG. 8. Evolution of the magnetic structure bounded by two 1
2 [111] screw dislocations (black dots) upon heating from the 0-K collinear

configuration in (a) to (b) 100 K (� TN/4) and (c) 150 K (� 2TN/5). The colors correspond to the projections mx
i , my

i , and mz
i of the magnetic

moments along the �x, �y, and �z axis, respectively, according to the legend shown in (a). Profiles of the magnetic moments along the x yellow
dashed lines in each map are plotted in the lower panel. Configurations are presented in the plane orthogonal to the direction Z of the dislocation
line at z = h/2, with h the height of the simulation cell. The magnetic structure of the system is, however, identical in each 1b slice along Z .

this noncollinear structure is not confined in the vicinity of
the plane defined by the relative positions of the two dislo-
cations, contrary to the low-temperature magnetic fault, but
instead spreads over the entire simulation cell. We will show
in the next section that this noncollinear magnetic structure
surrounding the 1

2 〈111〉 dislocation dipole is more stable than
the magnetic fault bounded by the two dislocations.

C. Magnetic contributions to dislocation energy

We now study the temperature evolution of the mag-
netic contribution to the excess energy of 1

2 〈111〉 screw
dislocations. The total magnetic energy of a simulation cell
containing a dislocation dipole is partitioned as

Emag
tot = Emag

bulk + Emag
fault + 2Emag

core + Emag
elas , (14)

where we will show in the following that the magnetic elastic
contribution Emag

elas is negligible when evaluating the excess
magnetic energy of a dislocation dipole. A priori, this assump-

tion appears legitimate given the magnetic contribution to the
elastic moduli C′ and C44 (to which the elastic energy of a
1
2 〈111〉 screw dislocation dipole is proportional) predicted by
the HL model are −4% (−8.9 GPa) and 22% (21.3 GPa),
respectively. The magnetic fault energy is proportional to
its surface d × h with h the height of the simulation cell
in the 〈111〉 direction and d the distance between the two
dislocations of the dipole, Emag

fault = d h γfault. Neglecting the
contribution to the elastic energy, the total excess magnetic
energy contained in the simulation cell at a temperature T is
then given by

�Emag(d, T ) = Emag
tot − Emag

bulk

= d h × γfault(T ) + 2Emag
core (T ). (15)

The magnetic energy of the bulk Emag
bulk is evaluated in the same

simulation cell as presented in Figs. 8 and 9, before introduc-
ing the 1

2 〈111〉 screw dislocation dipole. The above partition
of the excess magnetic energy �Emag is expressed as a linear
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FIG. 9. Noncollinear structure bounded by two 1
2 [111] screw dislocations (black dots) projected along (a) �y and (b) �z. (c) Profile of the

magnetic moments along the x and y yellow dashed lines in (a) and (b). The structure is presented at 0 K, obtained upon cooling the system
starting from initially random spins in the PM phase.

function of the distance d between the two dislocations of the
dipole, with a slope corresponding to the surface energy of
the fault γfault. Taking advantage of Eq. (15) using the same
simulation cell as in the previous section, the distance d is
varied to reduce the range of the magnetic fault, allowing
for the evaluation of the magnetic energy of the system as a
function of both d and the temperature T . All dislocated simu-
lation cells are constructed using anisotropic elasticity theory,
similar to the previous calculations. However, the dislocation
dipole is no longer quadrupolar as the distance d is varied. The
setup is otherwise identical, with the dipole laying in the (101)
plane in the same simulation cell, thus with the same number
of atoms. The variation of the excess energy �Emag as a
function of the distance d at various temperatures is presented
in Fig. 10, upon heating in (a), and cooling in (b). A fit of
the energies �Emag of these different systems to Eq. (15) at a
given temperature T then allows to simultaneously extract the
magnetic contribution to the core energy of the dislocations
Emag

core , and the magnetic fault energy γfault at this temperature
T . The linear fits are very satisfactory above a certain distance
marked by a vertical black dashed line, below which the ex-
cess magnetic energy does not behave linearly, probably due
to finite-size effects for short separation distances. The mag-
netic energies of interest are therefore obtained from fitting
to the excess energies obtained for larger distances d . This
demonstrates the validity of the proposed decomposition of
the total magnetic energy of the system [Eq. (14)], and that
the elastic contribution to the magnetic energy of the dipole
is indeed negligible, at least up to temperatures close to TN

where fluctuations deteriorate this linear variation. This allows
for a separate definition of the magnetic contributions of the
fault and dislocation cores. This confirms that the magnetic
contribution to the elastic energy can be neglected as it would
have lead to a contribution varying in ln(d ), thus deviating
from the observed linear variation.

