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the random acceleration process

Claude Godrèche and Jean-Marc Luck
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91191 Gif-sur-Yvette, France

Abstract.
We address the theory of records for integrated random walks with finite

variance. The long-time continuum limit of these walks is a non-Markov process
known as the random acceleration process or the integral of Brownian motion.
In this limit, the renewal structure of the record process is the cornerstone for
the analysis of its statistics. We thus obtain the analytical expressions of several
characteristics of the process, notably the distribution of the total duration of
record runs (sequences of consecutive records), which is the continuum analogue
of the number of records of the integrated random walks. This result is universal,
i.e., independent of the details of the parent distribution of the step lengths.
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1. Introduction

An observation in a time series is called an (upper) record if it is greater than
all previous observations in the series. Two simple situations arise either when
the observations are independent identically distributed (iid) random variables
η1, η2, . . . , ηn, drawn from a given continuous distribution Φ, or when they are the
successive positions of a random walk V1, V2, . . . , Vn built from the previous variables,
with

Vn − Vn−1 = ηn,

hence

Vn = V0 + η1 + · · ·+ ηn, (1.1)

where the number n of steps is a discrete time. The number Mn of records scales as
lnn in the first case, independently of the choice of the step length distribution Φ, and
as
√
n in the second case, again independently of this distribution, if, e.g., the latter

is symmetric.‡
Consider now the integrated random walk X1, X2, . . . , Xn defined as

Xn −Xn−1 = Vn,

or

Xn − 2Xn−1 +Xn−2 = ηn,

hence

Xn = X0 + V1 + · · ·+ Vn. (1.2)

While the Vn process is Markovian, the Xn process does not possess this property.
Nonetheless the couple (Vn, Xn) is Markovian, since at each step its evolution is
entirely determined by the noise ηn, as the following recursion shows

(V0, X0)
η1−→ (V1, X1)

η2−→ (V2, X2)
η3−→ · · ·

The aim of the present work is to investigate the statistics of records for the
integrated random walkXn. We assume henceforward that the step length distribution
Φ is symmetric with finite variance 〈η2〉 = 2D, i.e., such that the random walk Vn
is diffusive, with diffusion coefficient D. For this class of distributions, asymptotic
properties of the random walk Vn and of the integrated random walk Xn are described
by their continuum analogues, Brownian motion, and the integral of Brownian
motion—or random acceleration process—respectively. As will be seen below, the
number Mn of records for the integrated process scales as n. We shall focus our
attention on the exact asymptotic distribution of this number of records, and of related
observables, in the limit of long times.

A sample path of such an integrated random walk Xn is depicted in figure 1 and
the corresponding path of the random walk Vn is depicted in figure 2. These figures
reveal some salient features. In figure 1 full symbols are the successive records of
Xn. Record runs (sequences of consecutive records) begin at a green dot and end
at a red one. In figure 2 red dots are marked at the same epochs as the red dots
of figure 1. They correspond to the beginnings of downcrossing steps. Thus, at red
dots the process (Vn, Xn) almost restarts afresh. This renewal structure is indeed only

‡ Further details and a comprehensive bibliography are presented a little further down in this
introduction.
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Figure 1. A sample path of an integrated random walk Xn defined
according to (1.1), (1.2) with a symmetric Gaussian distribution of steps,
launched from (V0, X0) = (0, 0), up to n = 36. The full symbols are the
successive records of the walk Xn. Record runs (sequences of consecutive
records) begin at a green dot and end at a red one. The number Mn of
records in this example is equal to 19.

approximate, because at red dots the positions of the walker Vn are positive instead
of being exactly zero, as at the starting point V0. However, as we shall see, in the
continuum limit, sections between two red dots become probabilistic replicas of each
other. This observation will constitute the basis of the analysis to come.

Before proceeding, we take a step back and give a brief account of the subject in
order to put this work into context.

A brief survey of the statistics of records

As recalled above, an observation in a time series is called an upper (lower) record if
it is greater (smaller) than all previous observations in the series. The first study of
this topic, for the case of independent observations—that its to say, of iid random
variables—is due to Chandler [1]. His study triggered a number of subsequent
works on records for random observations, either for statistical purposes or aimed
at more theoretical probabilistic investigations. Independently, Rényi, in [2], laid the
foundations of a more theoretical approach to the statistics of records for iid random
variables. The study of records in such a situation grew into a large body of knowledge
now referred to as the classical theory of records [1, 2, 3, 4, 5, 6, 7, 8]. The last of
these references gives an account of the literature on the subject at the turn of the
century.

A basic knowledge of this subject is easy to grasp (see the references above).
Consider again the sequence of iid random variables, η1, η2, . . .. By definition, the
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Vn

Figure 2. Corresponding path of the random walk Vn. Red dots are marked
at the same epochs as the red dots of figure 1. They correspond to the left
endpoints of downcrossing steps, except maybe at the origin.

variable ηn is a record if

ηn > max(η1, . . . , ηn−1),

and the label n is referred to as a record time. The first value η1 is considered as a
record. Since this definition only involves inequalities between the variables ηn, the
statistics of record times is independent of the underlying distribution, provided that
it is continuous. In particular, the occurrence of a record at any time n ≥ 2 has
probability

rn =
1

n
.

Indeed, amongst the n! permutations of η1, . . . , ηn, there are (n − 1)! permutations
where ηn is the largest. In terms of the indicator variables In, equal to 1 if ηn is a
record and to 0 otherwise, the number Mn of records up to time n reads

Mn = I1 + I2 + · · ·+ In, (1.3)

with rn = 〈In〉. Thus§

〈Mn〉 =

n∑
i=1

ri =

n∑
i=1

1

i
≈

n→∞
lnn+ γ,

where γ = 0.577 215 . . . is Euler’s constant. The variance of Mn also scales as lnn,
with unit prefactor, as well as all higher order cumulants. The bulk of the distribution
of Mn has the asymptotic Poissonian form

P(Mn = m) ≈
n→∞

1

n

(lnn)m−1

(m− 1)!
, (1.4)

§ See Appendix A for the notations used in the present work.
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confirming the lnn scaling mentioned earlier.
Records for one-dimensional random walks constitute a second facet of the theory

of records, whose developments ran parallel to and independently from the studies of
records for iid random variables. A remarkable historical coincidence, which seemingly
has gone unnoticed so far, is that the paper of Chandler [1] on records for iid random
variables and the paper by Blackwell [9], which laid the foundations of the study
of records for random walks, were both simultaneously presented for publication in
June 1952. Blackwell introduced the times of occurrence and values of records, ‘aptly
christened the ladder random variables of the random walk ’ by Feller in [10], to quote
Spitzer [11].

As a matter of fact, looking at the occurrences of ‘record values’ in the monographs
of Feller [10, 12], it is found that this terminology refers, on the one hand, as expected,
to the simple situation of iid random variables described above, but also, on the other
hand, to the ladder points of one-dimensional random walks. To quote Feller [12,
Ch. XII], ‘Looking at the graph of a random walk one notices as a striking feature the
points where Sn [the position of the walk after n steps, denoted as Vn above] reaches
a record value, that is, where Sn exceeds all previously attained values S0, . . . , Sn−1.
These are the ladder points (...). The theoretical importance of ladder points derives
from the fact that the sections between them are probabilistic replicas of each other,
and therefore important conclusions concerning the random walk can be derived from
a study of the first ladder point ’. As emphasised by Spitzer [11], it was in connection
with renewal theory that ladder random variables were first studied by Blackwell.
Renewal theory [10, 12, 13, 14] is precisely the cornerstone for the investigation of
the statistics of records—or ladder points—for random walks, as the second sentence
of Feller quoted above suggests, and as is amply detailed in chapters XII and XVIII
of [12].

