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Claude Godrèche and Jean-Marc Luck
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Abstract. We investigate the statistics of three kinds of records associated
with planar random walks, namely diagonal, simultaneous and radial records.
The mean numbers of these records grow as universal power laws of time, with
respective exponents 1/4, 1/3 and 1/2. The study of diagonal and simultaneous
records relies on the underlying renewal structure of the successive hitting times
and locations of translated copies of a fixed target. In this sense, this work
represents a two-dimensional extension of the analysis made by Feller of ladder
points, i.e., records for one-dimensional random walks. This approach yields
a variety of analytical asymptotic results, including the full statistics of the
numbers of diagonal and simultaneous records, the joint law of the epoch and
location of the current diagonal record and the angular distribution of the current
simultaneous record. The sequence of radial records cannot be constructed in
terms of a renewal process. In spite of this, their mean number is shown to grow
with a super-universal square-root law for isotropic random walks in any spatial
dimension. Their full distribution is also obtained. Higher-dimensional diagonal
and simultaneous records are also briefly discussed.
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1. Introduction

An observation in a time series is called an (upper) record if it is larger than all
previous observations in the series. The simplest case is when these observations
are independent and identically distributed (iid) [1, 2, 3, 4, 5, 6, 7]. However, in
many instances observations are not iid random variables. Consider for example
the sequence of positions of a one-dimensional random walker. The points where
the position reaches a record value, that is, where it exceeds all previously attained
values, are called the ladder points, in the terminology of Feller [8, 9]. Ladder points
are important because sections between them are probabilistic replicas of each other.
This renewal structure makes the study of records for one-dimensional random walks
amenable to exact analysis (see [9, chapters XII and XVIII]).

More recently, the statistics of records has found applications in a variety
of complex physical systems such as disordered systems, aging systems, complex
networks, biological and geophysical processes, to name but a few. We refer the
reader to the reviews [10, 11] for panoramas of recent applications of the theory of
records in statistical physics. In particular the topic of records for one-dimensional
random walks has been revisited and enriched in a series of papers in the past two
decades (see [11] and the references therein).

In this paper we investigate the statistics of various sequences of records associated
with planar random walks. The present work is therefore a natural extension of Feller’s
pioneering studies recalled above, and of the subsequent investigations on the same
topic reviewed in [11]. To the best of our knowledge, this higher-dimensional case is
entirely novel, with the exception of a numerical study of radial records in one, two
and three dimensions [12].

Consider for definiteness the simple random walk on the square lattice, also
referred to as the planar Polya walk [13]. Let

Rt = (Xt, Yt) (1.1)

denote the random position of a walker launched from the origin after t discrete time
steps. At variance with the one-dimensional situation, a great many different kinds
of records can be attached to a planar random walk. The simplest situation consists
in extracting a one-dimensional time series from the walk by monitoring either one
coordinate of the walker, or its radius, its polar angle, and more generally any scalar
function of its two coordinates. In Section 4 we investigate the example of radial
records, i.e., records of the radius Rt = |Rt| of the walker, such that

(R) there is a radial record at time t if:
Rt > Rs for all s = 0, . . . , t− 1.

One may also think of constructions involving the coordinates Xt and Yt in a more
intricate fashion. In this work we consider two examples which possess a renewal
structure. Simultaneous records, to be studied in Section 3, are the simultaneous
occurrences of records for both coordinates of the random walk, such that

(S) there is a simultaneous record at time t if:
Xt > Xs and Yt > Ys for all s = 0, . . . , t− 1.

Diagonal records, to be investigated in Section 2, are the records of the intersections
of the random walk with the main diagonal, such that

(D) there is a diagonal record at time t if:
Xt = Yt and Xt > Xs for all those s = 0, . . . , t− 1 such that Xs = Ys.
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In numerical studies we shall consider in parallel two different kinds of planar
random walks with discrete steps of unit length, namely the Polya walk, i.e., the
simple random walk on the square lattice, and the Pearson walk [14], whose steps
have unit length and uniform random orientations. In both cases a walk of t steps
issued from the origin obeys 〈R2

t 〉 = 〈X2
t + Y 2

t 〉 = t. The diffusion coefficient D, such
that 〈X2

t 〉 = 〈Y 2
t 〉 = 2Dt, is therefore

D =
1

4
(1.2)

for both walks. References [15, 16, 17] provide some general background on random
walks. The above definitions of radial and simultaneous records are extended to off-
lattice walks in a straightforward way, whereas the definition of diagonal records has
to be slightly adapted. For the Pearson walk, and any other kind of off-lattice walk,
each step crossing the diagonal generates an intersection point, to be determined by
linear interpolation. Diagonal records are the records of those intersection points.

Figure 1 shows two Polya walks of 5000 steps with their diagonal, simultaneous,
and radial records. The numbers and patterns of the three kinds of records under
consideration look very different from each other. The setup of this paper parallels
these illustrations. Diagonal, simultaneous, and radial records of planar walks are
successively investigated in Sections 2, 3, and 4. The mean numbers of records of each
kind will be shown to grow as different powers of time t, i.e.,

N
(D)
t ∼ t1/4, N

(S)
t ∼ t1/3, N

(R)
t ∼ t1/2. (1.3)

Diagonal and simultaneous records are amenable to an exact analysis, because they
amount to renewal processes, whereas our study of radial records is partly heuristic.
Section 5 contains a summary of our main findings and a discussion focussed onto
records for isotropic random walks in higher spatial dimensions. Three appendices are
devoted to more technical matters.

2. Diagonal records

2.1. Recursive construction

This section is devoted to the statistics of diagonal records, shown as red symbols in
Figure 1. Let us consider the Polya walk for the time being. This process is Markovian
and invariant under lattice translations. Diagonal records therefore admit a recursive
description, whose first step is illustrated in Figure 2. The target is the set of diagonal
points of the lattice, starting with (1, 1) and marked in red. The first diagonal record
corresponds to the first hitting of the target by a walk issued from the origin. On the
example, the walk makes τ1 = 8 steps before it hits the target at abscissa x1 = 3. The
first diagonal record therefore occurs at time τ1 = 8 and abscissa x1 = 3.

The second record can be constructed by considering the location (x1, x1) = (3, 3)
of the first record as a new origin. The walk issued from that origin makes τ2 steps
before it hits the diagonal at abscissa x2, and so on. Such a recursive construction
defines a renewal process. References [9, 18, 19, 20] provide overviews of classical
renewal theory. As recalled in Section 1, renewal theory has already been used in the
study of records associated to random walks in one dimension [9] (see also [11] and
the references therein). The present construction is a higher-dimensional extension of
these earlier works.
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Figure 1. Two Polya walks with t = 5000 steps. Black square: origin. Red
symbols: the N

(D)
t diagonal records. Blue symbols: the N

(S)
t simultaneous

records. Green symbols: the N
(R)
t radial records. The legend gives the

numbers of records of each kind.

The nth diagonal record takes place at time T(n) and at abscissa X(n), i.e., at the
lattice point R(n) = (X(n), X(n)), where

T(n) = τ1 + · · ·+ τn,

X(n) = x1 + · · ·+ xn. (2.1)

Temporal and spatial increments (τn, xn) are iid couples of integer random
variables, distributed according to the joint law p(τ, x) of the hitting time τ and
of the abscissa x of the hitting point along the diagonal, for a random walk starting
at the origin, as shown in Figure 2. We notice that τ is even. To our knowledge, no
expression for the exact distribution p(τ, x) is known. It is worth stressing that the
combinatorics of constrained lattice walks is still a topical subject in the community of
discrete mathematics, as testified by the recent works [21, 22] on planar lattice walks
avoiding a quadrant, and by the many references therein. The problem studied in
those references is in some sense related to the statistics of simultaneous records, to
be studied in Section 3.
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x

y

Figure 2. First step of recursive construction of diagonal records of a Polya
walk. Black square: origin. Red: target (diagonal). Blue: Polya walk.

Throughout the following we are mostly interested in asymptotic results on the
statistics of records in the scaling regime of large times and distances. For that
purpose, it is sufficient to know the asymptotic behavior of the joint distribution
p(τ, x) when both variables are large. This asymptotic form can be derived from the
continuum diffusion theory. A self-contained presentation of this approach is given
in Section 2.2. Diagonal and simultaneous records, studied in Sections 2 and 3, are
related to the survival of a Brownian particle in wedges of respective angles α = 2π
(cut plane) and α = 3π/2 (complement of a quadrant).

2.2. Survival of a Brownian particle in a wedge

The problem of the survival of a Brownian particle in a wedge of arbitrary angle α,
illustrated in Figure 3, has been considered by Sommerfeld [23] and revisited many
times in the modern era [24, 25, 26, 27, 28, 29, 30]. This section presents a
comprehensive analysis of the problem, with an emphasis on the distribution of the
hitting time τ and hitting distance x, corresponding to the event where the particle
hits the wedge boundary for the first time.