The slope and value for d = 0 obtained from Fig. 10 gives
the energy γfault of the magnetic fault, and the magnetic core
energy Emag

core , respectively, which are presented in Fig. 11 as a
function of T , upon both heating and cooling the system. The

FIG. 10. Excess magnetic energy �Emag of the simulation cell
containing a 1

2 〈111〉 screw dislocation dipole as a function of d at
various temperatures recorded upon (a) heating and (b) cooling the
system.
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FIG. 11. (Left) Magnetic energy (triangles) and free energy (circles) of a 1
2 〈111〉 screw dislocation core as a function of temperature.

(Right) Fault energy (squares) and free energy (circles) of the magnetic fault separating two 1
2 〈111〉 screw dislocations (in red), and compared

to the infinite {110} fault of Fig. 5 (in blue). Simulations are performed with parameters Set2 of the HL model, upon (a) heating and (b) cooling
the system.

magnetic energy and free energy of the fault show a similar
temperature dependence as the infinite fault presented in the
previous section and reported in blue on Fig. 11. Upon heating
the system starting from 0 K, the magnetic fault is stable
and located between the two dislocations of the simulation
cell, up to approximately 180 K, with a linearly decreasing
energy with temperature. When the temperature is increased,
the noncollinear structure is stabilized by thermal fluctuations,
with then a constant energy.

This noncollinear structure arises spontaneously upon
cooling the system, with a constant magnetic energy across
the whole temperature range, except near the Néel temper-
ature TN where fluctuations in the energy do not allow for
a proper separation of the two contributions to the magnetic
energy. Upon cooling through TN , the slope of the total excess
magnetic energy of the system given by Eq. (15) shows a
sudden increase, before falling and then remaining constant
down to 0 K with the same value as found upon heating
the system between 180 K and TN . Similar magnetic energy
profiles with temperature, showing an increased energy near
the disappearance of long-range magnetic order, has been
previously reported in the case of domain walls in different
systems [33].

Considering the magnetic contribution to the 1
2 〈111〉 screw

dislocation core (left in Fig. 11), similar temperature varia-
tions are found upon heating and cooling the system, with

almost constant energy across the whole range of temper-
ature below TN , except near 0 K upon heating where this
contribution falls. Due to the steep decrease of the magnetic
fault energy, separation of the two contributions is difficult in
this temperature range. This similar temperature dependence
found whether heating or cooling shows that contrary to the
fault, the core energy of the dislocations does not depend
on the magnetic structure of the system. Like for the fault,
the magnetic contribution to the core energy vanishes when
long-range magnetic order disappears at TN . This yields a
linearly decreasing free energy with increasing temperature.
As was previously reported using ab initio calculations [5],
the magnetic contribution to the core energy of 1

2 〈111〉 screw
dislocations at 0 K is very small, in agreement with the present
results.

Looking at the results obtained upon cooling the infinite
fault, the energy of the fault bounded by dislocations might
also depend on the size of the simulation cell, with a similar
noncollinear structure arising. To study this effect, similar
simulations were performed using a smaller simulation cell,
with periodicity vectors �p1 = 15/2 [121] − 27/2 [101], �p2 =
15/2 [121] + 27/2 [101], and �p3 = 6 × 1

2 [111], containing a
total of 7 290 atoms. This corresponds to a distance of 54 Å
between the two 1

2 [111] screw dislocations of the dipole when
in its quadrupolar arrangement. The length of the sheared
area is then varied as performed in the beginning of this
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section to allow for the extraction of the contributions of
the fault and dislocation cores to the total excess magnetic
energy. Upon cooling the system, the magnetic contribution
to the dislocation core energy at 0 K is 66 meV/Å, with a
fault energy of 1.4 meV/Å2, compared to 76 meV/Å and
0.8 meV/Å2, respectively, in the larger cell presented above
(see Fig. 11). The magnetic contribution to the core energy
appears therefore almost constant for different sizes of the
simulation cell, while the fault energy associated with the non-
collinear structure strongly varies, in agreement with previous
results obtained for infinite faulted crystals. This noncollinear
structure shown in Fig. 9 therefore cannot be described as
a fault since it is not localized in a defined fault plane, and
its excess energy is not varying proportionally to the area of
the fault plane. These noncollinear magnetic structures, how-
ever, have a lower energy than the ones involving collinear
magnetic faults, thus corresponding to the magnetic ground
state of the crystal containing a 1

2 〈111〉 screw dislocation
dipole.

