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Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique,
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Abstract. For a stochastic process reset at random times, we discuss to what
extent the probabilities of some orderings of observables associated with the
intervals of time between resetting events are universal, i.e., independent of the
choice of the observables, and in particular, to what extent universality depends
on the choice of the distribution of these intervals. For Poissonian resetting,
universality relies only on a combinatorial argument and on the statistical
properties of Poisson points. For a generic distribution of time intervals between
resets, universality no longer holds in general.
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Consider n iid (independent, identically distributed) continuous random variables
X1, X2, . . . , Xn. The probability that any of them, say the last one for example, is
larger than the n− 1 remaining ones is equal to 1/n. This also holds if these variables
are exchangeable, i.e., if a permutation of these variables does not change their joint
distribution [1]. Exchangeable random variables are not necessarily independent, while
iid random variables are necessarily exchangeable. Similarly, the probability that
these random variables are monotonically increasing, P(X1 < X2 < · · · < Xn), (or
decreasing) is equal to 1/n!. One can likewise consider events involving orderings of
these random variables of increasing complexity, whose probability can be arbitrarily
difficult to determine (see, e.g., [2]). These probabilities are independent of the
common distribution of X1, X2, . . . , Xn, as long as the latter is continuous.

If now the number of these random variables is no longer fixed but is itself a
fluctuating quantity, that henceforth we denote byNt (with a notation that will shortly
appear natural), then the probability of these different events should be averaged with
the probability P(Nt = n).

In this letter we will expand on the aforementioned topic. In particular, we will
provide an alternative perspective on certain questions raised in the recent work [3].
As stated in [3], given a random process undergoing stochastic resetting at a constant
rate r to a position drawn from some distribution, if the random variables Xi are
dynamical observables associated with the intervals between resetting events‡, the
probabilities of the events oulined above (such as the last element being greater than
all preceding elements or the sequence being monotonically increasing) are ‘super-
universal’, meaning they are independent of the specific process, the observables Xi

and the distribution of the restarting position.
As we now demonstrate, this universality is a simple consequence of the properties

of Poisson processes. Indeed, since the stochastic process is reset at a constant rate
r§, the resetting events are Poisson points in time, with the following properties [4]:

(i) the number of points in (0, t) is given by the Poisson distribution

P(Nt = n) = e−rt (rt)
n

n!
, (1)

(ii) the Nt +1 intervals between these points in (0, t) are statistically equivalent, i.e.,
exchangeable.

The first property is well known. The second one is a consequence of a
fundamental property of Poisson points, stating that, conditional on Nt = n, the
positions of these n events in (0, t) are independently and uniformly distributed on
(0, t).

Consider now the observablesX1, X2, . . . , XNt+1 associated with these Nt+1 time
intervals between resetting events. For instance, if the stochastic process is Brownian
motion, X can be the length τ of the interval between two resettings, or the maximum
attained by the process in this interval, or else the area under the process, and so on.
From the above, it is clear that for each of these cases the corresponding random
variables are exchangeable. Hence, denoting by Q1(t) the probability that the last
observable (be it the interval τ , or the maximum, or the area, etc) is larger than all
previous ones, we have

Q1(t) =

〈

1

Nt + 1

〉

=
∑

n≥0

P(Nt = n)

n+ 1
=

1− e−rt

rt
≈

t→∞

1

rt
. (2)

‡ We refer the reader to [3] for an introduction to the literature on resetting processes.
§ For simplicity we assume that the process is reset at the origin.
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Similarly, let Q2(t) be the probability of the event {X1 < X2 < · · · < XNt+1}. We
have

Q2(t) =

〈

1

(Nt + 1)!

〉

=
∑

n≥0

P(Nt = n)

(n+ 1)!
=

e−rt

√
rt
I1(2

√
rt) ≈

t→∞

e−rt+2
√
rt

2
√
π(rt)3/4

, (3)

where In(z) is the nth modified Bessel function of the first kind. The same applies to
the probabilities of more complex orderings of events.

These conclusions were reached in [3] using a more computational scheme. The
analysis given above is purely combinatorial and relies on the statistical properties of
Poisson points.

The natural question to ask at this stage is: what happens if the Nt+1 intervals in
(0, t) are no longer exchangeable? As is well known, the Poisson process is the simplest
renewal process [5, 6], where the interarrival times are exponentially distributed with
density ρ(τ) = re−r τ and where the number of events Nt in (0, t) is given by the
Poisson distribution (1). For any renewal process, the intervals of times between
events obey the sum rule

τ1 + τ2 + · · ·+ τNt
+Bt = t, (4)

where, Bt, the last interval between the observation time t and the last event to
its left, named the backward recurrence time, is, in the particular case of a Poisson
process, statistically equivalent to the Nt intervals τ1, . . . , τNt

. This property was used
above to demonstrate the universality of the results (2), (3), regardless of the choice
of the observable X . For a generic renewal process however, i.e., for a generic density
ρ(τ) of the intervals of time between resetting events, this property no longer holds,
namely the last interval is no longer statistically independent of the Nt previous ones.
One is therefore naturally led to investigate what remains of the universality property
mentioned above.