(r, φ)

α (a, φ0)

Figure 3. Geometric setting of survival of a Brownian particle in a wedge
of angle α.
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In polar coordinates r > 0 and 0 < φ < α, the probability density G(r, φ, a, φ0, t)
for a Brownian particle issued from (a, φ0) at time t = 0 to have survived (i.e., stayed
in the wedge) until time t and be at point (r, φ) at time t is referred to as the Green’s
function of the problem. It obeys the diffusion equation

∂G

∂t
= D∆G, (2.2)

with initial value G(r, φ, a, φ0, 0) = δ(r − a)δ(φ − φ0)/a (as the integration measure
is r dr dφ), and Dirichlet (i.e., absorbing) boundary conditions G(r, 0, a, φ0, t) =
G(r, α, a, φ0, t) = 0 along both sides of the wedge.

The exact solution to (2.2) reads (see e.g. [25, 26])

G(r, φ, a, φ0, t) =
e−(a2+r2)/(4Dt)

αDt

×
∞∑

m=1

sin(2mθφ0) sin(2mθφ) I2mθ

( ar

2Dt

)
, (2.3)

where Iν is the modified Bessel function, and

θ =
π

2α
. (2.4)

Let us fix once for all the starting point of the particle at some microscopic
distance a from the origin, on the symmetry axis of the wedge (φ0 = α/2). In the
regime of interest, where both time t and distance r are macroscopically large, the first
term (m = 1) dominates the sum in (2.3). Using the behavior Iν(z) ≈ (z/2)ν/Γ(ν+1)
as z → 0, with ν = 2θ, and expressing α in terms of θ, (2.3) simplifies to

G(r, φ, t) ≈ sin(2θφ)

πΓ(2θ)Dt

( ar

4Dt

)2θ
e−r2/(4Dt). (2.5)

The first quantity of interest is the survival probability S(t), i.e., the probability
that the particle has stayed in the wedge until time t. This reads

S(t) =

∫ ∞

0

r dr

∫ α

0

dφG(r, φ, t). (2.6)

Integrating (2.5) yields

S(t) ≈ c

θ tθ
, (2.7)

where

c =
2Γ(θ + 1)

πΓ(2θ)

(
a2

4D

)θ

(2.8)

is dubbed the tail parameter. We have thus recovered the well-known result [24,
25, 26, 27, 28, 29, 30] that the survival probability falls off as a power law, whose
exponent θ depends continuously on the wedge angle α according to (2.4). We have
also determined the dependence of the tail parameter c on the initial point, within the
continuum diffusion theory.

The distribution fτ (τ)‡ of the random hitting time τ where the particle hits the
boundary of the wedge is simply related to the survival probability S(t). This quantity
is nothing but the probability that τ is larger than t:

S(t) =

∫ ∞

t

fτ (τ)dτ. (2.9)

‡ Throughout this paper fx(.) denotes the probability density of the continuous random variable x.
For short this quantity is referred to as the distribution of x. Similar notations are consistently used
for multivariate and/or conditional probability densities.
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By differentiating (2.7) with respect to t, we obtain that the probability density of τ
has a power-law tail of the form

fτ (τ) ≈
c

τθ+1
. (2.10)

The full joint distribution fτ,r(τ, r) of the hitting time τ and of the distance r
between the hitting point and the origin is given by the sum of the fluxes n · J of the
probability current J = −D∇G at both points (r, 0) and (r, α) of the wedge boundary,
where n denote the corresponding internal normal vectors. This reads

fτ,r(τ, r) =
D

r

(
∂G(r, φ, τ)

∂φ

∣∣∣∣
φ=0

− ∂G(r, φ, τ)

∂φ

∣∣∣∣
φ=α

)
. (2.11)

For a microscopic starting point, (2.5) yields

fτ,r(τ, r) ≈
4θ

πΓ(2θ)

( a

4D

)2θ r2θ−1

τ2θ+1
e−r2/(4Dτ). (2.12)

The expression (2.10) of the tail of the distribution of τ can be recovered by integrating
the above result over r. Similarly, integrating (2.12) over τ yields the following
expression

fr(r) ≈
4θ

π

a2θ

r2θ+1
(2.13)

for the tail of the distribution of r.
For a given hitting time τ , the conditional distribution of the hitting distance r

reads

fr(r|τ) =
fτ,r(τ, r)

fτ (τ)
, (2.14)

i.e.,

fr(r|τ) ≈
2

Γ(θ)(4Dτ)θ
r2θ−1 e−r2/(4Dτ). (2.15)

This result does not depend on the microscopic scale a anymore. Equivalently, setting

r = (4Dτ)1/2ξ, (2.16)

in agreement with diffusive scaling, the reduced variable ξ has the universal
distribution

fξ(ξ) =
2

Γ(θ)
ξ2θ−1 e−ξ2 , (2.17)

depending only on the exponent θ, i.e., on the wedge angle α.

2.3. Number of diagonal records

This section is devoted to the number N
(D)
t of diagonal records at time t, denoted

as Nt for short throughout Section 2. We successively investigate the mean value and
the statistics of Nt. The main emphasis will be on asymptotic results at large times.

Let us consider first the Polya walk. Every realization of the walk generates an
infinite sequence of hitting times τ1, τ2, . . . Hitting times are iid even integer random
variables with the distribution

p(τ) =

∞∑

x=1

p(τ, x). (2.18)
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Hereafter we adopt the line of thought and the notations of our earlier work on renewal
processes [31]. For a given time t, the number of diagonal records is the unique
integer Nt such that T(Nt) ≤ t < T(Nt+1), with the definition (2.1). This number is
random, as it depends on the draw of the whole process {τn}. Let

pn(t) = Prob{Nt = n} = Prob{T(n) ≤ t < T(n+1)} (2.19)

denote the probability that Nt equals some integer n. In particular, the probability
of having no record up to time t is nothing but the survival probability

p0(t) = Prob{τ1 > t} = S(t) =

∞∑

τ=t+1

p(τ), (2.20)

i.e., the probability that the walker has not yet hit the target at time t.
At large times, it is legitimate to view τ as a continuous variable, and to

approximate the exact discrete distribution p(τ) by a continuous one with density
fτ (τ). Within this setting, namely renewal processes in continuous time, many
quantities can be determined explicitly in Laplace space. Examples are given
in Appendix A. The first quantity of interest is the distribution pn(t) of the number
of records. We have

p̂n(s) = L
t
pn(t)

=

∫ ∞

0

pn(t)e
−st dt

=

〈∫ T(n+1)

T(n)

e−st dt

〉

=

〈
1− e−sτn+1

s
e−sT(n)

〉

=
1− f̂τ (s)

s
f̂τ (s)

n (2.21)

for all n ≥ 0. We have in particular

p̂0(s) =
1− f̂τ (s)

s
, (2.22)

yielding

p0(t) = S(t) =

∫ ∞

t

fτ (τ)dτ. (2.23)

This result coincides with (2.9) and is the continuum analogue of (2.20). The Laplace
transform of the mean number of records at time t reads

L
t
〈Nt〉 =

∞∑

n=0

np̂n(s) =
f̂τ (s)

s(1 − f̂τ (s))
. (2.24)

From now on, we focus our attention onto distributions fτ (τ) with a power-law
tail of the form (2.10), restricting the exponent θ to the range 0 < θ < 1. Diagonal and
simultaneous records, studied in Sections 2 and 3, respectively correspond to θ = 1/4
and θ = 1/3. We have then

p0(t) ≈
c

θ tθ
(2.25)
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and

f̂τ (s) ≈ 1− Γ(1− θ)

θ
c sθ. (2.26)

For 0 < θ < 1, the mean hitting time 〈τ〉 is divergent, so that the renewal process
does not equilibrate, but rather keeps a sensitive memory of its initial state. Many
quantities exhibit large fluctuations, some of them being scale invariant [31].

2.3.1. Mean number of diagonal records. The growth law of the mean number of
records for an arbitrary exponent θ < 1 can be derived by inserting (2.26) into (2.24),
and inverting the Laplace transform. To leading order, we obtain the power-law growth

〈Nt〉 ≈ Atθ, A =
sinπθ

πc
. (2.27)

The problem at hand, namely diagonal records of the Polya walk, maps onto the
continuum theory of Section 2.2 for a wedge angle α = 2π (cut plane), so that the
survival exponent reads

θ =
1

4
. (2.28)

The results (2.27) therefore read

〈Nt〉 ≈ At1/4, A =
1

π
√
2 c

. (2.29)

This fourth-root law was announced in (1.3).
Figure 4 shows numerical data for the mean number 〈Nt〉 of diagonal records both

for Polya and for Pearson walks against t1/4 up to t = 105. Both datasets exhibit a
very accurate linear growth as a function of t1/4. The slopes A of the least-square fits
shown as dashed lines, and the corresponding values of the tail parameter c according
to (2.29), are given in Table 1 for both kinds of walks.

0 4 8 12 16 20

t1/4

0

4

8

12

16

<
N

t>

Polya
Pearson

Figure 4. Full curves: numerical data for mean number 〈Nt〉 of diagonal
records for Polya and Pearson walks (see legend) against t1/4 up to t = 105.
Dashed lines (slightly displaced for a better readability): least-square fits
of data for t > 103.
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walk A c c0

Polya 0.652 0.345 –

Pearson 0.899 0.250 0.290

Table 1. Numerical values of the amplitude A of the power-law growth (2.29)
of the mean number of diagonal records, as extracted from the data shown in
Figure 4, and of the corresponding tail parameter c for Polya and Pearson walks.
For Pearson walks, the tail parameter c0 of the first hitting time (see Section 2.3.2)
is also given.

