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Replicating a renewal process at random times

Claude Godrèche and Jean-Marc Luck

Abstract We replicate a renewal process at random times, which is equivalent to nesting
two renewal processes, or considering a renewal process subject to stochastic resetting. We
investigate the consequences on the statistical properties of the model of the intricate inter-
play between the two probability laws governing the distribution of time intervals between
renewals, on the one hand, and of time intervals between resettings, on the other hand. In
particular, the total number Nt of renewal events occurring within a specified observation
time exhibits a remarkable range of behaviours, depending on the exponents characterising
the power-law decays of the two probability distributions. Specifically, Nt can either grow
linearly in time and have relatively negligible fluctuations, or grow subextensively over time
while continuing to fluctuate. These behaviours highlight the dominance of the most regular
process across all regions of the phase diagram. In the presence of Poissonian resetting, the
statistics of Nt is described by a unique ‘dressed’ renewal process, which is a deformation
of the renewal process without resetting. We also discuss the relevance of the present study
to first passage under restart and to continuous time random walks subject to stochastic
resetting.

1 Introduction

A renewal process is a stochastic model in which events occur randomly over time, resetting
the clock for the next event. The interarrival times between events are independent and
identically distributed (iid) random variables with a common arbitrary distribution. The
Poisson process, which corresponds to choosing an exponential distribution of interarrival
times, is the simplest example of a renewal process [1,2,3,4,5].

In this work, we investigate a theoretical model consisting of two nested renewal processes.
The first one—dubbed the internal process—is replicated at random intervals of time, drawn
from a distribution characterising the second one—dubbed the external process. The prob-
ability density of interarrival times of the internal process will be denoted by ρ(τ), and that
of the external process by f(T ). An illustration is provided in figure 1, which depicts five
cycles of replication of the internal process, of respective durations T 1, . . . ,T 4 and Bt. The
last interval, Bt, represents the backward recurrence time, or age of the external process at
time t, which is the time elapsed since the last replication event.

To provide a concrete example, in a manufacturing setting, the two nested renewal pro-
cesses would correspond respectively to the intervals of time between component failures and
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Fig. 1 An example of two nested renewal processes with five cycles of replication of the internal renewal
process. Renewal events of the internal process are figured by crosses, replication events (or resettings) due
to the external renewal process by dots. The intervals of time between two crosses, τ1, τ2, . . . , have common
probability density ρ(τ). The intervals of time between two dots, T 1,T 2, . . . , have common probability
density f(T ). The last interval, Bt, represents the backward recurrence time or the age of the external
process at time t, which indicates the time elapsed since the last replication (or resetting). In this example,
the total number Nt of internal renewals (i.e., of crosses) is equal to 6.

the intervals of time between component replacements. In the context of reliability analy-
sis, the concept of nested renewal processes has been previously introduced in [6], with the
following definitions. Shocks occur to a component randomly in time in an ordinary renewal
process, each shock causing a random amount of damage. Damages are identically and in-
dependently distributed, and damages resulting from shocks are accumulated. In addition to
this cumulative process there is a second ordinary renewal process in time the effect of which
is to restart the cumulative renewal process at zero accumulated shocks and consequently zero
cumulative damage. This represents component replacement. This reference will be further
examined later. In a broader context, the idea of nesting stochastic processes (not limited to
renewal processes) across different scales has been investigated in other disciplines, including
the stochastic modeling of precipitation. For example, in [7], an external model is employed
to represent the processes related to storm occurrences and the time periods between them,
while an internal model nested within it is utilised to capture the variability of rainfall within
a given storm.

Interestingly, the model described above, involving two nested renewal processes, happens
to be a specific instance of a class of models which has been recently popularised under the
name of stochastic processes under resetting. Processes of this type have been studied for a
long time, as documented in [8] for a historical perspective. Lately, these models have gained
significant attention in the field of statistical physics (see [9,10] for reviews). One notable
aspect of the present study is that the stochastic process subject to resetting is, in fact, a
renewal process itself. This (internal) renewal process, characterised by the density ρ(τ), is
reset at random time intervals, which are drawn from the density f(T ), characterising the
external renewal process.

A simple example of such a process is naturally encountered when considering the simple
random walk with steps ±1 (or Pólya walk [11]) on the one-dimensional lattice, subject to
stochastic resetting1. The events of the internal process are the epochs of the returns to the
origin of the walk, while the events of the external process are the reset events in discrete
time, corresponding to restarting the walk with a given probability. A companion paper will
be entirely dedicated to the study of this process [16]. Another example where such a process
is encountered is when considering the continuous time random walk under resetting, as will
be commented upon later (see sections 2 and 8).