As a test bed, let us focus on the probability that the last observable is the largest
one, applied, firstly, to the case where the observable in question is the interval length
itself,

Q
(τ)
1 (t) = P

(

Bt > max(τ1, . . . , τNt
)
)

, (5)

where the superscript in the notation of this probability enhances the fact that the
latter depends on the choice of the observable, as we now show. The analysis of this
case was given in [7], with the following result, in Laplace space,

L
t
Q

(τ)
1 (t) = Q̂

(τ)
1 (s) =

∫ ∞

0

db
e−sb

∫∞
b

dτ ρ(τ)

1−
∫ b

0 dτρ(τ)e−sτ
. (6)

If ρ(τ) = r e−r τ , the result (2) is recovered [7]. If ρ(τ) is uniform U(0, 1), it is found
that (see [7])

Q
(τ)
1 (t) ≈

t→∞

1

2 t2
, (7)

which is different from the naive estimate Q
(τ)
1 (t) ≈ 〈1/(Nt + 1)〉, decaying as 1/2t

when t→ ∞.
If observables X1, X2, . . . are attached to the intervals τ1, τ2, . . ., skipping all

details, (6) is generalised into

L
t
Q

(X)
1 (t) =

∫ ∞

0

dy
ψ̂(y, s)

1−
∫ y

0 dx ϕ̂(x, s)
, (8)
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with the definitions

ϕ̂(x, s) =

∫ ∞

0

dτ e−sτρ(τ)f(x|τ), ψ̂(y, s) =

∫ ∞

0

db e−sbp(b)f(y|b),

where f(x|τ) = d
dxP(X < x|τ) is the conditional density of X given τ , and

p(b) =
∫∞
b

dτ ρ(τ). One can check on these expressions that if X ≡ τ , then (8)
reduces to (6). On the other hand, analysing (8) in all generality is not a simple task,
therefore we shall resort to a heuristic argument in order to obtain an asymptotic

estimate of Q
(X)
1 (t).

Consider the Nt observablesX1, X2 . . ., obtained by taking some random function
of the intervals τ1, . . . , τNt

. For example,

X1 = τa1 ζ1, . . . , XNt
= τaNt

ζNt
,

where a is a positive exponent and ζ1, ζ2, . . . are iid random variables, independent
of τ1, τ2, . . ., whose common density ρ(τ) is taken uniform U(0, 1), as in the example
leading to (7). Likewise, we associate the random variable Ba

t ζNt+1 to the last interval
Bt. Furthermore, we define XNt+1 = τaNt+1 ζNt+1, where the interval τNt+1 straddles
the observation time t, and the excess time Et by Bt+Et = τNt+1 [5, 6]. The question
is whether the probability

Q
(X)
1 (t) = P(Ba

t ζNt+1 > max(X1, . . . , XNt
)) (9)

is the same as (5) or at least has the same asymptotic behaviour (7). A heuristic
argument, based on extreme value statistics, and confirmed by numerical simulations,
shows that, if the common distribution of ζ1, ζ2, . . . is exponential, or Gaussian, or
more generally is in the Gumbel class [9], then

Q
(X)
1 (t) ≈

t→∞

c

a t ln t
, (10)

which is quite different from the result (7). The constant c appearing in (10) depends
on the choice of distribution for the random variables ζ.

The heuristic argument is as follows. Let for example ζ1, ζ2, . . . be exponentially
distributed random variables with unit parameter. Let us fix Nt = n, and let us
denote by X(1) the largest amongst the n+1 random variables X1, . . . , Xn+1, and by
X(2) the second largest one. When the event {Ba

t ζn+1 > max(X1, . . . , Xn)} holds,
then necessarily X(1) = Xn+1 ≡ τan+1ζn+1, which occurs with probability 1/(n + 1),
and X(2) = max(X1, . . . , Xn). Given this holds, we have the following equivalent
inequalities

Ba
t ζn+1 > X(2) ⇐⇒ (τn+1 − Et)

aζn+1 > X(2) ⇐⇒
(

1− Et

τn+1

)a

X(1) > X(2). (11)

We note that in order for X(1) and X(2) to be the largest observables, asymptotically,
i.e., when n and t are large, the intervals attached to them are necessarily close to
unity, which entails that Et ≪ 1, as well as X(1) ≈ ζ(1), X(2) ≈ ζ(2). Therefore the
rightmost inequality in (11) can be rewritten as

1− a
Et

τn+1
>
X(2)

X(1)
≈ ζ(2)
ζ(1)

,

which leads finally, in the asymptotic regime, to the equivalence

Ba
t ζn+1 > X(2) ⇐⇒ Et <

ζ(1) − ζ(2)

a ζ(1)
. (12)
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At large times the distribution of Et becomes stationary, i.e., Et → Eeq, with (see
e.g., [8])