For Polya walks, diagonal records admit the recursive construction described in
Section 2.1, and therefore exactly correspond to a renewal process. It was therefore no
surprise that the power law (2.29) holds at large times. For Pearson walks, diagonal
records do not admit such a construction stricto sensu. The basic reason is that the
starting point of the walk, namely the origin, lies exactly on the diagonal, whereas
the steps that give rise to subsequent records, i.e., those which cross the diagonal,
have their endpoints in a close vicinity of the diagonal, but not right onto it. It was
therefore not fully granted that the power law (2.29) would hold equally accurately
for Pearson walks. This growth law can however be expected on intuitive grounds to
be universal, i.e., to hold for all kinds of random walks in the diffusive universality
class. The amplitude A is however not universal, but rather depends on microscopic
details of the walk. Even in the diffusive theory describing a Brownian particle, the tail
parameter depends on the microscopic initial distance a (see (2.8)), which is a proxy
for an effective lattice spacing or any other short-distance cutoff in a walk consisting
of discrete steps.

2.3.2. Full statistics of number of diagonal records. At large times, the statistics of
the number Nt of records can be derived by means of a scaling analysis of the exact
expression (2.21). Omitting details, we are left with the scaling formula [31]

Nt ≈
θ

Γ(1− θ)c
tθX, (2.30)

where the distribution of the reduced variable X reads

fX(X) =

∫
dz

2πi
zθ−1 ez−Xzθ

. (2.31)

We have the identity

X ≡ (Lθ)
−θ, (2.32)

where Lθ is distributed according to the one-sided Lévy stable law of index θ and a
suitably chosen scale factor. The density at X = 0 and the mean value of X read

fX(0) =
1

Γ(1− θ)
, (2.33)

〈X〉 = 1

Γ(1 + θ)
. (2.34)

These results can be shown to be respectively in agreement with (2.25) and (2.27).
Whenever θ < 1/2, the distribution of X takes its maximum at X = 0, decays

monotonically as a function of X , and falls off as a stretched exponential,

fX(X) ∼ exp
(
−(1− θ)(θθX)1/(1−θ)

)
, (2.35)
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so that all moments of X are convergent.
For θ = 1/4, the distribution fX(X) is given by a linear combination of three

hypergeometric functions of type 0F2 [32, 33, 34]. The integral expression

fX(X) =
4

π

∫ ∞

0

e−4y4−Xy(cosXy − sinXy)dy, (2.36)

obtained by folding the contour in (2.31) onto the negative real axis, setting z = −4y4,
is more suitable for a numerical evaluation.

Figure 5 shows numerical data for the distribution of the number of diagonal
records, pn(t) = Prob{Nt = n}, of Polya and Pearson walks for t = 105. The mean
record numbers, 〈Nt〉 ≈ 10.67 (Polya) and 〈Nt〉 ≈ 14.88 (Pearson), are not very large,
so that sizeable corrections to scaling might be expected and are indeed observed. In
order to make a quantitative comparison between the plotted data and the theoretical
prediction (2.30), (2.36), the constant of proportionality between n and X has been
determined in two ways. Blue curves, labelled true, are obtained by using the true
finite-time mean values given above and shown as vertical dashed lines. Red curves,
labelled asymptotic, are obtained by using the asymptotic growth law (2.29), with
amplitudes A given in Table 1, resulting in the estimates 〈Nt〉 ≈ 11.59 (Polya) and
〈Nt〉 ≈ 15.99 (Pearson), some 8 percent above true values. It is observed that the
distribution pn is better represented by the red curves for small values of the record
number n, and by the blue curves for large n. A rather sharp crossover between both
regimes is observed for values of n comparable to the mean record number (vertical
dashed lines).

Another striking observation can be made on the lower panel of Figure 5. For
Pearson walks, the probability p0 (arrow) is significantly larger than the extrapolation
of the other data points. This is again due to the fact that records of Pearson walks
are not given by a renewal process stricto sensu. As a consequence, the survival
probability starting from the origin falls off as

p0(t) ≈
c0
θ tθ

, (2.37)

where the tail parameter c0 of the distribution of the first hitting time of the diagonal is
a priori different from the tail parameter c pertaining to the nth hitting time for n large
enough, and entering the asymptotic results derived above. Inserting the measured
value p0 ≈ 0.0652 into (2.37), we obtain c0 ≈ 0.290. This number, listed in Table 1,
is some 16 percent higher than c.

Let us now take another perspective and consider the product

Π(t) = 〈Nt〉p0(t) (2.38)

of the mean number of records at time t by the probability of having no record up to
time t. Renewal theory (see (2.25), (2.27)) predicts that this quantity converges to
the limit

Π =
Ac

θ
=

sinπθ

πθ
, (2.39)

i.e., Π = 2
√
2/π ≈ 0.900316 for θ = 1/4. Figure 6 shows the product Π(t) against t−1/4

for Polya and Pearson walks. The rightmost data points correspond to t = 125.
Both datasets are roughly parallel to each other, and vary over an appreciable range,
confirming thus the importance of corrections to scaling. Quadratic extrapolations
(dashed curves) yield the asymptotic values Π ≈ 0.899 for Polya walks, in excellent
agreement with the theoretical value stemming from renewal theory, and Π ≈ 1.042
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Figure 5. Full distribution of number of diagonal records, pn(t) =
Prob{Nt = n}, at time t = 105 for Polya (top) and Pearson (bottom) walks.
Symbols: numerical data. Blue (red) curves: true (asymptotic) theoretical
predictions (see text). Vertical dashed lines: mean values 〈Nt〉 ≈ 10.67
(Polya) and 〈Nt〉 ≈ 14.88 (Pearson).

for Pearson walks. Equating this number to Ac0/θ, with A ≈ 0.899 (see Table 1), we
consistently recover the result c0 ≈ 0.290 listed in Table 1.

2.4. Epoch and location of current diagonal record

In this section we investigate properties of the current (i.e., latest to date) diagonal
record at a fixed large time t. Our goal is to derive the joint distribution of the
epoch Tt and of the location of the current record, measured by its abscissa Xt. We
have introduced this notation in order to distinguish the current abscissa Xt of the
walker at time t (see (1.1)) and the abscissa Xt of the current record at time t, i.e.,
equivalently, the abscissa of the rightmost intersection of the first t steps of the walk
and of the diagonal.

Here again, the emphasis will be on asymptotic results at large times. We consider
first the Polya walk, for which the problem of records exactly amounts to a renewal
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)
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Pearson

Figure 6. Full curves: numerical data for product Π(t) (see (2.38))
for Polya and Pearson walks (see legend) against t−1/4. Dashed curves:
quadratic extrapolations (see text).

process. For a given walk, we have (see (2.1))

Tt = T(Nt) = τ1 + · · ·+ τNt
,

Xt = X(Nt) = x1 + · · ·+ xNt
, (2.40)

where the number of terms in each sum is the number Nt of records at time t.
For a large time t, the typical temporal increment scales as τ ∼ t/〈Nt〉 ∼ t3/4,

and the typical spatial increment scales as x ∼ τ1/2 ∼ t3/8. All increments τn and xn

are therefore typically large, so that we can have recourse to the continuum theory,
which predicts (see (2.16))

xn ≈
√

τn
2

ξn, (2.41)

where the ξn are independent from the τn and drawn from the distribution (2.17),
with θ = 1/4. In deriving (2.41), we have used D = 1/4 (see (1.2)), and the fact that
the abscissa of a point along the diagonal is x = r/

√
2.

Diffusive scaling implies

Tt ≈ tW, Xt ≈
√

t

2
U, (2.42)

where the dimensionless reduced variables W and U are distributed according to some
non-trivial joint distribution fW,U (W,U). This distribution is expected to be universal
among all kinds of random walks in the diffusive universality class. The variable U
has been normalized in order to avoid most factors of

√
2 in subsequent developments.