D. Dislocations and spin-density wave

As discussed in the Introduction, motivated by previous
ab initio modeling of the interplay between 0-K magnetism
and plasticity of Cr, all presented results in this work have
been performed under the approximation of the AF phase.
However, the experimental magnetic ground state of Cr at
low temperature, the SDW, might have an effect on the dis-
cussed magnetic faults. Depending on the relative position
between the location of the fault plane and the node of the
wave, the situation might indeed differ. When the crystal is
sheared in a {100} plane where all magnetic moments are
zero, i.e., in a nodal plane of the SDW, the magnetic fault
has zero energy since there is no magnetic frustration in the
node where magnetic moments are null. However, since the
1
2 〈111〉 Burgers vector does not belong to {100} planes, such
a shearing is not compatible with glide of 1

2 〈111〉 dislocations
and the SDW order is necessarily broken in some of these
{100} planes where magnetic moments are not zero. The SDW
magnetic order will necessarily be disrupted, with a loss of
the coherency between SDWs, in the same way as the AF
order by 1

2 〈111〉 dislocations, responsible for the generation
of magnetic faults.

To investigate this point, Monte Carlo simulations were
performed in a simulation cell containing both a SDW and a
1
2 [111] screw dislocation dipole, the energetics of the system
being described by Set1 parameters of the HL model. The
system is sketched in Fig. 12(a), with periodicity vectors X =
20 × [010], Y = 20 × [101], and Z = 9 × [101], containing
14 400 atoms. The SDW propagates along the x ‖ [010] axis,
with a period of 20 a0, chosen close to its experimental value
[1]. The magnetic moments are initialized with mx

i = my
i = 0

and the mz
i component as to match the profile of the SDW

predicted by ab initio calculations at 0 K. In this configuration,
the cut surface of the dislocation dipole necessarily cuts the
SDW at any possible value of the magnetic moments along its
[010] propagation direction.

The equilibrium magnetic structure of the system at 0 K
is presented in Figs. 12(b) and 12(c). The position of the

FIG. 12. (a) Sketch of the simulation setup containing a 1
2 [111]

screw dislocation dipole and a SDW propagating along [010]. The
projection of the magnetic moments along the z axis obtained at 0 K
upon heating the system, using the HL model, is shown in the plane
below the dislocation dipole in (b), and between the dislocations in
(c), with the projected lines of the dislocations represented by the
thick black line.

dipole defines two distinct regions: outside the sheared area
[Fig. 12(b)], where the magnetic order is not disrupted; and
between the two dislocations of the dipole [Fig. 12(c)], where
a magnetic fault is generated. In the (010) planes correspond-
ing to the nodes of the SDW located in the latter region, the
shearing by the Burgers vector is canceled by the inversion
of the magnetic ordering caused by the SDW, as shown in
Fig. 12(c). Thus, AF order is retrieved in the region crossed
by the cut surface of the dipole. In the (010) planes where
the magnetic moments are nonzero, a collinear magnetic fault
arises due to the disruption of the nonzero AF order, with a
local reduction in the magnitude of the magnetic moments,
as can be seen in Fig. 12(c) following the position of the
dislocation lines (black line).

Upon increasing the temperature, both the SDW and the
magnetic fault vanish, both below TN , at the same temperature
of approximately TN/2. Now cooling the system down to 0 K
starting from randomly oriented spins in the PM phase, a
noncollinear structure is stabilized. It is similar to the one pre-
sented in Fig. 9, i.e., with a modulation of the three Cartesian
components of the magnetic moments in the region sheared
by the two 1

2 〈111〉 screw dislocations. Indeed, no SDW can
be retrieved upon cooling since it is a metastable state of
the HL model. Therefore, as in the AF phase, the 1

2 〈111〉
Burgers vector of these dislocations necessarily disrupt the
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magnetic order, which is responsible for magnetic faults at
low temperature. The AF phase is therefore a priori a good
approximation to study the interplay between ordered mag-
netism and plasticity of bcc Cr at low temperature.