All the tools necessary to investigate the statistics of records for random walks
are contained in [12]. In a nutshell, the distribution f(n) of waiting times between two
records is given by Sparre Andersen theory [15, 16, 12]. This distribution is universal,
i.e., independent of the parent distribution Φ, provided the latter is continuous and
symmetric. Hence the distribution of the number of records Mn after n steps of the
walk (or in other words the number of renewals up to time n), is universal, too. The
expression of its generating function∑

n≥0

P(Mn = m) zn = f̃(z)m−1
1− f̃(z)

1− z
, (1.5)

(where f̃(z) = 1 −
√

1− z is the generating function of the f(n)) is an immediate
consequence of the renewal structure of the sequence of records (or ladder points)
(see, e.g., [17, § 3], [18], [19, § 3]). From (1.5) the mean number of records ensues
easily,

〈Mn〉 ≈
n→∞

2
√
n√
π
,

as well as the expression of P(Mn = m), whose asymptotic scaling form reads

P(Mn = m) ≈
n→∞

1√
n
g

(
m√
n

)
, g(x) =

e−x
2/4

√
π

(x ≥ 0),

(see, e.g., [12, page 373], [17, § 3], [18], [19, § 3]), confirming the
√
n scaling mentioned

earlier. The number of records can still be expressed as the sum (1.3), however now
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the indicator variables I1, I2, . . . are no longer independent. The probability rn of
occurrence of a record at time n is still equal to 〈In〉, with the explicit expression [19]

rn = q(n) =
1

22n

(
2n

n

)
≈

n→∞

1√
π n

,

where q(n), the probability that the random walk, starting at the initial position
V0, stays below V0 up to step n, is related to the first passage probability f(n) by
f(n) = q(n− 1)− q(n).

More recently, investigations on the theory of records have permeated the physics
community as being part of the broader field of extremal events, of natural interest
in physics. Records can indeed be seen as extremal events monitored in time. We
refer the reader to [19, 20] for an overview of the recent applications of the theory of
records in statistical physics. In particular the theory of records for one-dimensional
random walks has been revisited and enriched in a series of papers in the past two
decades (see [19] and the references therein).

In contrast, to our knowledge, essentially nothing is known so far on the statistics
of records for the integrated random walk or for the random acceleration process.
These processes are known to be appreciably more difficult to study than random
walks. A number of advances have nevertheless been made in the past or more recently
on various aspects of these processes, both in mathematics [21, 22, 23, 24, 25, 26] and
in physics, in particular on first-passage properties, inelastic collapse of particles, time
at which the maximum is reached, statistics of the occupation time, dynamics with
resetting [27, 28, 29, 30, 31, 32, 33] (see the recent review [34] for additional references).

The question of analysing the statistics of records for the integrated random walk
was raised in [19] but left unanswered. It is the purpose of the present work to fill
this gap, at least for diffusive random walks, where the variance of the step lengths is
finite. We start with a summary of our findings.

Summary of the results of the present work

We shall show that for the random acceleration process, which is the continuum
analogue of the integrated random walks defined above, the process of records has
a renewal structure involving an infinite sequence of iid couples of intervals of time
(τn, δn), whose joint law is given in (2.13). As depicted in figure 3, the endpoints of the
time intervals τn (respectively, δn) are marked by green dots (respectively, red dots).
A record run (a sequence of consecutive records) starts at every green dot and stops
at the next red one. This renewal structure—foreshadowed by the discrete process—is
the cornerstone for the analysis that follows. Henceforth we shall call the red dots
renewal events (or renewals for short).

The simplest observable to consider is the number Nt of renewals, or equivalently
of records runs, occurring between 0 and t. The determination of its distribution is a
classic in renewal theory (see, e.g., [12, 17]). In particular its average grows as

〈Nt〉 ≈ A t1/4,
where the exponent 1/4 is the well-known persistence exponent of the random
acceleration process [22, 25, 27], whereas the non-universal prefactor A depends on
the parent distribution Φ, as demonstrated in Table 2.

As previously stated, Mn, the number of records up to time n in the discrete
theory, grows linearly with n. More precisely, its distribution scales as

P(Mn = m) ≈
n→∞

1

n
fR

(m
n

)
, (1.6)
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where the universal scaling function fR is the probability density of the ratio

R = lim
n→∞

Mn

n
= lim
t→∞

St
t
, (1.7)

in which St, the sum of all (finished or not finished) record runs, is the continuum
analogue of Mn. Thus R is the fraction of time during which the process sets a
record. The density fR(x) is an asymmetric U-shaped curve depicted in figure 6,
whose analytic expression is given in (5.13). Its first moment

〈R〉 = r∞ = 1−
√

6

4
= 0.387 627 . . . (1.8)

is a universal number, whose natural interpretation is the limit, when the discrete
time n → ∞, of the probability rn of occurrence of a record at n, or probability of
record breaking, defined as for the cases of iid random variables or random walks,

rn = P(Xn > max(X1, . . . , Xn−1)). (1.9)

In other words,

〈R〉 = lim
n→∞

〈Mn〉
n

= lim
n→∞

1

n

n∑
i=1

ri = r∞. (1.10)

As a consequence, the mean number of records grows linearly as

〈Mn〉 ≈
n→∞

n r∞.

We complement this study by the determination of the distributions of the epochs TNt ,

of the last renewal before t, and T̃Nt
, of the last dot before t, regardless of its colour.

Both observables again grow linearly with time. The densities fU (x) and fV (x) of the
corresponding limiting ratios

U = lim
t→∞

TNt

t
, V = lim

t→∞

T̃Nt

t
,

given in (6.4) and (6.12) and depicted in figure 7, are universal. Armed with this
knowledge we recover, by a different method, a result given in [31] on the time tm for
the random acceleration process to reach its maximum. The density of the rescaled
time

W = lim
t→∞

tm
t

has a universal expression given in (6.14), involving r∞ and the density fU , which
sheds new light on the result given in [31].

A last remark is in order. In the present study, universality for integrated
random walks only manifests itself asymptotically. This is particularly evident when
considering the probability of record breaking rn, defined in (1.9). Except for
r1 = P(X1 > 0) = 1/2, the probability rn of having a record at any finite n is non
universal. For instance, for n = 2, X2 = V1 + V2 = 2η1 + η2, thus, using symmetries,
we have

r2 =
1

2
− P(η1 > 0, η1 < η2 < 2η1). (1.11)

This probability is non-universal, as demonstrated in Table 1. Universality is reached
asymptotically, i.e., rn → r∞.

The paper is structured as follows. Section 2 gives preliminaries on the random
acceleration process, with emphasis on the distributions of three important random
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distribution r2
uniform 7/16 = 0.4375

triangular 43/96 = 0.447 916 . . .

exponential 11/24 = 0.458 333 . . .

Gaussian 5/8− (arctan 2)/(2π) = 0.448 791 . . .

binary 1/4 = 0.25

Table 1. Exact value of the probability r2 of having a record at time n = 2 for
various symmetric step length distributions Φ: uniform, triangular (the law of the
sum of two uniform variables), exponential, Gaussian and binary (±1). The latter
distribution, besides the fact that it is not continuous, hence that (1.11) does not
hold, appears as an outlier, inasmuch as the value r2 = P(η1 = η2 = +1) = 1/4
is quite different from those for the continuous distributions, which vary over a
rather narrow range.
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Figure 3. Schematic drawing of a path of the random acceleration process.
Sections between two red dots are probabilistic replicas of each other. In
each section, records for xt take place between a green and a red dot—this
defines the lengths δn of the record runs. In the present example, discarding
the red dot at the origin, the number Nt of renewals (red dots) between 0
and t is equal to 3.

variables, depicted in figure 4. Section 3 highlights the renewal structure underlying
the process of records in the random acceleration process. Section 4 provides an
analytical treatment of the distribution of the number of renewals. Section 5, which
is the main section, gives the exact distribution of the number of records in the
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asymptotic regime. Section 6 gives the distributions of the epochs TNt
and T̃Nt

and the distribution of the time at which the random acceleration process reaches
its maximum. We discuss some possible extensions in section 7. Three appendices
contain more technical matters.

2. Elements on the random acceleration process

Throughout this work, asymptotic analytical results on the statistics of records of
integrated random walks with finite variance will be obtained using their continuum
limit, the random acceleration process.