In order to determine the joint distribution of W and U , let us introduce the
bivariate characteristic function

B(σ, p, t) =
〈
e−σTt−p

√
2Xt

〉
. (2.43)

Using (2.40) and (2.41), the above definition can be recast as

B(σ, p, t) =

〈
Nt∏

n=1

b(σ, p, τn)

〉
, (2.44)
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with

b(σ, p, τ) =
〈
e−στ−p

√
τξ
〉
= e−στ

∫ ∞

0

fξ(ξ)e
−p

√
τξ dξ. (2.45)

The quantity B(σ, p, t) is therefore a multiplicative observable of the form (A.16),
investigated in Appendix A. The Laplace transform of B(σ, p, t) with respect to t is
therefore given by (A.20), i.e.,

B̂(σ, p, s) =
1− f̂τ (s)

s(1− hB(p, s+ σ))
. (2.46)

Let us estimate the above expression in the scaling regime where p, s and σ are small,
for an arbitrary exponent in the range θ < 1/2. The numerator of (2.46) is given by

1− f̂τ (s) ≈
Γ(1− θ)

θ
c sθ (2.47)

(see (2.26)), whereas the denominator involves the quantity

1− hB(p, s) ≈ 1−
∫ ∞

0

fτ (τ)e
−sτ dτ

∫ ∞

0

fξ(ξ)e
−p

√
τξ dξ

≈ −
∫ ∞

0

S(τ)dτ
d

dτ

(
e−sτ

∫ ∞

0

fξ(ξ)e
−p

√
τξ dξ

)
. (2.48)

The second expression, obtained by means of an integration by parts, is suitable for
an explicit evaluation in the scaling regime. This is performed in Appendix B and
yields (see (B.7))

B̂(σ, p, s) ≈ (1 + y)−θ

s φ((1 + y)−1/2z)
, (2.49)

where the scaling variables y and z read

y =
σ

s
, z =

p√
s
, (2.50)

and the scaling function φ(ζ) is obtained in parametric form as (see (B.9))

φ =
cos 2θγ

cosπθ
, ζ = 2 cosγ. (2.51)

This closes our analysis for arbitrary values of θ.
In the present situation (θ = 1/4), we have the explicit expression (see (B.11))

φ(ζ) =

(
1 +

ζ

2

)1/2

. (2.52)

Inserting this form into (2.49), we obtain

B̂(σ, p, s) ≈
√
2 s−3/4

(
p+ 2

√
s+ σ

)−1/2
. (2.53)

The triple inverse Laplace transform of the above expression can be worked out
explicitly by elementary means. Inverting successively over p, σ and s, we obtain
the joint distribution of W and U in the form

fW,U (W,U) =
Γ(1/4)

π2

√
U e−U2/W

W 3/2(1−W )1/4
. (2.54)

The distributions of W and of U can be derived by integrating (2.54) over the
other variable.
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The distribution of W reads

fW (W ) =
1

π
√
2
W−3/4(1 −W )−1/4 (0 < W < 1). (2.55)

We have thus recovered (for θ = 1/4) the beta distribution of the reduced epoch
W = Tt/t of the last renewal for arbitrary θ < 1 (see e.g. [31]), i.e.,

fW (W ) =
sinπθ

π
W−(1−θ)(1−W )−θ (0 < W < 1). (2.56)

The distribution of U reads

fU (U) =

√
2

π3/2
e−U2/2 K1/4(U

2/2), (2.57)

where K1/4 is the modified Bessel function. The behavior of this distribution at small
and large values of U reads

fU (U) ≈ Γ(1/4)

π3/2
√
U

(U → 0),

fU (U) ≈
√
2

πU
e−U2

(U → ∞). (2.58)

All joint moments of W and U can also be derived from (2.54). They read

〈WmUn〉 = 1

π
√
2

Γ(m+ n/2 + 1/4)Γ(n/2 + 3/4)

Γ(m+ n/2 + 1)
. (2.59)

We have in particular

〈W 〉 = 1

4
, 〈W 2〉 = 5

32
, 〈W 3〉 = 15

128
, 〈W 4〉 = 195

2048
,

〈U〉 = 1

2
√
π
, 〈U2〉 = 3

16
, 〈U3〉 = 5

16
√
π
, 〈U4〉 = 105

512
,

〈WU〉 = 1

4
√
π
, 〈W 2U〉 = 7

40
√
π
, 〈WU2〉 = 15

128
. (2.60)

The above value of 〈U〉 implies

〈Xt〉 ≈
√

t

8π
. (2.61)

This result is
√
8 times smaller than the mean absolute abscissa of the walker at time t,

〈|Xt|〉 ≈
√
t/π.

The reduced epoch W and abscissa U of the current record are significantly
correlated. Their correlation coefficient indeed reads

C =
〈WU〉c

(〈W 2〉c〈U2〉c)1/2
=

(
8

3(3π − 4)

)1/2

≈ 0.701121. (2.62)

Figure 7 shows a comparison between the distribution of the (integer) abscissaXt

of the current record of Polya walks at time t = 104, rescaled according to (2.42), and
the asymptotic prediction (2.57). The product UfU (U) is plotted in order to better
reveal the features of the distribution. A very good agreement is obtained without
any adjustable parameter. Corrections to scaling are very small (of the order of one
percent). This situation is in strong contrast with the statistics of the number of
records, displayed in Figure 5.
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Figure 7. Black symbols: Distribution of abscissa Xt of current diagonal
record of Polya walks at time t = 104, rescaled according to (2.42). Full
red curve: asymptotic prediction fU (U) (see (2.57)). Both quantities are
multiplied by U (see text).

3. Simultaneous records

3.1. Recursive construction

This section is devoted to the statistics of simultaneous records, shown as blue symbols
in Figure 1. Let us begin by considering the Polya walk. Simultaneous records are
germane to diagonal ones, investigated in Section 2, in the sense that they also admit
a recursive description, whose first step is illustrated in Figure 8. The target is the
quadrant issued from the point (1, 1), marked in red. The first simultaneous record
corresponds to the first hitting of the target by a walk issued from the origin. On
the example, the walk makes τ1 = 7 steps before it hits the target at the point
(x1 = 4, y1 = 1).

x

y

Figure 8. First step of recursive construction of simultaneous records of
a Polya walk. Black square: origin. Red: target (quadrant). Blue: Polya
walk.



On sequences of records generated by planar random walks 17

The second record can be constructed by considering the location (x1, y1) = (4, 1)
of the first record as a new origin. The walk issued from that origin makes τ2 steps
before it hits the quadrant at some point (x2, y2), and so on. We have therefore
reduced the problem to a renewal process. The nth simultaneous record takes place
at time T(n) and at the lattice point R(n) = (X(n), Y(n)), where

T(n) = τ1 + · · ·+ τn,

X(n) = x1 + · · ·+ xn,

Y(n) = y1 + · · ·+ yn. (3.1)

Temporal and spatial increments (τn, xn, yn) are iid triples of integer random
variables. Their joint distribution p(τ, x, y) identifies with the distribution of the
hitting time τ and of the coordinates (x, y) of the hitting point of the quadrant by
a random walk starting at the origin, as shown in Figure 8. If the walker hits the
horizontal part of the boundary of the quadrant, as illustrated in Figure 8, x ≥ 1 can
be an arbitrary integer and y = 1. If the walker hits the vertical part of the boundary,
x = 1 and y ≥ 1 can be an arbitrary integer. If the walker hits the tip of the boundary,
we have x = y = 1. Finally, the hitting time τ has the same parity as the sum x+ y.

Throughout the following, it will be sufficient to know the asymptotic behavior
of the joint distribution p(τ, x, y) when all variables are large. This asymptotic form
can again be derived by means of the continuum diffusion theory of Section 2.2. The
present problem maps onto the survival of a Brownian particle in a wedge with angle
α = 3π/2 (complement of a quadrant), so that the survival exponent reads

θ =
1

3
. (3.2)

3.2. Mean number of simultaneous records

This section is devoted to the number N
(S)
t of simultaneous records at time t, denoted

as Nt for short throughout Section 3. We focus our attention onto the mean number
of records. The asymptotic growth of this quantity is given by the prediction (2.27)
of renewal theory with θ = 1/3, i.e.,

〈Nt〉 ≈ At1/3, A =

√
3

2πc
. (3.3)

This third-root law was announced in (1.3).
Figure 9 shows numerical data for the mean number 〈Nt〉 of simultaneous records

both for Polya and for Pearson walks against t1/3 up to t = 105. Both datasets exhibit
a very accurate linear behavior. The slopes A of the least-square fits shown as dashed
lines, and the corresponding values of the tail parameter c according to (3.3), are given
in Table 2 for both kinds of walks.

walk A c

Polya 0.544 0.507

Pearson 0.949 0.290

Table 2. Numerical values of amplitude A of the power-law growth (3.3) of mean
number of simultaneous records, as extracted from the data shown in Figure 9,
and of corresponding tail parameter c for Polya and Pearson walks.
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Figure 9. Full curves: numerical data for mean number 〈Nt〉 of
simultaneous records for Polya and Pearson walks (see legend) against t1/3

up to t = 105. Dashed lines (slightly displaced for a better readability):
least-square fits of data for t > 103.

At variance with the situation of diagonal records (see Section 2.3.2), data on
the full distribution of the number of simultaneous records for Pearson walks (not
shown) do not hint at any measurable difference between the tail parameter c0 of the
distribution of the first hitting time (see (2.37)) and the tail parameter c of late hitting
times, entering asymptotic results from renewal theory.

3.3. Location of current simultaneous record

In this section we investigate properties of the location Rt = (Xt, Y t) of the current
simultaneous record at a fixed large time t. Here again, the emphasis will be on
asymptotic results at large times, and we consider first the Polya walk, for which the
problem of records exactly amounts to a renewal process. For a given walk, we have
(see (3.1))

Tt = T(Nt) = τ1 + · · ·+ τNt
,

Xt = X(Nt) = x1 + · · ·+ xNt
,

Y t = Y(Nt) = y1 + · · ·+ yNt
. (3.4)

The number of terms in each sum is the number Nt of records at time t.
At large times, the typical temporal increment scales as τ ∼ t/〈Nt〉 ∼ t2/3, and

the typical spatial increment scales as x ∼ τ1/2 ∼ t1/3. All increments are typically
large, so that the spatial increments xn and yn can be estimated by means of (2.16),
with D = 1/4 (see (1.2)). More precisely: if the walker hits the horizontal part of the
boundary of the quadrant, we have xn ≈ √

τn ξn, where ξn is distributed according
to (2.17), with θ = 1/3, whereas yn = 1 is negligible; if the walker hits the vertical
part of the boundary, we have yn ≈ √

τn ξn, whereas xn = 1 is negligible. Both events
are related to each other by symmetry. In particular, they are equally probable. The
event where xn = yn = 1 has negligible weight. All in all, we have{

xn ≈ √
τn ξn, yn ≈ 0 with prob. 1/2,

xn ≈ 0, yn ≈ √
τn ξn with prob. 1/2.