V. DISCUSSION

In light of the presented results, the parameter governing
the impact of magnetism on the plasticity of bcc Cr is the
temperature, which defines if the magnetic fault caused by
a 1

2 〈111〉 displacement is metastable. Above the transition
temperature Tv , the magnetic fault is unstable. Magnetic faults
created by the shearing of the crystal through glide of 1

2 〈111〉
dislocations will survive a time lapse defined by the relaxation
time τspin of the spins before relaxing to a noncollinear mag-
netic structure. If this time τspin is large enough compared to
the timescale associated with dislocation glide, one can still
expect consequences of magnetism on plasticity, like back
stress caused by magnetic faults, above Tv .

In this respect, we evaluate the magnetic excitation time
τspin, which is a measure of the timescale at which the spin
subsystem relaxes to its equilibrium configuration. As roughly
evaluated from the inverse of the weighted average of the
magnon frequencies [34] of Fig. 3, we obtain τspin = 19 fs at
0 K, indicating the fast relaxation of the magnetic moments.
On the other hand, dislocation motion typically operates at
a timescale of the order of a few microseconds for the fastest
motions [35]. The spin subsystem is thus always relaxed when
considering the timescale of dislocation motion, and mag-
netic faults caused by the displacement of 1

2 〈111〉 dislocations
instantly vanish in favor of their noncollinear ground state.
Therefore, if the temperature of the system raises above Tv , all
magnetic faults previously generated will vanish, regardless
of the heating or cooling thermal cycle, and 1

2 〈111〉 dislo-
cations are free to move without dragging a magnetic fault,
surrounded by a noncollinear magnetic structure similar to the
one presented in Fig. 9. In this temperature range, magnetism
will not bear significant consequences on the plasticity of bcc
Cr since the faults have disappeared.

Magnetic faults might only exist at low temperatures, be-
low the transition temperature Tv . In this temperature range,
one can expect that 1

2 〈111〉 dislocations glide pairwise, with
the trailing dislocation closing the magnetic fault opened by
the leading one, thus creating 〈111〉 superdislocations [4,5].
Using the free energy γfault of the magnetic fault bounded by
the two 1

2 〈111〉 screw dislocations (Fig. 11, right), the equilib-
rium dissociation distance of the 〈111〉 screw superdislocation
is evaluated with anisotropic elasticity (see details in Ref. [5]):

ddiss(T ) = b2
√

C′C44

2πγfault(T )
, (16)

using the low-temperature experimental shear moduli C′ =
153 and C44 = 104 GPa [36]. The resulting dissociation dis-
tance is presented in Fig. 13 as a function of the temperature T
upon heating the system up to 180 K, i.e., in the temperature
range where the magnetic fault is metastable. The dissociation
distance rapidly increases up to a few hundreds of nanometers,
even at very low temperatures.

However, no such superdislocation seems to have been ob-
served experimentally until now. Nevertheless, if the existence

FIG. 13. Dissociation distance ddiss [Eq. (16)] of a 〈111〉 screw
superdislocation as a function of temperature, sketched in the above
panel.

of dissociated 〈111〉 superdislocations is to be confirmed,
a careful experimental procedure is required. Post mortem
imaging at room temperature of the dislocation microstructure
present after low-temperature deformation will not allow for
their observation since the magnetic faults will not be stable
anymore. Maintaining the temperature below Tv all along the
straining experiments and the observation step is necessary
to allow for the detection of such superdislocations without
destabilizing them. In situ straining experiments in a TEM at
a temperature below Tv could be a possibility.

Various experimental works [37–40] report signatures of
magnetic frustrations using spin-polarized STM at room tem-
perature. In particular, pairs of 1

2 〈111〉 screw dislocations
have been observed emerging at {100} surfaces, responsible
for monoatomic steps of height a0/2 (i.e., the projection of
�b = 1

2 〈111〉 along a 〈100〉 direction), with a0 the lattice pa-
rameter. The variation of the magnetic contrast imaged in
the region close to these dislocations shows the presence of
magnetic domain walls bounded by two dislocations, of width
of a few hundred nanometers. Since these observations were
performed at room temperature, the magnetic fault generated
by 1

2 〈111〉 dislocations has disappeared. The observed modu-
lation in the magnetic contrast in the region between the two
dislocations might therefore be an image of the noncollinear
structure presented in Fig. 9.

VI. CONCLUSION

The effect of finite-temperature magnetic excitations on
different bulk and plasticity-related magnetic properties of bcc
Cr is studied using a Heisenberg-Landau magnetic interaction
model parametrized on ab initio data. Two different sets of
parameters are used, one reproducing perfectly 0-K energetics

134105-14



INTERPLAY BETWEEN MAGNETIC EXCITATIONS AND … PHYSICAL REVIEW B 107, 134105 (2023)

and the other the experimental Néel temperature TN , then
allowing for sampling of magnetic structures at finite temper-
atures, taking care of quantum statistics at low temperature.
The bulk magnetization, short-range magnetic correlations
and loss of long-range order at TN are well captured by the
model, in agreement with experiments.