2.1. Definition of the process

Consider a particle submitted to a random force, whose position xt obeys the stochastic
equation of motion

d2xt
dt2

= ηt, (2.1)

where ηt is a normalised Gaussian white noise, i.e.,

〈ηt〉 = 0, 〈ηtηt′〉 = δ(t− t′).
This is the original Langevin equation without damping force. Equivalently, the
position xt of the particle and its velocity vt jointly obey the first-order (i.e.,
Markovian) dynamics

dvt
dt

= ηt,
dxt
dt

= vt, (2.2)

with initial condition (v0, x0). Hence

vt = v0 +Wt, xt = x0 + v0t+

∫ t

0

duWu,

where the integral of the noise,

Wt =

∫ t

0

du ηu

is normalised Brownian motion, such that D = 1/2. The process xt is usually referred
to as the integral of Brownian motion or the random acceleration process. We have

〈vt〉 = v0, 〈xt〉 = x0 + v0t, Var vt = 〈W 2
t 〉 = t, Varxt =

t3

3
.

The fluctuating parts are the leading ones at long times, so that vt and xt respectively
grow as t1/2 and as t3/2.

2.2. Some preliminary results

We gather here some results that we shall need in the sequel. Consider the randomly
accelerated particle starting from the origin with initial velocity v0. From now on, v0
will represent an initial microscopic velocity acting as a cutoff, the role of which is
to regularise the theory, as is necessary when dealing, for example, with first-passage
observables in Brownian motion (see section 3.3 for a detailed discussion). We shall
henceforth use the notation

ε =
√
|v0|. (2.3)
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t1

<latexit sha1_base64="aoXmn/GbSN8AuubgFZjI+moCpA8="></latexit>xt

<latexit sha1_base64="t6MUcvbqX+/vTH6Pwu8JVtMTIbI="></latexit>

t

Figure 4. Three fundamental random variables. Epoch of the first zero
crossing t1 of xt; corresponding velocity vt1 of the randomly accelerated
particle (or position of Brownian motion); first hitting time T(vt1) of the
origin for Brownian motion starting from vt1 at time t = 0. (Schematic
drawing.)

We shall also restrict ourselves to paths of xt with v0 negative, as in figure 4, which,
as explained later, is a simplification for the analysis which follows.

As will be made clear in the next section, there are three fundamental random
variables to consider for the sequel (see figure 4).

— The first one is the time of occurrence of the first zero crossing t1 of xt.

— The second one is the corresponding velocity vt1 of the randomly accelerated
particle (or position of Brownian motion).

— The third one is the first hitting time T(vt1) of the origin for Brownian motion
starting from vt1 at time t = 0. Note that this random variable depends itself on
another random variable (namely vt1). This is also the time taken by xt to go
from the green dot to the red one, starting from xt1 = 0 (see figure 4).

The expression of the joint distribution of the epoch t1 and of the corresponding
velocity vt1 is a classical result due to McKean [21, 24] which states that, taking v0 < 0
and v > 0 as in figure 4,

ft1,vt1(τ, v) =

√
3 v

πτ2
e−2(v

2−|v0|v+v20)/τ erf

√
6|v0|v
τ

. (2.4)

The marginal distribution of vt1 ensues by integration of (2.4) on τ :

fvt1(v) =
3 ε

2π

v3/2

v3 + |v0|3
. (2.5)
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There is no explicit expression of the marginal distribution of t1, henceforth denoted
for short as

ρ(τ) ≡ ft1(τ),

however, in the regime where both τ and v are large, such that |v0| � τ ∼ v2, (2.4)
simplifies to

ft1,vt1(τ, v) ≈ 6
√

2 ε

π3/2

v3/2

τ5/2
e−2v

2/τ . (2.6)

Thus, by integration on v, the asymptotic expression of the marginal ρ(τ) ensues

ρ(τ) ≈
τ→∞

c

τ5/4
, c =

3 Γ(1/4) ε

211/4π3/2
. (2.7)

As for the third variable, we have the well-known result for the probability density
of the first hitting time T(v) of the origin for Brownian motion starting from v > 0 [12],

fT(v)(δ) =
v e−v

2/(2δ)

√
2πδ3

, (2.8)

which thereby provides the expression of the conditional probability density of the
first hitting time T(vt1) of the origin for Brownian motion starting from vt1 = v,

fT(vt1)|vt1(δ|v) =
v e−v

2/(2δ)

√
2πδ3

. (2.9)

Using (2.5) and (2.9), the density fT(vt1)(δ) is obtained in the form of the integral of
the product

fT(vt1)(δ) =

∫
dv fT(vt1)|vt1(δ|v) fvt1(v) =

1

δ
g
( ε

δ1/4

)
, (2.10)

which leads to an explicit albeit complicated expression of g(x). For x → 0 this
function behaves as

g(x) ≈
x→0

3Γ(1/4)

29/4π3/2
x,

which implies that

fT(vt1)(δ) ≈δ→∞
c
√

2

δ5/4
. (2.11)

Note that while the tail index of the conditional density (2.9) (where vt1 = v has a
fixed value) is equal to 1/2, the tail index of the density (2.10) of the random variable
T(vt1) is equal to 1/4.

Anticipating on what follows, we shall be interested in the joint density of t1 and
T(vt1). This density, denoted for short by ρ(τ, δ), is obtained by integration of the
product of (2.4) and (2.9):

ρ(τ, δ) ≡ ft1,T(vt1)(τ, δ) =

∫
dv fT(vt1)|vt1(δ|v) ft1,vt1(τ, v). (2.12)

Its asymptotic expression can be obtained by multiplying (2.6) by (2.9) and integrating
upon v, which leads to the scaling form

ρ(τ, δ) ≈ 9 Γ(3/4) ε

21/4π2

δ1/4

τ3/4(τ + 4δ)7/4
. (2.13)

This expression is a key ingredient in all subsequent developments.
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The marginals ensuing from (2.13) by integration upon each variable yield (2.7)
and (2.11) back. The intervals of time t1 and T(vt1) separately have heavy-tailed
distributions with tail coefficients proportional to ε and the same tail index 1/4. The
latter is the well-known survival (or persistence) exponent of the random acceleration
process [21, 22, 25, 27], i.e., the decay exponent of the survival probability, or
probability that the process xt has not returned to its starting point x = 0 until
time t,

p(t) = P(t1 > t) =

∫ ∞
t

dτ ρ(τ), (2.14)

falling off as

p(t) ≈
t→∞

4c

t1/4
.

Thus, in Laplace space,

L
t
p(t) = p̂(s) ≈

s→0

a

s3/4
, (2.15)

with

a = 4 Γ(3/4) c =
3 ε

21/4
√
π
, (2.16)

from which the scaling form of ρ̂(s) follows

1− ρ̂(s) = s p̂(s) ≈ as1/4. (2.17)

As a matter of interest, let us remark that the expression of the survival
probability (2.14) has an explicit integral representation in Laplace space. It reads
(see, e.g., [24, 30])

p̂(s) =
1

s

(
1− 3

π

∫ ∞
0

du coshu
sinh(3u/2)

sinh 3u
cos
(
v0
√

8s sinhu
))

.

For s→ 0 this expression yields back (2.15), (2.16) [30].

3. Renewal structure and observables of interest

3.1. Renewal structure for records

A schematic drawing of a path of the process is depicted in figure 3. This path is
the continuum analogue of the path depicted in figure 1. Two series of conspicuous
points are represented by red and green dots. By convention, the origin is marked
as a red dot. The first green dot corresponds to the first crossing of the origin. The
following red dot is the first maximum of the path beyond this first green dot. Then,
considering the latter as the new origin, the process starts afresh. In other words,
sections between two red dots are probabilistic replicas of each other. Record runs,
that is sequences of consecutive records of the discrete process, translate into parts of
these sections comprised between green and red dots. This renewal structure will be
the basis of all further considerations. The red dots are renewal events (or renewals
for short).

This can be formalised as follows (see figure 4). The randomly accelerated particle
is launched from the origin with a negative initial velocity v0 = −ε2, where ε is a
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microscopic cutoff (see (2.3) and section 3.3). The first section is made of the following
sequence of points (vt, xt):

(v0, x0 = 0)→ (vt1, xt1 = 0)︸ ︷︷ ︸
green

→ (vt1+T(vt1) = 0, xt1+T(vt1)︸ ︷︷ ︸)
red

, (3.1)

where, as defined earlier, t1 is the epoch of first passage by the origin of xt and T(vt1)
is the hitting time of the origin for Brownian motion starting at vt1. This velocity is
positive, and typically much larger than the microscopic initial velocity v0. The last
two points of the above sequence correspond respectively to the first green dot and to
the following red dot. This section is then repeated, i.e., the process starts afresh, the
particle is launched with initial velocity v0 = −ε2 from the last red dot considered as
the new origin.