(3.5)
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Diffusive scaling implies the asymptotic forms

Xt ≈ U
√
t, Y t ≈ V

√
t, (3.6)

where the reduced variables U and V are distributed according to some non-trivial
symmetric joint distribution fU,V (U, V ). This distribution is again expected to be
universal. In order to investigate it, we introduce the characteristic function

B(p, q, t) =
〈
e−pXt−qY t

〉
. (3.7)

Using (3.4) and (3.5), the above definition can be recast as

B(p, q, t) =

〈
Nt∏

n=1

b(p, q, τn)

〉
, (3.8)

with

b(p, q, τ) =
1

2

〈
e−p

√
τξ + e−q

√
τξ
〉

=
1

2

∫ ∞

0

fξ(ξ)
(
e−p

√
τξ + e−q

√
τξ
)
dξ. (3.9)

The quantity B(p, q, t) is therefore a multiplicative observable of the form (A.16),
investigated in Appendix A. A comparison with (2.45) (with σ = 0) yields

B̂(p, q, s) ≈ 2

s(φ(y) + φ(z))
, y =

p√
s
, z =

q√
s
. (3.10)

In the present situation (θ = 1/3), the scaling function φ(ζ) obeys the equation
of a so-called unicursal cubic (see (B.12)), i.e.,

ζ2 = (φ − 1)2(φ+ 2). (3.11)

Its power-law expansion near ζ = 0 reads

φ(ζ) = 1 +
ζ√
3
− ζ2

18
+

5ζ3

216
√
3
− ζ4

243
+

77ζ5

31104
√
3
− 7ζ6

13122
+ · · ·(3.12)

At variance with the case of diagonal records, we have not been able to derive
from (3.10) a closed-form expression for the joint distribution fU,V (U, V ). The joint
moments

µm,n = 〈UmV n〉 (3.13)

can however be investigated as follows. The characteristic function B(p, q, t) and its
Laplace transform read

B(p, q, t) ≈
∞∑

m,n=0

(−p)m

m!

(−q)n

n!
t(m+n)/2 µm,n,

B̂(p, q, s) ≈
∞∑

m,n=0

(−p)m

m!

(−q)n

n!

Γ(1 + (m+ n)/2)

s1+(m+n)/2
µm,n. (3.14)

The expression (3.10) therefore amounts to

2

φ(y) + φ(z)
=

∞∑

m,n=0

(−y)m

m!

(−z)n

n!
Γ(1 + (m+ n)/2)µm,n. (3.15)
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Using (3.12) to expand the left-hand side of (3.15) as a bivariate power series, we
obtain the first few joint moments of U and V :

〈U〉 = 〈V 〉 = 1√
3π

,

〈U2〉 = 〈V 2〉 = 2

9
, 〈UV 〉 = 1

6
,

〈U3〉 = 〈V 3〉 = 35

54
√
3π

, 〈U2V 〉 = 〈UV 2〉 = 11

27
√
3π

, (3.16)

〈U4〉 = 〈V 4〉 = 20

81
, 〈U3V 〉 = 〈UV 3〉 = 59

432
, 〈U2V 2〉 = 37

324
.

The mean coordinates of the current simultaneous record, 〈Xt〉 = 〈Y t〉 ≈√
t/(3π), are

√
3 times smaller than the mean absolute coordinates of the walker

at time t, 〈|Xt|〉 = 〈|Yt|〉 ≈
√
t/π.

The reduced coordinates U and V of simultaneous records are significantly
correlated. Their correlation coefficient indeed reads

C =
〈UV 〉c
〈U2〉c

=
3(π − 2)

2(2π − 3)
≈ 0.521563. (3.17)

3.4. Angular distribution of current simultaneous record

It can be expected on intuitive grounds that simultaneous records tend to cluster near
the diagonal, rather than being uniformly distributed over the quadrant. This picture
is corroborated by the large value of the correlation coefficient C (see (3.17)).

In order to further elaborate in this direction, we consider the angular distribution
of simultaneous records, i.e., the distribution of the polar angle Φt, such that the ratio
of the coordinates of the current simultaneous record at time t is parametrized as

λt =
Y t

Xt

= tanΦt (0 < Φt < π/2). (3.18)

The distribution of the ratio λt is studied in Appendix C and given by (C.6), i.e.,

fλt
(λt) = −

∫
dq

2πi

∂B(p, q, t)

∂p

∣∣∣∣
p=−λtq

. (3.19)

In the scaling regime of large times, the expression (3.10) demonstrates that
B(p, q, t) is asymptotically a function of P = p

√
t and Q = q

√
t, so that (3.19)

becomes independent of t. This is in agreement with the scaling law (3.6), implying
that λt approaches

λ =
V

U
= tanΦ (3.20)

at large times. The ratio λ and the polar angle Φ are therefore expected to have
non-trivial asymptotic distributions, related to each other as

fΦ(Φ) =
fλ(tanΦ)

cos2 Φ
. (3.21)

The symmetry (C.7), i.e.,

λfλ(λ) =
1

λ
fλ

(
1

λ

)
, (3.22)



On sequences of records generated by planar random walks 21

translates to the expected symmetry

fΦ(Φ) = fΦ(π/2− Φ). (3.23)

From a quantitative viewpoint, using the scaling law (3.10) valid at large times,
we can recast (3.19) into the form

λfλ(λ) = 2

∫
dz

2πi

φ′(z)

(φ(z) + φ(−λz))2
, (3.24)

where the accent denotes a derivative.
For generic values of the ratio λ, setting θ = 1/3 and γ = (π − 3iα)/2 in (B.9),

with α real, we obtain the following hyperbolic parametrization

z = 2i sinh
3α

2
, φ = coshα+ i

√
3 sinhα (3.25)

of the function φ(z) when z runs over the imaginary axis. This yields after some
algebra the following integral representation of fλ(λ), which is suitable for a numerical
evaluation:

λfλ(λ) =
4
√
3

π

∫ ∞

0

N(α)

D(α)2
dα, (3.26)

with

N(α) = (4 coshα+ coshβ)(1 + sinhα sinhβ)

− coshα(2 cosh2 α+ cosh2 β),

D(α) = (coshα+ coshβ)2 + 3(sinhα− sinhβ)2. (3.27)

The dependence of the above result on the ratio λ is entirely encoded in the definition
of the implicit function β(λ, α), such that

sinh
3β

2
= λ sinh

3α

2
. (3.28)

For λ = 1, i.e., Φ = π/4, we have β = α. This is the only situation where the
integral (3.26) is elementary, yielding

fλ(1) =

√
3

4
, fΦ(π/4) =

√
3

2
. (3.29)

In the regime where the ratio λ is large, the most efficient route to derive the tail of
fλ(λ) consists in coming back to (3.24), using the asymptotic form φ(−λz) ≈ (−λz)2/3,
and changing variable from z to φ. We thus obtain

fλ(λ) ≈
2

λ7/3

∫
dφ

2πi
(φ+ 2)−2/3(1 − φ)−4/3

≈ 2
√
3

πλ7/3

∫ ∞

1

(φ+ 2)−5/3(φ − 1)−1/3 dφ

︸ ︷︷ ︸
1/2

, (3.30)

where the second integral is derived from the first one by performing an integration
by parts and folding the contour onto the real axis. We thus obtain the power-law
estimates

fλ(λ) ≈
√
3

π
λ1/3 (λ → 0),

fλ(λ) ≈
√
3

π
λ−7/3 (λ → ∞), (3.31)
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fΦ(Φ) ≈
√
3

π
Φ1/3 (Φ → 0),

fΦ(Φ) ≈
√
3

π
(π/2− Φ)1/3 (Φ → π/2). (3.32)

Figure 10 shows the distribution of the polar angle Φ of the current record of
Polya (red) and Pearson (blue) walks at time t = 105. Each dataset contains 50 bins.
Every second bin of each dataset is plotted alternatively. Both histograms are in very
good agreement with the asymptotic theoretical prediction fΦ(Φ) (see (3.21), (3.26)),
shown as a full curve. Corrections to scaling are too small to be detected.

0 0.2 0.4 0.6 0.8 1
(2/π)Φ
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Figure 10. Symbols: histogram plots of distribution of polar angle Φ of
current simultaneous record of Polya and Pearson walks (see legend) at
time t = 105. Full black curve: asymptotic theoretical prediction fΦ(Φ)
(see (3.21), (3.26)).