Considering the magnetic frustration caused by a rigid
1
2 〈111〉 shearing of the lattice, we showed that the low-
temperature collinear magnetic fault, where the magnetic
frustration is partially resolved by a local reduction of the
magnetic moments, is only stable up to a temperature Tv ,
which is below TN (approximately 2TN/3). Above Tv , the mag-
netic frustration is partially resolved by a disorientation of the
magnetic moments, keeping a constant magnitude, a structure
similar to a spin spiral. This perturbation spreads over the
entire simulated volume, with zero excess magnetic energy
in the limit of infinitely long simulation cells. Upon cooling
the same system from the PM phase, this spiral structure is
stabilized as soon as long-range magnetic order is retrieved
at TN , down to 0 K. The stability of these two magnetic
structures, the collinear magnetic fault and the noncollinear
spiral-like structure, predicted by the HL model were then
confirmed by noncollinear ab initio calculations, the spiral
structure being the ground state of the sheared crystal at all
temperatures.

When the crystal is sheared by 1
2 〈111〉 dislocations, the

same collinear magnetic fault is found in the region bounded
by two dislocations up to the temperature Tv , below TN .
In this temperature range, a possible consequence of the
non-negligible energy cost of these magnetic faults is the
pairing of 1

2 〈111〉 dislocations, creating dissociated 〈111〉 su-
perdislocations [4]. Upon increasing the temperature, the fault
progressively vanishes, with a rapid decrease in the magnetic
free energy of the fault and thus the disappearance of disloca-
tion pairing. Above Tv , a noncollinear structure spreading over
the whole simulation cell is obtained, similar to the spiral-like
structure previously found for the rigid 1

2 〈111〉 shearing of
the lattice. This noncollinear structure has a negligible excess
magnetic energy, and 1

2 〈111〉 dislocations are thus free to
move without carrying any magnetic fault above Tv .

In its magnetically ordered phase above the transition tem-
perature Tv at which magnetic faults vanish, but also in its
disordered PM phase above the Néel temperature TN , mag-
netism appears to have a marginal impact on Cr plasticity.
Indeed, previous ab initio results at 0 K have shown that dis-
locations have similar core properties in the nonmagnetic and
antiferromagnetic phases [5,6], the only notable difference
being the generation of magnetic faults by 1

2 〈111〉 dislocations
at 0 K. Once these magnetic faults have become unstable
above Tv , magnetism should not have any consequence on Cr
plasticity. A plastic behavior similar to other bcc transition
metals is therefore expected for Cr [41].
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APPENDIX A: INCLUDING QUANTUM STATISTICS

Magnetic excitations described by the HL model are as-
sumed continuous in the frame of classical physics, thus
allowing for fluctuations in the magnitude and angle of the
spins even at very low temperatures, as soon as thermal energy
is sufficient to explore higher-energy configurations. How-
ever, this yields nonphysical results with a diverging magnetic
entropy at 0 K [26]. This can be overcome using a quan-
tum statistics through the inclusion of quantized excitation
modes, or magnons, as presented in Fig. 3(a), which then
allow for a better description of low-temperature magnetic
excitations.

A proper sampling of the thermodynamic properties of the
system therefore necessitates quantum statistics, i.e., using a
Bose-Einstein distribution. The quantum scaling factor η(T )
of the Metropolis algorithm is given by Eq. (7), obtained
through integration of the temperature-dependent magnon
density of states (mDOS) g(E , T ), which is then the key
to construct such quantum statistics [26]. Given that the
mDOS is zero above a certain maximum energy, approxi-
mately 625 meV/atom according to the HL model with Set1
parameters [Fig. 3(a)], one can perform this integration from
0 to EC , where EC is the highest energy contributing to the
mDOS at a temperature T . Following the method introduced
by Woo et al. [27] and Bergqvist et al. [26], the temperature
dependence of the mDOS is evaluated by rescaling this upper
limit in energy EC of the mDOS at 0 K following