This scheme justifies in retrospect our choice of a negative initial velocity v0 = −ε2
at t = 0, as mentioned above. Had we taken another prescription at t = 0, this would
have only changed the distribution of the first time interval (between t = 0 and the
first red dot), keeping the distribution of all subsequent couples (τn, δn) unchanged.
Changing the (somewhat arbitrary) initial conditions of the continuum process would
therefore only induce additional corrections to scaling falling off as 1/Nt ∼ t−1/4 in
relative value.

We shall denote by τ1, τ2, . . . the successive copies of t1 and by δ1, δ2, . . . the
successive copies of T(vt1). We can view the process as being in one of two states: on
or off. Initially it is off, and it remains so for a time τ1; it then goes on and remains
so for a time δ1; and so forth. The sequence of τn gives the lengths of the no-record
runs, or off states, while the sequence of δn gives the lengths of the record runs, or on
states. Green and red dots signal the switchover points of the process from one state
to the other.

To summarise, the cornerstone of the analysis that follows is the renewal structure
of the sequence of iid couples of intervals of time (τn, δn) whose common density ρ(τ, δ)
is given in (2.13). Finally, we shall denote the waiting times between two renewals
(that is, the duration of the sections between two red dots) as σn = τn + δn.

3.2. Factorisation of the joint distribution ρ(τ, δ) in the asymptotic regime

The expression (2.13) of the density ρ(τ, δ) actually exhibits a stronger form of scaling,
besides the power laws derived above. This expression is indeed a homogeneous
function of its arguments τ and δ. In other words, t1 and the dimensionless ratio

Z =
T(vt1)

t1

become asymptotically independent as t1 gets larger and larger. Their joint law reads

ft1,Z(τ, z) ≈ ρ(τ)fZ

(
z =

δ

τ

)
, (3.2)

with

fZ(z) =
12 Γ(3/4)2

π3/2

z1/4

(1 + 4z)7/4
. (3.3)

The latter distribution is normalised, as should be.
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In Laplace space, the transform ρ̂(s, u) of the joint density ρ(τ, δ) has a scaling
form which can be derived as follows. We have

1− ρ̂(s, u) =

∫ ∞
0

dτ

∫ ∞
0

dδ ρ(τ, δ)(1− e−(sτ+uδ))

≈
∫ ∞
0

dzfZ(z)

∫ ∞
0

dτ ρ(τ)(1− e−(s+uz)τ )

≈
∫ ∞
0

dzfZ(z) (s+ uz)

∫ ∞
0

dτ p(τ)e−(s+uz)τ

≈
∫ ∞
0

dzfZ(z) (s+ uz) p̂(s+ uz)

≈ a
∫ ∞
0

dzfZ(z) (s+ uz)1/4.

The second line is derived from (3.2), the third one by means of an integration by
parts, and the fifth one by substituting s+ uz for s in (2.15).

Introducing the dimensionless ratio

ξ =
u

s
, (3.4)

we finally obtain

1− ρ̂(s, u) ≈ as1/4h(ξ), (3.5)

with

h(ξ) =

∫ ∞
0

dzfZ(z)(1 + ξz)1/4 =
〈

(1 + ξZ)1/4
〉
. (3.6)

This function admits the closed-form expression (see (C.2))

h(ξ) =
1 +
√
ξ√

1 + 1
2

√
ξ
. (3.7)

It is an algebraic function of degree four, obeying the biquadratic equation (see (C.3))

(ξ − 4)h4 + 8h2 − 4(ξ − 1)2 = 0. (3.8)

A first consequence of the above is that the common distribution f(σ) of the total
waiting times σn = τn + δn is also heavy-tailed with tail index 1/4, and amplitude
proportional to ε. Its Laplace transform indeed reads

f̂(s) = ρ̂(s, s), (3.9)

thus from (3.5) we get

1− ρ̂(s, s) ≈ ah(1)s1/4, (3.10)

and therefore

f(σ) ≈ c h(1)

σ5/4
, (3.11)

with (see (1.8), (5.10)),

h(1) =
〈

(1 + Z)1/4
〉

=
2
√

6

3
=

1

1− r∞
. (3.12)

The tail index 1/4 of this distribution is the same as that of the distributions of the
intervals τn and δn, i.e., it is the persistence exponent of the random acceleration
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process. Since this index is less than unity, the first moment of f(σ) is divergent,
hence the renewal process built upon the waiting times σn does not equilibrate, but
rather keeps a sensitive memory of its initial state. The same holds for the complete
renewal process built upon the couples (τn, δn). As a consequence, a large class of
observables (see, e.g., section 3.4) are scale invariant.

3.3. On the role of the cutoff

Let us come back to the prescription which consists in launching the random
acceleration process from x0 = 0 with an initial microscopic velocity v0 = −ε2 both
initially and at every red dot, where ε is the cutoff defined in (2.3).

The integrated random walk process breaks the continuum scale invariance of the
random acceleration process, if only because it is defined at discrete integer times n.
In order to get meaningful predictions from the continuum theory, one must therefore
break scale invariance by introducing a microscopic scale, be it either spatial, temporal,
or both. A minimal prescription consists in imposing an initial velocity v0. This is
manifest in the expression (2.4) of the joint law of τ1 and v1. This law degenerates to
δ(τ)δ(v) in the v0 → 0 limit.

This is also manifest in the expression (2.8) of the density of the first hitting time
T(v) of the origin for the Brownian velocity. Intuitively, if the particle was launched
at the origin with zero velocity, it would cross the origin almost immediately after,
hence the hitting time of the origin could not be finite.

In some sense, the cutoff ε makes the connection between the discrete and
continuum formalisms. It enters the tail parameters of all power-law distributions:
(2.6), (2.7), (2.11), (2.13), (3.11), as well as all non-universal results, such as the
expression (4.4) of the mean number of records. The value of the cutoff ε appearing in
these non-universal observables turns out to depend on the distribution of step lengths
(see Table 2). In this respect, the situation is quite similar to that met in a recent
study of the statistics of records for planar random walks [35]. There, too, it turns
out to be necessary to introduce a cutoff into the continuum theory, whose numerical
value is different, e.g., for lattice Polya walks and for off-lattice Pearson walks with
steps of unit length.

3.4. Observables of interest

The observables studied in the sequel are defined as follows.

Number of renewals and epochs of last events. The first and simplest observable of
interest, denoted by Nt, is the number of renewals (red dots in figure 3, discarding
the red dot at the origin), or record runs, which occurred between 0 and t, that is the
random variable for the largest n for which Tn ≤ t, where the epoch Tn of the n−th
renewal is

Tn = (τ1 + δ1)︸ ︷︷ ︸
σ1

+ (τ2 + δ2)︸ ︷︷ ︸
σ2

+ · · ·+ (τn + δn)︸ ︷︷ ︸
σn

, (3.13)

and T0 = 0. For instance, Nt = 3 in figure 3.
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The epoch of the last renewal before t, that is of the Nt−th renewal, therefore
reads

TNt = (τ1 + δ1)︸ ︷︷ ︸
σ1

+ (τ2 + δ2)︸ ︷︷ ︸
σ2

+ · · ·+ (τNt + δNt)︸ ︷︷ ︸
σNt

. (3.14)

While Tn is the sum of a fixed number n of random variables σn, TNt
is the sum of a

random number Nt of such random variables.
A related observable, denoted by T̃Nt , is the epoch of the last dot before t,

regardless of its colour (green or red), that is, the epoch of the last change of state of
the process from off to on or from on to off, or else the last endpoint of an interval
τn or δn.

Number of records. Within the continuum formalism, the number Mn of records up
to time n of the integrated random walk is represented by the sum St of all the
intervals of time δn spent between green and red dots for n = 1, . . . , Nt, possibly up
to a correction for the last interval. In other words, St is the total duration of all
(complete or incomplete) record runs, or equivalently the total duration spent by the
process in the on state.

Two cases are to be considered when dealing with the quantities St and T̃Nt .
Either t falls in the interval τNt+1, i.e., outside a record run as in figure 3 (the process
is off ), or it falls in the interval δNt+1, i.e., inside a record run (the process is on). The
first case occurs with asymptotic probability 1− r∞, the second case with asymptotic
probability r∞.