4. Radial records

4.1. General analysis

This section is devoted to the statistics of radial records, shown as green symbols
in Figure 1. At variance with diagonal and simultaneous records, investigated in
Sections 2 and 3, radial records do not admit any recursive construction involving the
hitting of translated copies of a target. In other words, there is no underlying simple
renewal process.

The following analysis is therefore partly heuristic. Consider isotropic random
walks consisting of discrete steps of unit length, in any dimension d ≥ 2. Numerical
simulations will be performed for Polya walks (simple random walks on the hyper-
cubic lattice) and Pearson walks (steps having unit length and uniformly random
orientations). Both kinds of walks obey 〈R2

t 〉 = t, so that their diffusion coefficient
reads

D =
1

2d
. (4.1)

Let R(n) be the positions of the walker at the successive radial records, R(n) = |R(n)|
the corresponding radii, and T(n) the corresponding epochs. In other words, R(n+1) is
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the first position of the walker which lies outside the sphere with radius R(n) centered
at the origin. For walks made of unit steps, we have

0 < R(n+1) −R(n) ≤ 1 (4.2)

in full generality, with formally R0 = 0. For both kinds of walks, we have R(1) = 1

and T(1) = 1. For Polya walks we have either R(2) = 2 or R(2) =
√
2, whereas T(2) is

an even integer, as the hypercubic lattice is bipartite in any dimension. For Pearson
walks, R(2) can already take any value between 1 and 2.

For a fixed time t, the number N
(R)
t of simultaneous records is denoted as Nt for

short throughout Section 4. The radius

Rt = R(Nt) (4.3)

of the current radial record is nothing but the largest radius reached by the walk up
to time t.

At large times, the radius Rt = |Rt| of the walk becomes the radius of a d-
dimensional Brownian motion. The latter process is known as a Bessel process of
order ν = (d− 2)/2. The largest radius Rt becomes the maximum of that process up
to time t. Diffusive scaling implies

Rt ≈ S
√
t, Rt ≈ U

√
t. (4.4)

The reduced variables S (associated with the radius of a generic point of the walk)
and U (associated with the current maximal radius of the walk) have universal
distributions, which only depend on dimension d. The distribution of S is simply
that of the radial part of an isotropic d-dimensional Gaussian vector, normalized in
accordance with (4.1). This reads

fS(S) =
2(d/2)d/2

Γ(d/2)
Sd−1e−(d/2)S2

. (4.5)

We have in particular

〈S〉 =
√

2

d

Γ((d+ 1)/2)

Γ(d/2)
, 〈S2〉 = 1. (4.6)

The distribution of the reduced variable U is non-trivial. It is known in the form of
an infinite series involving the zeros of the Bessel function J0 in two dimensions [35,
p. 280], and more generally Jν in higher dimensions [35, p. 369].

The statistics of the number Nt of radial records can be estimated as follows. The
difference between the radii of any two successive records ought to average to some
microscopic length (see (4.2))

a = lim
n→∞

〈
R(n+1) −R(n)

〉
. (4.7)

It is therefore legitimate to expect that, for a given walk, the number Nt of records
and the largest radius Rt are asymptotically proportional to each other, as

Rt ≈ aNt. (4.8)

We thus predict the scaling laws

Nt ≈
U

a

√
t, (4.9)

and in particular

〈Nt〉 ≈ A
√
t, (4.10)
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with

A =
〈U〉
a

. (4.11)

The square-root growth law (4.10) is well-known in the one-dimensional case (see [11]).
It was announced in (1.3) in the two-dimensional situation. It is actually super-
universal, in the sense that it holds in any spatial dimension. This finding corroborates
earlier numerical results in one, two and three dimensions [12].

To close, let us stress that the distribution of the random variable U and its
mean value 〈U〉 entering the numerators of (4.9) and (4.11) are universal, as they only
depend on dimension d, whereas the distance a entering the denominators depends a
priori on the microscopic structure of the walk.

4.2. Two dimensions

We begin by illustrating the above general results in the two-dimensional case. In this
situation, the distribution of U reads [35, p. 280]

fU (U) =
1

U3

∞∑

k=1

jk
J1(jk)

e−j2
k
/(4U2), (4.12)

where jk are the zeros of the Bessel function J0, growing as jk ≈ (k − 1/4)π, whereas
J1(jk) are the values of the Bessel function J1 at these zeros. We have in particular

〈U〉 = 1√
π

∫ ∞

0

dx

I0(x)
≈ 1.175338, (4.13)

〈U2〉 = 1

2

∫ ∞

0

xdx

I0(x)
≈ 1.534414, (4.14)

where I0 is the modified Bessel function. These numbers are to be compared with
〈S〉 = √

π/2 ≈ 0.886226 and 〈S2〉 = 1 (see (4.6)).
Figure 11 shows numerical data for the mean number 〈Nt〉 of radial records of

Polya and Pearson planar walks, plotted against
√
t up to t = 105. Both datasets

exhibit a very accurate square-root growth law. The slopes A of the least-square
fits shown as dashed lines, and the corresponding values of the distance a according
to (4.11), (4.13), are given in Table 3 for both kinds of walks.

walk A a

Polya 2.10 0.559

Pearson 2.35 0.500

Table 3. Numerical values of amplitude A of power-law growth (4.10) of mean
number of radial records for Polya and Pearson planar walks, as extracted from
the data shown in Figure 11, and corresponding values of distance a according
to (4.11), (4.13).

Figure 12 shows the distribution of the number of radial records, pn(t) =
Prob{Nt = n}, for Polya walks with t = 104 steps. Numerical data (symbols) are
in very good agreement with the distribution (4.12) of the rescaled variable U (full
curve). The constant of proportionality between Nt and U has been fixed by using the
true finite-time mean record number 〈Nt〉 ≈ 205.2. This procedure is numerically more
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Figure 11. Full curves: numerical data for mean number 〈Nt〉 of radial
records for Polya and Pearson planar walks (see legend) against

√
t up to

t = 105. Dashed lines (slightly displaced for a better readability): least-
square fits of data for t > 103.

accurate than using the asymptotic growth law (4.10). Corrections to scaling are again
very small (of the order of one percent). This plot provides a strong corroboration of
the expected law of proportionality (4.8).
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Figure 12. Full distribution of number of radial records, pn(t) =
Prob{Nt = n}, for planar Polya walks at time t = 104. Black symbols:
numerical data. Full red curve: distribution (4.12) of rescaled variable U

(see text).

For small values of U , the distribution fU (U) is dominated by the first term
in (4.12), i.e.,

fU (U) ≈ c

U3
e−j21/(4U

2). (4.15)

with j1 ≈ 2.404825 and c = j1/J1(j1) ≈ 4.632258. This exponentially small left tail is
to be contrasted with the distribution of the number of records for renewal processes
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(see (2.30), (2.31)). In that situation, the distribution of the rescaled variable X is
non-zero —and in fact maximal— at X = 0 for all θ < 1/2.

4.3. Higher dimensions

The general setting exposed in Section 4.1 and illustrated in two dimensions in
Section 4.2 remains valid in any dimension. The aim of this section is to emphasize a
few simplifying features at large dimensions.

First of all, as dimension d increases, the asymptotic distribution of the radius Rt

becomes more and more narrow. We have indeed (see (4.6))

〈S2〉
〈S〉2 =

d

2

(
Γ(d/2)

Γ((d+ 1)/2)

)2

= 1 +
1

2d
+

1

8d2
+ · · · (4.16)

It is then clear that the distribution of the largest radius Rt has the same property.
In other words, as dimension d increases, both rescaled variables S and U converge
to the same deterministic value, which is unity, as 〈S2〉 = 1 in any dimension. This
reads formally

lim
d→∞

fS(S) = δ(S − 1), lim
d→∞

fU (U) = δ(U − 1). (4.17)

Let us now turn to the geometrical arrangement of radial records. Figure 1
suggests that these records, shown as green symbols, occur in long worm-like sequences
of consecutive points, interrupted by scarce non-local jumps. In order to elaborate
on this observation, we introduce the angular correlation C(t) between the two most
recent records at time t, namely

C(t) =
〈
cosΘ

(
R(Nt),R(Nt−1)

)〉
=

〈
R(Nt) ·R(Nt−1)

R(Nt) R(Nt−1)

〉
(4.18)

(conditioned on having Nt ≥ 2). Figure 13 shows the angular correlation C(t) for
Polya walks in dimensions d = 2, 4, 8 and 16 (see legend), plotted against t−1/2 up
to t = 104. The dashed lines demonstrate a slow convergence of C(t) to unity, of the
form

C(t) ≈ 1− B√
t
. (4.19)

The amplitude B of the leading correction is non-universal, i.e., depends on the kind
of walk. Both for Polya walks (Figure 13) and for Pearson walks (not shown), B
is observed to decay slowly to zero, roughly proportionally to d−1/2, as dimension
increases.