EC (T ) = EC (T = 0 K) ×
(

1 − T

TN

)β

, (A1)

with TN the Néel temperature and β � 0.375 the critical ex-
ponent of the three-dimensional (3D) Heisenberg model [42],
which only depends on the dimensionality of the model and
is the same regardless of the structure of the system of in-
terest. This implies that the temperature-dependent mDOS is
rescaled upon temperature, keeping the same shape with this
rescaled cutoff magnon energy (Fig. 14):

g(E , T ) =
g
(

E × EC (T )
EC (0 K) , 0 K

)
∫ EC (T )

e=0 g
(

e × EC (T )
EC (0 K) , 0 K

)
de

. (A2)

This model assumes that above TN , i.e., when long-range mag-
netic order vanishes, the cutoff energy EC becomes zero and
the statistics thus sharply switches from quantum to classical.
Hence, such an approximation is exact at low temperatures
only, well below TN , but still a reasonable approximation at
higher temperatures, close to TN , as demonstrated in previous
works [13,43,44]. This method is applied with the magnon
spectrum obtained with a given energetic model, from which
the mDOS at 0 K is obtained by integrating the energy of the
magnons over the entire Brillouin zone. The scaling factor η of
the Metropolis algorithm is then interpolated at the transition
from classical to quantum statistics:

η(T ) =
{
ηQ(T ) [Eq. (7)], if T < TN

kBT, if T � TN
(A3)
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correctly accounting for low-temperature thermal excitations
below the Néel temperature TN through quantum statistics,
and using a classical Boltzmann distribution above, which is
presented in the middle column of Fig. 14. We note that a more
accurate evaluation of the temperature-dependent mDOS can
be obtained through evaluation of the dynamical structure fac-
tor S(�q, E ) [45–47], including temperature effects originating
from magnon-magnon interactions and magnetic damping.
However, this approach is much more computationally expen-
sive and yields a similar scaling factor at low temperature as
the quantum approximation introduced in this section. Thus,
finite-temperature magnetic excitations in bcc Cr are studied
using the statistics of Eq. (A3), which gives a better agreement
with the experimental measure of the long-range magnetic
order than using classical statistics, as presented in the right
column of Fig. 14. We also note that similar results are ob-
tained using the two sets of parameters for the HL model,
with only a shift in the temperature scale due to the different
predicted TN .

APPENDIX B: NONCOLLINEAR SPIN-POLARIZED
DFT CALCULATIONS

In order to confirm the predictions of the HL model regard-
ing the stability and energetics of the two magnetic structures
presented in Fig. 6 (i.e., the collinear magnetic fault and
the noncollinear spiral structure), noncollinear spin-polarized

DFT calculations are performed. The simulation cells used for
the {110} fault has periodicity vectors �x = [010], �y = [101],
and �z = n{110} × [101] + 1/2[111], with n{110} ∈ [6, 8, 14],
resulting in a length d {110}

cell = n{110} × a0

√
2 in the direction

orthogonal to the fault plane. For the {112} fault, the simu-
lation cell has periodicity vectors �x = [110], �y = 1

2 [111], and

�z = 4 × [112], resulting in d {112}
cell = 4 × a0

√
6. The magnetic

moments are then initialized using their equilibrium values
obtained with the HL model. The ab initio relaxed structures
are presented in Fig. 6 for the infinite {110} structure, both
found identical to the predictions of the HL model. The ener-
gies of both structures are presented in Fig. 7 as a function of
the separation distance dcell at 0 K, in both {110} and {112}
planes, also confirming the predictions of the HL model.

Calculations of the energy of magnons (Fig. 3) have been
performed using both DFT and the TB formalism using the
generalized Bloch’s theorem [19], as implemented in the VASP

[8] and DYNAMOL [20] codes, respectively. Spin spirals of
wave vector �q are propagating in a bcc unit cell containing
a single atom, with periodicity vectors �p1 = 1

2 [111], �p2 =
1
2 [111], and �p3 = 1/2[111]. These noncollinear calculations
are performed at the equilibrium lattice parameter of the AF
phase, with a magnetic moment constrained to the bulk value
m0 of the AF phase, since magnons are noncollinear spirals
keeping a constant magnetic moment along their propagation
direction. The results are presented in Fig. 3, using DFT
calculations (orange circles) and the TB model (gray line).

FIG. 14. Temperature-dependent mDOS g(E , T ), scaling factor of the Metropolis algorithm η(T ) within the classical Boltzmann (red)
quantum statistics (blue), and long-range magnetic order O [Eq. (12)] as a function of temperature using both statistics, and compared to
experiments [1]. Results are presented for (a) Set1 and (b) Set2 parameters of the HL model.
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