(i) In the first case, time t is between a red and a green dot, hence TNt < t <
TNt + τNt+1. We have

St = δ1 + · · ·+ δNt
,

T̃Nt = TNt . (3.15)

(ii) In the second case, time t is between a green and a red dot, hence TNt
+ τNt+1 <

t < TNt
+ τNt+1 + δNt+1. We have

St = δ1 + · · ·+ δNt + t− TNt − τNt+1

= t− (τ1 + · · ·+ τNt+1),

T̃Nt
= TNt

+ τNt+1. (3.16)

The distributions of these observables will be determined in the following sections
4, 5, 6.

4. Number of renewals

Following the definition given in the previous section, for a given time t, Nt is the
unique integer such that TNt

≤ t < TNt+1, with the definition (3.14). Let

pn(t) = P(Nt = n) = P(Tn ≤ t < Tn+1) (4.1)

denote the probability that Nt equals some integer n. In Laplace space, we have

p̂n(s) =L
t
pn(t) =

〈∫ Tn+1

Tn

dt e−st

〉
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=

〈
1− e−s(τn+1+δn+1)

s
e−sTn

〉
=

1− ρ̂(s, s)

s
ρ̂(s, s)n, (4.2)

which is well normalised. This expression involves the joint law ρ(τ, δ) only through

the combination ρ̂(s, s) = f̂(s) (see (3.9)) in accordance with the fact that the time
intervals between successive renewals are the total waiting times σn = τn + δn.

Let us focus our attention on the mean number 〈Nt〉 of renewals between 0 and
t. Its Laplace transform reads

L
t
〈Nt〉 =

∑
n≥0

p̂n(s) =
ρ̂(s, s)

s(1− ρ̂(s, s))
. (4.3)

Using (3.10), this reads

L
t
〈Nt〉 ≈

1

ah(1)s5/4
,

therefore

〈Nt〉 ≈ A t1/4, (4.4)

with (see (2.16), (3.12))

A =
1

ah(1)Γ(5/4)
=

23/4
√
π

Γ(1/4)
√

3︸ ︷︷ ︸
0.474 685...

1

ε
. (4.5)

The mean number of renewals grows as a power law whose exponent 1/4 is the tail
index of the law of the waiting times σn. The predicted amplitude A is the ratio of a
universal number by the cutoff ε. Measuring the mean number of renewals therefore
gives access to the value of ε, which is expected to depend on microscopic details of
the discrete process, i.e., on the parent distribution Φ of step lengths.

Figure 5 shows numerical data for the mean number 〈N(n)〉 of renewals of
integrated random walks in discrete time against n1/4, for the step length distributions
already considered in Table 1: uniform, triangular, exponential, Gaussian and binary.
All datasets exhibit a very accurate asymptotic linear growth as a function of n1/4.
The slopes A of least-square fits over the range 102 < n < 104 (regression lines are
not shown) and the corresponding values of the cutoff ε, according to (4.5), are given
in Table 2. The binary distribution again appears as an outlier.

distribution A ε

uniform 0.623 0.762

triangular 0.602 0.789

exponential 0.551 0.861

Gaussian 0.592 0.801

binary 0.891 0.533

Table 2. Numerical values of the amplitude A of the power-law growth (4.4) of
the mean number of renewals, as extracted from the data shown in figure 5, and of
the corresponding value of the cutoff ε, according to (4.5), for various symmetric
step length distributions.
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Figure 5. Mean number 〈N(n)〉 of renewals of integrated random walks
in discrete time against n1/4 up to n = 104, for various symmetric
distributions of the elementary steps (see legend).

The full statistics of the number of renewals at large times can be derived from
an appropriate scaling analysis of the exact expression (4.2). Omitting every detail,
we obtain the following scaling formula [17]

Nt ≈
1

ah(1)
t1/4X ≈ AΓ(5/4) t1/4X,

where the dimensionless reduced variable X is distributed according to the universal
law

fX(x) =

∫
dz

2πi z3/4
ez−xz

1/4

.

This probability density can be expressed as a linear combination of three hypergeo-
metric functions of type 0F2 [36, 37, 38]. We have the identity

X ≡ (L1/4)−1/4,

where L1/4 is distributed according to the one-sided Lévy stable law of index 1/4 and
an appropriate scale factor.

5. Number of records and total duration of record runs

The sum St of the durations of all (complete or incomplete) record runs, which is
the continuum analogue of the number of records for integrated random walks, is the
central observable of interest. The purpose of this section is the determination of the
density fSt

(t, y) of St, defined as

P
(
St ∈ (y, y + dy)

)
= fSt(t, y)dy.
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This quantity is entirely determined by the knowledge of the density ρ(τ, δ). In Laplace
space we find that

f̂St(s, u) = L
t
L
y
fSt(t, y) =L

t
〈e−uSt〉

=
u(1− ρ̂(s)) + s(1− ρ̂(s, s+ u))

s(s+ u)(1− ρ̂(s, s+ u))
, (5.1)

as we now show by considering the two cases discussed in section 3.4.

(i) In the first case, using (3.15),

f̂St
(s, u)(i) =

∑
n≥0
L
t

〈
e−uStI(Tn < t < Tn + τn+1)

〉
=
∑
n≥0

〈
e−u(δ1+···+δn)

∫ Tn+τn+1

Tn

dt e−st

〉

=
∑
n≥0

〈
e−u(δ1+···+δn)e−sTn

1− e−sτn+1

s

〉

=
∑
n≥0

〈
e−s(τ1+···+τn) e−(s+u)(δ1+···+δn)

1− e−sτn+1

s

〉
=
∑
n≥0

ρ̂(s, s+ u)n
1− ρ̂(s)

s

=
1

1− ρ̂(s, s+ u)

1− ρ̂(s)

s
. (5.2)

In the first line I(·) is the indicator function of the event in the parentheses.

(ii) In the second case, using (3.16),

f̂St
(s, u)(ii) =

∑
n≥0
L
t

〈
e−uStI(Tn + τn+1 < t < Tn + τn+1 + δn+1)

〉
=
∑
n≥0

〈
eu(τ1+···+τn+1)

∫ Tn+τn+1+δn+1

Tn+τn+1

dt e−(s+u)t

〉

=
∑
n≥0

ρ̂(s, s+ u)n
ρ̂(s)− ρ̂(s, s+ u)

s+ u

=
1

1− ρ̂(s, s+ u)

ρ̂(s)− ρ̂(s, s+ u)

s+ u
. (5.3)

The two expressions (5.2) and (5.3) add up to (5.1).
In order to analyse the sum St at long times, we consider the scaling regime where

both Laplace variables s and u are small. In this regime, the expression (5.1) can be
simplified by means of the estimates (2.17) and (3.5), i.e.,

1− ρ̂(s) ≈ as1/4, 1− ρ̂(s, s+ u) ≈ as1/4h(ξ + 1),

where ξ = u/s and h(ξ) is given in (3.7). We thus obtain

f̂St(s, u) ≈ 1

s
gR(ξ), (5.4)
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with

gR(ξ) =
1

ξ + 1

(
1 +

ξ

h(ξ + 1)

)
=

1

ξ + 1

(
1 +

(
1−

(
1− 1

2ξ
)√

ξ + 1
)1/2)

. (5.5)

It can be shown by eliminating radicals that gR is an algebraic function of degree four,
obeying

4(ξ + 1)3g4R − 16(ξ + 1)2g3R + 16(ξ + 1)g2R − (ξ − 2)2 = 0. (5.6)

The scaling expression (5.4) is entirely parameter-free. It implies that, in the
continuum theory, the asymptotic fraction of time spent during record runs (i.e.,
between green and red dots),

R = lim
t→∞

St
t
, (5.7)

has a non-trivial universal distribution, with density fR(x) defined by

P
(
R ∈ (x, x+ dx)

)
= fR(x)dx (0 < x < 1).

This random variable R is also the limiting ratio

R = lim
n→∞

Mn

n
, (5.8)

where Mn is the total number of records of the integrated random walk up to discrete
time n. In particular, 〈R〉 = r∞ (see (1.10)).