The following picture therefore emerges in the regime of large spatial dimensions.
Radial records occur in longer and longer worm-like sequences. The effect of non-local
jumps between these sequences becomes negligible in large dimensions, as testified
by the fall-off of the correction amplitude B. The mean distance a between the
radii of successive records can therefore be estimated by considering an effective one-
dimensional problem. The distances

rn = X(n+1) −X(n) (4.20)

between successive records of one-dimensional random walks have been investigated
recently [11, 36]. They admit a non-trivial stationary distribution fr(r), depending
on the whole step distribution fx(x) defining the random walk. For a symmetric
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Figure 13. Angular correlation C(t) between two most recent radial records
for Polya walks in dimensions d = 2, 4, 8 and 16 (see legend) against t−1/2

up to t = 104. Full curves: numerical data. Dashed lines: linear fits
demonstrating asymptotic behavior (4.19).

continuous distribution such that 〈x2〉 = 2D is convergent, their mean value 〈r〉 has a
simple universal expression [9, ch. XVIII.5]:

〈r〉 =
√
D. (4.21)

This result can be taken as a proxy for the distance a. Using (4.1), this reads

a ≈ 1√
2d

. (4.22)

Inserting this estimate into (4.11), and using 〈U〉 ≈ 1 (see (4.17)), we obtain the
asymptotic expression

A ≈
√
2d (4.23)

for the amplitude A of the growth law (4.10) of the mean number 〈Nt〉 of radial
records. This prediction is expected to hold to leading order as d ≫ 1 for all walks
consisting of unit steps.

Figure 14 shows the amplitudes A of the growth law of the mean number 〈Nt〉
of radial records of Polya and Pearson walks in all dimensions up to d = 20. Just
as in the two-dimensional situation (Figure 11), amplitudes have been extracted by
means of least-square fits of data in the range 103 < t < 105. These amplitudes
are plotted against

√
d. Both datasets corroborate the scaling law (4.23) at large

dimension, shown as a black straight line with slope
√
2. The difference between the

amplitudes A for Pearson and Polya walks is observed to decrease rapidly as a function
of dimension and to reach a non-zero limit ∆A ≈ 0.06. This observation suggests that
the first correction to the prediction (4.23) is finite and non-universal.

5. Discussion

In this paper we have investigated the statistics of various kinds of records associated
with planar random walks. We have chosen three characteristic examples of records
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Figure 14. Symbols: amplitudes A of asymptotic growth law (4.10) of
mean number of radial records for Polya and Pearson walks (see legend)
against

√
d for all dimensions d from 2 to 20. Straight line with slope

√
2:

prediction (4.23) at large dimension.

among many possibilities, namely diagonal, simultaneous and radial records. These
examples are appealing and interesting in several regards. Their definition is simple
and natural, involving only elementary geometrical considerations. The statistics of
these records is varied. The mean numbers of records of each kind grow as power laws
of time, with the simple rational exponents 1/4, 1/3 and 1/2.

The investigation of diagonal and simultaneous records of Polya walks, performed
in Sections 2 and 3, relies upon the underlying renewal structure of the successive
hitting times and locations of translated copies of a fixed target. In this sense, this
work represents a two-dimensional extension of the analysis made by Feller of ladder
points, i.e., records for one-dimensional random walks. Renewal theory has allowed us
to derive by analytical means a vast panoply of results at large times, including the
full statistics of the numbers of diagonal and simultaneous records (Section 2.3.2), the
joint law of the epoch and location of the current diagonal record (Section 2.4), and
the angular distribution of the current simultaneous record (Section 3.4). All these
asymptotic results are universal, at least among the class of walks consisting of unit
steps, whereas most of them extend to the whole class of isotropic diffusive walks.

Radial records of isotropic random walks in any spatial dimension d have been
investigated in Section 4. This study is partly heuristic, and thus different in spirit
from the previous ones, for the mere reason that the sequence of radial records does not
follow a renewal scheme. The mean number of radial records has been shown to follow a
superuniversal law, growing as

√
t irrespective of dimension. The associated amplitude

becomes itself universal at large spatial dimensions, growing as
√
2d, irrespective of

the kind of diffusive walk under consideration, at least for walks consisting of unit
steps. The full statistics of the number of records has also been characterized.

The present work could be further extended in a great many directions. As
stressed in Section 1, a whole breadth of different records can be attached to a planar
random walk such as the Polya walk on the square lattice, besides the three cases
we have chosen to explore in detail. Moreover, besides the isotropic diffusive walks
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considered in this work, many other types of random walks could be considered a
priori, including anisotropic diffusive walks, walks possessing a drift velocity, Lévy
walks whose step distribution has an infinite variance, and various kinds of walks with
correlated steps.

To close, let us discuss how our main findings concerning isotropic walks are
changed in higher spatial dimensions d. The case of radial records has been studied
in Section 4 and summarized just above. The statistics of diagonal and simultaneous
records exhibits a more interesting dependence on d. The definitions of both kinds
of records extend in a straightforward way to Polya walks in any dimension, e.g. on
hypercubic lattices, as well as the reduction of the problem to renewal processes. Now,
let us remind the general fact that two objects of dimensions d1 and d2 embedded in
d-dimensional space intersect easily if d < d1 + d2, as their intersection is typically an
object of dimension δ = d1 + d2 − d.§ In the opposite case (d > d1 + d2), the objects
intersect either scarcely or not at all. The situation where δ = 0, i.e., d = d1 + d2,
is the marginal one. Within this setting, let us first consider diagonal records. The
target is the main diagonal of the lattice in the direction (1, 1, . . . , 1). The walk has
d1 = 2, as a consequence of diffusive scaling, whereas the target has d2 = 1, so that
the marginal situation is d = 3. The corresponding survival probability, which decays
as S(t) ∼ t−1/4 for d = 2, can indeed be argued to decay as S(t) ∼ (ln t)−1/2 for
d = 3, and to reach a non-zero escape probability S∞ for d ≥ 4 (see [28, 29, 37]). As a
consequence, the mean number of records grows as 〈Nt〉 ∼ 1/S(t) ∼ (ln t)1/2 for d = 3,
whereas for d ≥ 4 the total number N∞ of records of an infinitely long walk is finite,
and geometrically distributed with 〈N∞〉 = (1 − S∞)/S∞. The case of simultaneous
records is equally interesting. There, the target is an orthant, or hyperoctant, whose
tip is initially located at the point (1, 1, . . . , 1). The walk still has d1 = 2, whereas
the target now has d2 = d, so that both objects intersect easily in any dimension.
The corresponding survival probability indeed decays as a universal power law of
the form S(t) ∼ t−θ(d) in any spatial dimension d, where the survival exponent θ(d)
only depends on d [28]. We have θ(1) = 1/2, θ(2) = 1/3, θ(3) ≈ 0.22708 [38], and
θ(d) is known to become exponentially small for large d [28, 29]. Thus, in any spatial
dimension d, the mean number of records grows as 〈Nt〉 ∼ tθ(d), and its full distribution
is universal and given by renewal theory. Table 4 summarizes the above discussion.

Records d = 2 d = 3 d ≥ 4

Diagonal t1/4 (ln t)1/2 finite

Simultaneous t1/3 tθ(3) tθ(d)

Radial t1/2 t1/2 t1/2

Table 4. Growth laws of numbers N
(D)
t , N

(S)
t , and N

(R)
t of diagonal,

simultaneous, and radial records of isotropic random walks in dimension d ≥ 2.
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Appendix A. Additive and multiplicative observables in renewal theory

This Appendix is devoted to the evaluation of additive and multiplicative observables
attached to a renewal process in continuous time. Notations are consistent with those
used in the body of the paper. In particular, renewal events are referred to as records.
Within this setting, many time-dependent quantities can be determined explicitly in
Laplace space. Hereafter we adopt the line of thought and the notations of our earlier
work [31]. Let the temporal increments τn be iid variables drawn from a continuous
distribution with density fτ (τ). For a given time t, the number of records is the unique
integer Nt such that T(Nt) ≤ t < T(Nt+1), with the definition

T(n) = τ1 + · · ·+ τn. (A.1)

The number Nt of records is random, as it depends on the whole renewal process {τn}.

Additive observables

An additive observable is a quantity of the form

A(t) =

〈
Nt∑

n=1

a(τn)

〉
, (A.2)

where a(τ) is an arbitrary given function of the temporal increment τ . The definition
of a(τ) may involve averaging over other random variables, as long as they are
statistically independent of τ . A renewal process endowed with an additive observable
of this kind is referred to as a renewal reward process [19]. Continuous-time random
walks [39] belong to this class of processes.

The quantity A(t) can be evaluated as follows. We have

A(t) =

∞∑

N=0

〈
N∑

n=1

a(τn)1(T(N) < t < T(N) + τN+1)

〉
, (A.3)

where N is a shorthand for Nt and 1(·) denotes the indicator function of an event. In
Laplace space, this translates to

Â(s) =
∞∑

N=0

〈
N∑

n=1

a(τn) e
−sT(N)

1− e−sτN+1

s

〉
. (A.4)

Averages over the iid τ variables boil down to two simple integrals, i.e.,

f̂τ (s) =

∫ ∞

0

fτ (τ)e
−sτ dτ, gA(s) =

∫ ∞

0

fτ (τ)a(τ)e
−sτ dτ. (A.5)

We thus obtain

Â(s) =
gA(s)

s(1 − f̂τ (s))
. (A.6)

The simplest of all additive observables, corresponding to the choice

a(τ) = 1, (A.7)

yields A(t) = 〈Nt〉, the mean number of records at time t. We have then gA(s) = f̂τ (s),
so that (A.6) becomes (2.24), as should be.