P(Eeq < x) =
1

〈τ〉

∫ x

0

de (1− e) ≈ x

〈τ〉 , (13)

because x (playing the role of the right-hand side of (12)) is small (see (15)). So

P(Ba
t ζn+1 > X(2)) ≈

ζ(1) − ζ(2)

a〈τ〉ζ(1)
. (14)

Using a well-known extreme value statistics argument, we have, for large n,

e−ζ(1) ≈ ξ1
n
, e−ζ(2) ≈ ξ1 + ξ2

n
,

where ξ1 and ξ2 are exponentially distributed with parameter unity, hence

ζ(1) − ζ(2)

ζ(1)
≈

ln ξ1+ξ2
ξ1

lnn
. (15)

Averaging this expression on ξ1 and ξ2, we finally get, after multiplication of (14) by
1/(n+ 1) and replacement of n by t/〈τ〉,

Q
(X)
1 (t) ≈

t→∞

1

a t ln t
,

which is (10) with c = 1. This very reasoning can be extended to other distributions of
the random variables ζ1, ζ2, . . .. For instance if the latter variables are uniform U(0, 1),
one obtains

Q
(X)
1 (t) ≈

t→∞

√

π

16 t3
, (16)

which again is different from (7).
Comparing (7) to (10) and (16) shows that the degeneracy (independence in

the choice of observable) holding for Poissonian resetting (see (2)) is lifted, i.e., the

probability Q
(X)
1 (t) now depends on the choice of the observable X , with different

expressions according to whether X ≡ τ or X ≡ τaζ, as soon as ρ(τ) is no longer
exponential.

The question of whether universality extends beyond the Poissonian resetting
protocol, i.e., with a non-exponential distribution ρ(τ) was raised in [3], where it
was anticipated that this universality would still hold, however only for large t, and
provided ρ(τ) decays sufficiently fast at large τ . As demonstrated above, this does
not hold true in general. A complete discussion of universality beyond this point
would require a thorough investigation. At the very least, the analysis given above
demonstrates the role played by the last item (interval or observable attached to

the latter) for the determination of Q
(X)
1 (t). For probabilities of other orderings of

X1, X2, . . . (such as for example Q
(X)
2 (t)), the role of the last element is probably all

the less important as the definitions of the corresponding events give less weight to
this last element.

As a corollary of the above, a way of restoring exchangeability at any finite time
consists in considering the Nt first intervals only, discarding the last one, Bt. Now,
since these intervals are statistically equivalent, the same holds for any observable
associated with these intervals. Hence the universality property holding with Poisson
points for the complete sequence X1, . . . , XNt+1 now holds for the restricted sequence
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X1, . . . , XNt
regardless of the choice of density ρ(τ). This is illustrated below on a few

examples.
Consider first the probability that the last observable of the sequence is the largest

one, denoted by q1(t)‖. Then, for any distribution of the intervals ρ(τ), and for any
choice of the observables attached to these intervals, we have

q1(t) =

〈

1

Nt

〉

,

(where Nt > 0). For example, for Poisson points, with ρ(τ) = e−rτ , this probability
was computed in [7], with the result

q1(t) = e−rt

∫ rt

0

du
eu − 1

u
≈

t→∞

1

rt
,

which has the same asymptotic behaviour as in (2). This asymptotic behaviour also
holds for any distribution of the intervals with a finite first moment [7]. For a generic
density ρ(τ), in Laplace space, we have [7],

L
t
q1(t) = −1− ρ̂(s)

s
ln(1− ρ̂(s)).

As an application, let us consider a simple example of a distribution ρ(τ) with a fat
tail, namely such that ρ̂(s) = e−

√
s. We obtain

q1(t) ≈
t→∞

ln(4t) + γ

2
√
πt

,

(see [7]) where γ is Euler’s constant.
Likewise, the probability of the event {X1 < X2 < · · · < XNt

} is, for any
distribution of the intervals ρ(τ),

q2(t) =

〈

1

Nt!

〉

,

hence, for Poisson points, for example,

q2(t) = e−rtI0(2
√
rt) ≈

t→∞

e−rt+2
√
rt

2
√
π(rt)1/4

,

which decays slightly slower than (3). For a generic density ρ(τ), in Laplace space, we
have

L
t
q2(t) = −1− ρ̂(s)

s
eρ̂(s).

For the example of ρ̂(s) = e−
√
s, we obtain

q2(t) ≈
t→∞

e√
πt
.

In Laplace space, more complicated expressions would be obtained for the case of more
complex orderings of events.

Other considerations on the role of the last interval in renewal processes can be
found in [7]. As a final comment, the role of the last item, highlighted in the present
letter, is reminiscent of the role of boundary conditions in the language of statistical
physics.

‖ This probability was denoted by QIII(t) in [7].
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