The existence of the limiting distribution fR(x) entails that

f̂St
(s, u) = L

t
〈e−uSt〉 ≈

s,u→0
L
t
〈e−utR〉

≈ L
t

∫ ∞
0

dx e−utxfR(x) ≈
∫ ∞
0

dx fR(x)

∫ ∞
0

dt e−t(s+ux)

≈
〈

1

s+ uR

〉
.

An identification with (5.4) yields

gR(ξ) =

〈
1

1 + ξR

〉
. (5.9)

The explicit expression of gR(ξ) given in (5.5) allows the determination of the
moments of R as well as of its full distribution (see Appendix B for details).

The moments of R are readily derived by expanding gR(ξ) as a power series. We
thus obtain

〈R〉 = 1− 1

h(1)
= 1−

√
6

4
= 0.387 627 . . . , (5.10)

and more generally

〈Rn〉 = 1− an
√

6, (5.11)

where

a0 = 0, a1 =
1

4
, a2 =

7

24
, a3 =

359

1152
, a4 =

2239

6912
, . . .
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These positive rational numbers obey the four-term linear recursion (see (C.9))

(16n2 − 9)an−1 + (16n2 + 48n+ 25)an

−16(n+ 1)(5n+ 7)an+1 + 48(n+ 1)(n+ 2)an+2 = 0. (5.12)

Using (B.3), one finds the following universal result

fR(x) =
γR(x)

x3/4(1− x)1/2
(0 < x < 1) (5.13)

for the probability density of the asymptotic ratio R, with

γR(x) =
1 + 2x

2π
√

2x3/2 +
√

1 + 3x
. (5.14)

The limiting behaviours of the density fR(x) read

fR(x) ≈
x→0

1

2πx3/4
, fR(x) ≈

x→1

3

4π(1− x)1/2
.

The exponents appearing in the denominators of these expressions can be interpreted
as being equal to 1 − θ, where θ is a persistence exponent, by analogy with the
singular behaviour of the distribution of the occupation time of aging processes at
its two ends [39, 40]. For x → 0, θ = 1/4, while for x → 1, θ = 1/2. The first
case corresponds to the persistence exponent of the random acceleration process, the
second one to that of Brownian motion.

Figure 6 shows histogram plots of the distribution of the total number of records
for integrated random walks made of n = 104 steps, with symmetric uniform and
exponential step distributions (see legend). Numerical data are rescaled according
to (5.8). Each dataset contains 50 bins. Every second bin of each dataset is plotted
alternatively. Both rescaled histograms are in excellent agreement with the theoretical
prediction (5.13) (full curve).
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Figure 6. Symbols: histogram plots of the distribution of the total number
of records for integrated random walks made of n = 104 steps, with
symmetric uniform and exponential step distributions (see legend), rescaled
according to (5.8). Full curve: theoretical prediction (5.13).
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6. Epochs of last events

The last observables of interest are the two natural epochs introduced in section 3.4.
The derivations of their distributions closely follow the approach described in section
5.

6.1. Epoch TNt of the last renewal

The definition of the epoch TNt
of the last renewal (red dot) before time t does not

need to distinguish the two cases discussed in section 3.4. The expression of the density
in Laplace space is obtained in the manner set out above,

f̂TNt
(s, u) =

∑
n≥0
L
t

〈
e−uTnI(Tn < t < Tn+1)

〉
=
∑
n≥0

〈
e−uTn

∫ Tn+1

Tn

dt e−st

〉

=
∑
n≥0

〈
e−(s+u)Tn

1− e−s(τn+1+δn+1)

s

〉

=
∑
n≥0

〈
e−(s+u)(τ1+δ1+···+τn+δn)

1− e−s(τn+1+δn+1)

s

〉
=
∑
n≥0

ρ̂(s+ u, s+ u)n
1− ρ̂(s, s)

s

=
1

1− ρ̂(s+ u, s+ u)

1− ρ̂(s, s)

s
.

This last expression involves the joint law ρ(τ, δ) only through the combination

ρ̂(s, s) = f̂(s) (see (3.9)). This is again to be expected, as the time intervals between
successive red dots are the total waiting times σn = τn + δn. Its asymptotic analysis
proceeds as previously. In the scaling regime where s and u are small, we get

f̂TNt
(s, u) ≈ 1

s
gU (ξ),

where ξ = u/s and

gU (ξ) = (ξ + 1)−1/4. (6.1)

The dimensionless ratio

U = lim
t→∞

TNt

t
(6.2)

therefore has a universal distribution, such that

gU (ξ) =

〈
1

1 + ξU

〉
.

The moments of U

〈Un〉 =
Γ(n+ 1/4)

Γ(1/4)n!
, (6.3)

are rational numbers,

〈U〉 =
1

4
, 〈U2〉 =

5

32
, 〈U3〉 =

15

128
, 〈U4〉 =

195

2048
, . . . .
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The corresponding density reads

fU (x) =
1

π
√

2
x−3/4 (1− x)−1/4 = β 1

4 ,
3
4
(x) (0 < x < 1), (6.4)

where

βa,b(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

is the beta distribution on [0, 1]. We have thus recovered—in the present case for
θ = 1/4—the beta distribution fU (x) = β1−θ,θ(x) of the reduced epoch U of the last
renewal for an arbitrary tail index θ < 1 (see, e.g., [17]).

6.2. Epoch T̃Nt
of the last change of state

In Laplace space the expression of the density of T̃Nt
reads

f̂T̃Nt
(s, u) =

1− ρ̂(s) + ρ̂(s+ u)− ρ̂(s+ u, s)

s(1− ρ̂(s+ u, s+ u))
, (6.5)

as we now show by considering again the two cases discussed in section 3.4.

(i) In the first case, using (3.15),

f̂T̃Nt
(s, u)(i) =

∑
n≥0
L
t

〈
e−uTnI(Tn < t < Tn + τn+1)

〉
=
∑
n≥0

〈
e−uTn

∫ Tn+τn+1

Tn

dt e−st

〉

=
∑
n≥0

〈
e−(s+u)Tn

1− e−sτn+1

s

〉

=
∑
n≥0

〈
e−(s+u)(τ1+δ1+···+τn+δn)

1− e−sτn+1

s

〉
=
∑
n≥0

ρ̂(s+ u, s+ u)n
1− ρ̂(s)

s

=
1

1− ρ̂(s+ u, s+ u)

1− ρ̂(s)

s
. (6.6)

(ii) In the second case, using (3.16),

f̂T̃Nt
(s, u)(ii) =

∑
n≥0
L
t

〈
e−u(Tn+τn+1)I(Tn < t− τn+1 < Tn + δn+1)

〉

=
∑
n≥0

〈
e−u(Tn+τn+1)

∫ Tn+τn+1+δn+1

Tn+τn+1

dt e−st

〉

=
∑
n≥0

〈
e−(s+u)(Tn+τn+1)

1− e−sδn+1

s

〉

=
∑
n≥0

〈
e−(s+u)(τ1+δ1+···+τn+δn+τn+1)

1− e−sδn+1

s

〉
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=
∑
n≥0

ρ̂(s+ u, s+ u)n
ρ̂(s+ u)− ρ̂(s+ u, s)

s

=
1

1− ρ̂(s+ u, s+ u)

ρ̂(s+ u)− ρ̂(s+ u, s)

s
. (6.7)

The two expressions (6.6) and (6.7) add up to (6.5).
The asymptotic analysis proceeds as previously. In the scaling regime where s

and u are small, we get

f̂T̃Nt
(s, u) ≈ 1

s
gV (ξ),

where ξ = u/s and

gV (ξ) =
1

h(1)

(
(ξ + 1)−1/4 + h

(
1

ξ + 1

)
− 1

)

=

√
6

4

(ξ + 1)−1/4 +
1 +
√
ξ + 1√

ξ + 1 + 1
2

√
ξ + 1

− 1

 . (6.8)

Note that the first term in the right side is equal to (1− r∞)gU (ξ), as it should. The
dimensionless ratio

V = lim
t→∞

T̃Nt

t
(6.9)

therefore has a universal distribution, such that

gV (ξ) =

〈
1

1 + ξV

〉
.