Consider now the power-law observable

a(τ) = τβ , (A.8)
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and a distribution fτ (τ) with a power-law tail of the form

fτ (τ) ≈
c

τθ+1
. (A.9)

The range of exponents of interest for the present purpose is

0 < θ < 1, β > θ. (A.10)

For instance, diagonal and simultaneous records respectively correspond to θ = 1/4
and θ = 1/3, whereas the exponent β = 1/2 dictated by diffusive scaling provides a
toy model for the abscissa of the current record. All over the parameter range (A.10),
we obtain the estimates

1− f̂τ (s) ≈
Γ(1− θ)

θ
c sθ, gA(s) ≈ Γ(β − θ)c sθ−β, (A.11)

for s → 0, so that

Â(s) ≈ θΓ(β − θ)

Γ(1− θ)
s−β−1. (A.12)

We thus predict a power-law growth of the form

A(t) ≈ θΓ(β − θ)

Γ(1 − θ)Γ(β + 1)
tβ . (A.13)

This result is universal, in the sense that it only involves the exponents θ and β.
Non-universal asymptotic results show up outside the self-similar range (A.10).

Let us just give one example. For 0 < β < θ < 1, the estimate (A.11) for gA(s) is to
be replaced by the non-universal constant

gA(0) = a =

∫ ∞

0

fτ (τ)a(τ)dτ, (A.14)

so that we have

A(t) ≈ a 〈Nt〉 ≈
a

c

sinπθ

π
tθ. (A.15)

At variance with (A.13), this result is non-universal, as it involves the ratio of two
microscopic constants a and c.

Multiplicative observables

A multiplicative observable is a quantity of the form

B(t) =

〈
Nt∏

n=1

b(τn)

〉
, (A.16)

where b(τ) is an arbitrary given function of the temporal increment τ . Here again,
the definition of b(τ) may involve averaging over other random variables, as long as
they are statistically independent of τ .

The quantity B(t) can be evaluated as follows. We have

B(t) =

∞∑

N=0

〈
N∏

n=1

b(τn)1(T(N) < t < T(N) + τN+1)

〉
. (A.17)

In Laplace space, this translates to

B̂(s) =

∞∑

N=0

〈
N∏

n=1

b(τn) e
−sT(N)

1− e−sτN+1

s

〉
. (A.18)
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Averages over the iid τ variables again boil down to two simple integrals, namely f̂τ (s)
and

hB(s) =

∫ ∞

0

fτ (τ)b(τ)e
−sτ dτ. (A.19)

We thus obtain

B̂(s) =
1− f̂τ (s)

s(1− hB(s))
. (A.20)

The simplest of all multiplicative observables, corresponding to the choice

b(τ) = z, (A.21)

where z is an arbitrary constant, yields

B(t) = 〈zNt〉 =
∞∑

n=0

pn(t)z
n, (A.22)

the generating function of the probabilities pn(t). We have then hB(s) = zf̂τ(s), so
that (A.20) reads

B̂(s) =
1− f̂τ (s)

s(1− zf̂τ (s))
. (A.23)

The expression (2.21) is recovered by expanding the above result as a power series
in z, as should be.

Appendix B. Derivation of Equation (2.49)

This Appendix is devoted to the derivation of (2.49) for an arbitrary survival exponent
in the range 0 < θ < 1/2. The essential part of the derivation consists in evaluating
the expression (see (2.48))

1− hB(p, s) ≈ −
∫ ∞

0

S(τ)dτ
d

dτ

(
e−sτ

∫ ∞

0

fξ(ξ)e
−p

√
τξ dξ

)
. (B.1)

Using the power-law tail (2.7) of S(τ) and the distribution (2.17) of ξ, this reads

1− hB(p, s) ≈
2c

Γ(θ + 1)

∫ ∞

0

τ−θ e−sτ dτ

×
∫ ∞

0

ξ2θ−1 e−p
√
τξ−ξ2

(
s+

pξ

2
√
τ

)
dξ. (B.2)

Changing variables from τ to u = sτ and from ξ to v = ξ
√
u, and introducing the

dimensionless variable z = p/
√
s, we obtain

1− hB(p, s) ≈
2c sθ

Γ(θ + 1)

∫ ∞

0

u−2θ e−u du

×
∫ ∞

0

v2θ−1 e−zv−v2/u
(
1 +

zv

2u

)
dv. (B.3)

The integration over u can be performed first, yielding

1− hB(p, s) ≈
2c sθ

Γ(θ + 1)

∫ ∞

0

e−zv(2K1−2θ(2v) + zK−2θ(2v))dv, (B.4)
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where Kν is the modified Bessel function. The integration over v can also be worked
out. We thus obtain

1− hB(p, s) ≈
2c sθ

Γ(θ + 1)

π cos 2θγ

sin 2πθ
, (B.5)

with

z =
p√
s
= 2 cosγ. (B.6)

Inserting the estimates (2.47) and (B.5) into (2.46), we obtain

B̂(σ, p, s) ≈ (1 + y)−θ

s φ((1 + y)−1/2z)
, (B.7)

where the scaling variables y and z read

y =
σ

s
, z =

p√
s
, (B.8)

and the scaling function φ(ζ) is given in parametric form by

φ =
cos 2θγ

cosπθ
, ζ = 2 cosγ. (B.9)

The point ζ = 0 corresponds to γ = π/2, so that φ(0) = 1, as should be.
Whenever θ is rational, the scaling function φ(ζ) is an algebraic function. More

precisely, for θ = p/q in irreducible form, with p < q/2 (since 0 < θ < 1/2), the
algebraic degree of φ is q (if q is odd) or q/2 (if q is even).

There is one single case in degree 2. This is θ = 1/4, corresponding to diagonal
records investigated in Section 2. We have

ζ = 2(φ2 − 1), (B.10)

hence the explicit expression

φ(ζ) =

(
1 +

ζ

2

)1/2

. (B.11)

Two cases pertain to degree 3. The first one is θ = 1/3, corresponding to
simultaneous records investigated in Section 3, where we obtain the equation of a
cubic curve:

ζ2 = (φ − 1)2(φ+ 2). (B.12)

This curve is said to be unicursal, as it admits the rational parametrization

φ = u2 − 2, ζ = u(u2 − 3). (B.13)

The second case in degree 3 is θ = 1/6, where we have

ζ = 3
√
3φ(φ2 − 1). (B.14)

It is remarkable that the two situations met in Sections 2 and 3 of the body of
this paper are among the first three cases of the above classification.
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Appendix C. Law of the ratio of two correlated random variables

In this Appendix we investigate the distribution fλ(λ) of the ratio

λ =
Y

X
(C.1)

of two positive random variables with an arbitrary joint distribution.
• Consider first the case where the density fX,Y (X,Y ) of the joint distribution is
known. We have then

fλ(λ) =

∫ ∞

0

dX

∫ ∞

0

fX,Y (X,Y ) δ

(
λ− Y

X

)
dY

=

∫ ∞

0

X fX,Y (X,λX)dX. (C.2)

• Consider now the case where only the bivariate characteristic function

B(p, q) =
〈
e−pX−qY

〉
(C.3)

of the joint distribution is known. We have then

fX,Y (X,Y ) =

∫
dp

2πi

∫
dq

2πi
B(p, q)epX+qY , (C.4)

and so (formally)

fλ(λ) =

∫
dp

2πi

∫
dq

2πi
B(p, q)

∫ ∞

0

X e(p+λq)X dX. (C.5)

Let us assume for a while that the density fX,Y (X,Y ) falls off exponentially in both
variables, so that B(p, q) is analytic when Re p and Re q are both larger than −a for
some positive a. We can therefore choose Re p and Re q to be small and negative. The
integral over X then reads 1/(p + λq)2, whereas the integral over p is given by the
residue at the double pole at p = −λq. We thus obtain

fλ(λ) = −
∫

dq

2πi

∂B(p, q)

∂p

∣∣∣∣
p=−λq

. (C.6)

The above expression makes sense for an arbitrary joint distribution fX,Y (X,Y ). The
integration contour can indeed be chosen to be the imaginary axis, so that (C.6) only
involves the bivariate Fourier transform of fX,Y (X,Y ).

Whenever the variablesX and Y are exchangeable, i.e., fX,Y (X,Y ) = fX,Y (Y,X)
or B(p, q) = B(q, p), the product

λfλ(λ) =
1

λ
fλ

(
1

λ

)
(C.7)

is invariant under the change of λ into its inverse.
Let us illustrate the above by considering the example where X and Y are two

identical independent Lévy stable variables with index in the range 0 < θ < 1 and a
suitable chosen scale factor, such that

B(p, q) = e−pθ−qθ , (C.8)

Equation (C.6) then reads

fλ(λ) = θ

∫
dq

2πi
(−λq)θ−1 e−qθ−(−λq)θ . (C.9)
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Setting q = iy and dealing separately with the ranges y > 0 and y < 0, some algebra
leads us to the expression

fλ(λ) =
sinπθ

πλ

1

λθ + λ−θ + 2 cosπθ
. (C.10)

We have thus recovered the celebrated Lamperti law [40]. The above expression obeys
the symmetry (C.7), as should be.
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