The moments of V are readily derived by expanding gV (ξ) as a power series. We
thus obtain

〈V 〉 =

√
6

16
+

1

6
= 0.319 759 . . . ,

and more generally

〈V n〉 = (1− r∞)〈Un〉+ bn (6.10)

for n ≥ 1 (see (6.3)), where

b1 =
1

6
, b2 =

11

96
, b3 =

155

1728
, b4 =

12395

165888
, . . .

These positive rational numbers obey the four-term linear recursion (see (C.13))

32(n− 1)(2n− 1)bn−1 − (176n2 + 16n+ 5)bn

+32(n+ 1)(5n+ 3)bn+1 − 48(n+ 1)(n+ 2)bn+2 = 0. (6.11)

Using again (B.3), some algebra yields the density

fV (x) =
γV (x)

x3/4(1− x)1/4
(0 < x < 1), (6.12)

with

γV (x) =

√
3

4π
+

√
6

4πx1/4
√

4− 3x

(√
4− 3x− 2(1− x)3/2

)1/2
. (6.13)

Again one notes that the first contribution to fV is equal to (1− r∞)fU .
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Figure 7 shows histogram plots of the distribution of the epochs TNt
and T̃Nt

for integrated random walks made of n = 104 steps, with symmetric uniform and
exponential step distributions (see legend). Numerical data are rescaled according
to (6.2), (6.9). Both rescaled histograms are again in excellent agreement with the
predictions (6.4), (6.12) (full curves).
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Figure 7. Symbols: histogram plots of the distribution of the epochs TNt

of the last renewal and T̃Nt of the last marked point for integrated random
walks made of n = 104 steps, with symmetric uniform and exponential step
distributions (see legend), rescaled according to (6.2), (6.9). Full curves:
predictions (6.4), (6.12).

6.3. Time tm to reach the maximum

Let us denote by tm the time at which the random acceleration process reaches its
maximum during the time interval (0, t), and by

W = lim
t→∞

tm
t

the rescaled time. According to the dichotomy defined in section 3.4, either t falls in
the interval τNt+1, or it falls in the interval δNt+1, with respective probabilities 1−r∞
and r∞. In the first case tm = TNt , while in the second case tm = t. It follows that

fW (x) = r∞ δ(x− 1) + (1− r∞)fU (x). (6.14)

We thus swiftly recover one of the main results of [31], by a method which is
completely different from that presented in this reference and which has the advantage
of highlighting the probabilistic content of (6.14).

7. Discussion

In this paper we have investigated the statistics of upper records for integrated random
walks with finite variance. Our main focus was on the asymptotic regime of long times,
where the discrete integrated random walk process is described by its continuum
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analogue, the random acceleration process. Within this setting, the asymptotic
statistics of records relies on the renewal structure of the process, involving a sequence
of iid couples of intervals of time (τn, δn), defining an infinite alternating sequence of
green and red dots. Runs of consecutive records of the discrete process take place in
all time intervals δn between green and red dots. For reference, let us mention that
this alternating scheme is precisely what is referred to in the mathematical literature
as an alternating renewal process [13]. The alternating renewal process considered in
the present work is generic in the sense that the off and on random variables, namely
the time intervals τn and δn, respectively, are not independent.

Let us come back on the three cases defined in the Introduction, namely
iid random variables η1, η2, . . . , ηn, the successive positions of a random walk
V1, V2, . . . , Vn, built from the previous variables, and the integrated random walk
X1, X2, . . . , Xn, built from the latter. The probability of record breaking at time
n and the mean number of records up to n for these three cases are respectively

rn =
1

n
, 〈Mn〉 ≈

n→∞
lnn,

rn ≈
n→∞

1√
π n

, 〈Mn〉 ≈
n→∞

2
√
n√
π
,

rn ≈
n→∞

r∞, 〈Mn〉 ≈
n→∞

n r∞. (7.1)

The classes of universality of these three cases are different and follow a hierarchy of
decreasing generality. For iid random variables, the parent distribution of step lengths
Φ is assumed to be continuous. For random walks, it is continuous and symmetric,
thus Lévy flights belong to this class. For integrated random walks, it is symmetric
with finite variance. For all three cases, discrete distributions have to be considered
separately. For integrated random walks universality only holds asymptotically, while
for the other two cases it holds at any finite time.

In view of these considerations two natural extensions arise. The first one consists
in considering integrated random walks with heavy-tailed parent distribution Φ. The
second one consists in considering (k − 1)-fold integrated random walks. For both
cases, the question is to know how the last line of (7.1) is modified. We discuss both
situations in turn.

We first address the case of integrated Lévy flights where the parent step length
distribution is still symmetric, but is now heavy-tailed, with a tail index α < 2,
so that 〈η2〉 is divergent. In this situation, the velocity and position of the walker
scale respectively as Vn ∼ n1/α and Xn ∼ n(α+1)/α. The survival probability (2.14),
which falls off as t−1/4 in the diffusive case, is known to decay as t−θ, where the
persistence exponent θ = 1/(2 + α) varies continuously with α [26]. This situation
is qualitatively different from the situation studied in this work. Indeed, trajectories
of integrated Lévy flights are discontinuous in the continuum limit, whereas those of
the random acceleration process are continuous. In spite of this, we expect that the
number of records of integrated Lévy flights with α < 2 still grows linearly, and that
the corresponding ratio R has a universal, α-dependent, distribution. In particular,
the asymptotic probability of record breaking r∞ = 〈R〉 is expected to be universal,
and to exhibit a smooth dependence on the tail index α over a rather small range,
interpolating between r∞ = 0.387 627 . . . (see (1.8)) for α = 2 and r∞ → 1/2 as α→ 0.
In this limit, the process indeed grows so fast that the record-breaking condition at
time n becomes local and amounts to Vn > 0.
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It turns out that the case of (k − 1)-fold integrated random walks is somewhat
similar. Its continuum limit obeys dkxt/dt

k = ηt. Usual random walks and integrated
random walks considered in this work respectively correspond to k = 1 and k = 2. For
general k, the position of the walker scales as Xn ∼ nk−1/2. The survival probability
decays as t−θk , where the persistence exponent θk is a decreasing function of the
integer k. Besides the exact values θ1 = 1/2 (Brownian motion) and θ2 = 1/4 (random
acceleration process), we have θ3 ≈ 0.220, θ4 ≈ 0.210, θ5 ≈ 0.204, and so on [41]. The
limit of these exponents, limk→∞ θk = 3/16 = 0.1875, is related to the diffusion
equation in the plane. Its exact value has been derived only recently [42, 43]. Here,
too, the number of records is expected to grow linearly for all k ≥ 2, with a universal, k-
dependent, asymptotic probability of record breaking growing from r∞ = 0.387 627 . . .
for k = 2 to r∞ → 1/2 as k →∞, for the same reason as above.
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Appendix A. A word on notations

Asymptotic equivalence
The symbol ≈ stands for asymptotic equivalence; the symbol ∼ is weaker and

means ‘of the order of’.

Probability densities, Laplace transforms, limiting distributions
The probability density function of the continuous random variable X is denoted

by fX(x), with

fX(x) =
d

dx
P(X < x).

In the course of this work, we encounter several positive time-dependent continuous
random variables, denoted generically by Yt. The probability density function of such
a random variable is denoted by fYt

(t, y) where time t appears as a parameter. The
Laplace transform with respect to y of this density is

f̂Yt
(t, u) =L

y
fY (t, y) =

〈
e−uYt

〉
=

∫ ∞
0

dy e−uy fYt
(t, y),

and its double Laplace transform with respect to t and y is denoted by

f̂Yt
(s, u) =L

t,y
fYt

(t, y) =L
t

〈
e−uYt

〉
=

∫ ∞
0

dt e−st
∫ ∞
0

dy e−uy fYt
(t, y). (A.1)

Assume that Yt scales asymptotically as t. As t→∞ the density ft−1Yt
(t, x = y/t) of

the rescaled variable Yt/t converges to a limit, denoted by

fX(x) = lim
t→∞

ft−1Yt
(t, x = y/t). (A.2)

Appendix B. Inversion of the scaling form of a double Laplace transform

For completeness, we reproduce hereafter Appendix B of [17].
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Consider the probability density function fYt
(t, y) of the positive random variable Yt,

and assume that its double Laplace transform (A.1) with respect to t and y has the
scaling behaviour

f̂Yt
(s, u) =

1

s
g
(u
s

)
(B.1)

in the regime s, u→ 0, with u/s arbitrary. Then the following properties hold.
(i) When t → ∞ the random variable Yt/t possesses a limiting distribution given by
(A.2).
(ii) The scaling function g is related to fX by

g(ξ) =

〈
1

1 + ξX

〉
=

∫ ∞
0

dx
fX(x)

1 + ξx
. (B.2)

(iii) This can be inverted as

fX(x) = − 1

πx
lim
ε→0

Im g

(
− 1

x+ iε

)
. (B.3)

(iv) Finally the moments of X can be obtained, when they exist, by expanding g(ξ)
as a Taylor series, since (B.2) implies that

g(ξ) =
∑
k≥0

(−ξ)k
〈
Xk
〉
. (B.4)

These properties can be easily understood as follows.
(i) First, a direct consequence of the scaling form (B.1) is that Yt scales as t, as can be
seen by Taylor expanding the right side of this equation, which generates the moments
of Yt in the Laplace space conjugate to t. Therefore (A.2) holds.
(ii) Then, (B.2) is a simple consequence of (A.2), since

f̂Yt(s, u) =

∫ ∞
0

dt e−st〈e−uYt〉 =

∫ ∞
0

dt e−st〈e−utX〉 =

〈
1

s+ uX

〉
.

(iii) Now,

fX(x) = 〈δ (X − x)〉 = − 1

π
lim
ε→0

Im

〈
1

x+ iε−X

〉
.

The right side can be rewritten using (B.2), yielding (B.3).

Appendix C. Some detailed derivations

This appendix is devoted to the detailed derivations of a few results used in the body
of the paper.

Appendix C.1. Derivation of the algebraic expression (3.7) of the function h(ξ)

The function h(ξ) is defined by the integral expression (3.6), where the distribution
fZ(z) is given by (3.3). This reads

h(ξ) =
12Γ(3/4)2

π3/2

∫ ∞
0

dz
z1/4(1 + ξz)1/4

(1 + 4z)7/4
.



Record statistics of integrated random walks and the random acceleration process 29

Setting z = u/(4(1− u)) and ξ = 4(1− ζ), we obtain

h =
3Γ(3/4)2√

2π3/2

∫ 1

0

duu1/4(1− u)−3/4(1− ζu)1/4

=
3√
2
F

(
−1

4
,

5

4
;

3

2
; ζ

)
. (C.1)

The hypergeometric function boils down to something more elementary. More
precisely, we are facing the first of the 15 entries of the so-called Schwarz Table of all
cases where the hypergeometric series reduces to an algebraic function (see, e.g., [44,
Vol. I, Sec. 2.7.2]).

This reduction can be shown be elementary means as follows. Starting from the
hypergeometric differential equation obeyed by (C.1), i.e.,

ζ(1− ζ)
d2h

dζ2
+

(
3

2
− 2ζ

)
dh

dζ
+

5

16
h = 0,

and setting ξ = 4 cos2 α, i.e., ζ = sin2 α, with 0 ≤ α ≤ π/2 for definiteness, we obtain

d2h

dα2
+ 2 cotα

dh

dα
+

5

16
h = 0.

Setting h = v/(sinα), we obtain the simple differential equation

d2v

dα2
+

9

4
v = 0,

whose solutions are sin(3α/2) and cos(3α/2). The regularity of h and its value h = 1
for ξ = 0, i.e., α = π/2, yield

h =
√

2
sin(3α/2)

sinα
.

Some trigonometric identities finally yield

h =
1 + 2 cosα√

1 + cosα
=

1 +
√
ξ√

1 + 1
2

√
ξ
. (C.2)

It can be shown by eliminating radicals that h(ξ) is an algebraic function of degree
four, obeying the biquadratic equation

(ξ − 4)h4 + 8h2 − 4(ξ − 1)2 = 0. (C.3)

Appendix C.2. Derivation of the recursion (5.12) for the coefficients an

The gist of Appendix C.2 and Appendix C.3 resides in the fact that algebraic functions
obey linear differential equations with polynomial coefficients. As a consequence, the
coefficients of their power-series expansions obey linear recursions. These properties
were known to Abel as early as 1827 (see [45] for an account of historical and
algorithmic aspects). In modern times they are only seldom mentioned or used. The
present case provides an example of a situation where they are useful.

The function gR(ξ) obeys the fourth-order algebraic equation (see (5.6))

P (ξ, gR) = 4(ξ+1)3g4R−16(ξ+1)2g3R+16(ξ+1)g2R−(ξ−2)2 = 0.(C.4)

The linear differential equation obeyed by gR(ξ) can be derived in three steps.
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First, its first derivative reads

dgR
dξ

= − ∂P/∂ξ

∂P/∂gR

= − 6(ξ + 1)2g4R − 16(ξ + 1)g3R + 8g2R + 2− ξ
8(ξ + 1)gR((ξ + 1)gR − 1)((ξ + 1)gR − 2)

. (C.5)

This expression is a rational function of gR. It can therefore be reduced to the form

dgR
dξ

= A3(ξ)g3R +A2(ξ)g2R +A1(ξ)gR +A0(ξ), (C.6)

where the Ai are rational functions of ξ. This can be done by expressing that the
difference between (C.5) and (C.6) is a multiple of P (ξ, gR). This condition yields
coupled linear equations for the Ai(ξ), whose solution yields

dgR
dξ

= − N(ξ, gR)

4ξ(ξ + 1)(ξ − 2)(ξ − 3)
, (C.7)

with

N(ξ, gR) = 12(ξ + 1)2g3R − 36(ξ + 1)g2R

+ (ξ3 − 11ξ2 + 243ξ + 12)gR + 3(ξ − 2)2.

Second, higher-order derivatives of the function gR(ξ) can be readily evaluated
by applying iteratively the total derivative operator

d

dξ
=

∂

∂ξ
+

dgR
dξ

∂

∂gR

to the expression (C.7). In the present situation, it is sufficient to go up to the second
derivative.

Third, eliminating nonlinear terms (those proportional to g2R and g3R) between the
resulting expressions of the first and second derivatives, we obtain the desired linear
differential equation in the form

16(ξ + 1)2(ξ − 3)
d2gR
dξ2

+16(ξ + 1)(3ξ − 7)
dgR
dξ

+ (7ξ − 25)gR + 9 = 0. (C.8)

Finally, inserting the power-series expansion

gR(ξ) =
∑
n≥0

(1− an
√

6)(−ξ)n

(see (5.9), (5.11)) into (C.8), we obtain the following four-term linear recursion for the
coefficients an:

(16n2 − 9)an−1 + (16n2 + 48n+ 25)an

−16(n+ 1)(5n+ 7)an+1 + 48(n+ 1)(n+ 2)an+2 = 0. (C.9)
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Appendix C.3. Derivation of the recursion (6.11) for the coefficients bn

The following analysis is in the same vein as the previous section. We start by
splitting gV (ξ) given in (6.8) according to

gV (ξ) =

√
6

4
(gU (ξ)− 1) + gB(ξ), (C.10)

with

gB(ξ) =

√
6

4

1 +
√
ξ + 1√

ξ + 1 + 1
2

√
ξ + 1

.

It can be shown by eliminating radicals that gB is an algebraic function of degree four,
obeying the biquadratic equation

16(ξ + 1)(4ξ + 3)g4B − 48(ξ + 1)2g2B + 9ξ2 = 0. (C.11)

The linear differential equation obeyed by gB(ξ) can be derived by means of the
three-step procedure presented in Appendix C.2. We thus obtain

16(ξ + 1)2(4ξ + 3)
d2gB
dξ2

+ 96(ξ + 1)2
dgB
dξ

+ 5gB = 0. (C.12)

Inserting the power-series expansion

gB(ξ) =
∑
n≥0

bn(−ξ)n

(see (6.10), (C.10)) into (C.12), we obtain the following four-term linear recursion for
the coefficients bn:

32(n− 1)(2n− 1)bn−1 − (176n2 + 16n+ 5)bn

+32(n+ 1)(5n+ 3)bn+1 − 48(n+ 1)(n+ 2)bn+2 = 0. (C.13)

We have b0 = 1, whereas the bn enter the expression (6.10) of the moments of V for
n ≥ 1 only.
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