1 For reference, other aspects of the Pólya walk, or of more general lattice random walks, subject to
stochastic resetting, have been explored in [12,13,14,15].
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Fig. 2 The four different regions of the phase diagram in the θ1–θ2-plane. In regions A and B, the number
Nt of internal events (figured by crosses in figure 1) grows linearly with time and has relatively negligible
fluctuations around its mean value. In regions C and D,Nt grows subextensively in time and keeps fluctuating.
The notation θ1,2 = ∞ refers to thin-tailed distributions that possess finite moments of all orders. Poissonian
resetting (see section 6.2) lies on the line θ2 = ∞.

In this paper, we consider the more abstract model of nested renewal processes in full
generality, which implies that we shall allow the two distributions associated with the internal
and external renewal processes to be arbitrary2. We shall be mostly interested in the case
where these distributions have power-law tails with respective exponents θ1 and θ2 (see (3.1)).

The main objective of this study is the statistical analysis of the total number of internal
events (represented by crosses in figure 1) up to time t, denoted by Nt. Due to the interplay of
two probability distributions, this quantity, despite its apparent simplicity, displays a diverse
range of behaviours. These are summarised in figure 2, which illustrates the phase diagram
of the model in the θ1–θ2-plane. In this representation, the symbols θ1,2 = ∞ correspond to
thin-tailed distributions with finite moments of all orders. This diagram is divided into four
distinct regions, exhibiting different asymptotic forms for the statistics of Nt in the long-time
regime of interest.

A remarkable feature of the model emerges from this study. Specifically, we observe
that the more regular of the two renewal processes, i.e., the one with the larger of the two
exponents θ1 and θ2, always governs the overall regularity of the entire process, as we shall
now elaborate.

1. In regions A and B, where the larger exponent is greater than 1, ⟨Nt⟩ grows linearly in
time, whereas the fluctuations of Nt around its mean value are relatively negligible, as in
the usual framework of renewal theory in the stationary regime (θ > 1).
More precisely, in region A, such that θ2 > 1, we have

⟨Nt⟩ ≈
⟨NT ⟩
⟨T ⟩ t,

2 Reset stochastic processes with arbitrary distributions of the time intervals between resettings have been
considered in prior works such as [17,18,19,20,21,22,23].
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where ⟨NT ⟩ is the mean number of internal events between two resettings, defined in (4.1).
In region B, such that θ2 < 1 < θ1,

⟨Nt⟩ ≈
t

⟨τ ⟩ ,

with the interpretation that, in this region of the phase diagram, asymptotically, the
internal renewal process is not influenced by the external one.

2. In regions C and D, where the larger exponent is less than 1, Nt grows subextensively
in time, with an exponent smaller than unity, and keeps fluctuating, as in the usual
framework of renewal theory in the self-similar regime (θ < 1).
More precisely, in region C, where θ1 < θ2, Nt grows as t

θ2 and is asymptotically propor-
tional to the rescaled random variable Xθ2 , which is part of usual renewal theory, and
whose density fXθ2

(x) is given by (2.29),

Nt ≈ ⟨NT ⟩
Xθ2

Γ (1− θ2)

(
t

T0

)θ2

.

Thus, Nt is asymptotically equal to the product of the mean number ⟨NT ⟩ of internal
events between two resettings by the random number of resettings (see (2.28)).
In region D, where θ1 > θ2, Nt grows as t

θ1 and is asymptotically proportional to a novel
rescaled random variable Yθ1,θ2 ,

Nt ≈
Yθ1,θ2

Γ (1− θ1)

(
t

τ0

)θ1

.

The distribution of this dimensionless random variable is universal, depending only on the
two exponents θ1 and θ2. Its probability density is depicted in figure 7, for the particular
example of θ1 = 1/2, and for several values of θ2.

This dominance of the more regular process also manifests itself in the two special cases
where either the internal renewal process, or the external one, are Poisson processes. In
both cases, regardless of the distribution of the other process, Nt exhibits linear growth
over time. These two situations are different, though. If the internal process is Poisson,
then Nt is Poisson too, regardless of the distribution of the other process. If the external
(resetting) process is Poisson, the statistics of Nt is exactly described by a single renewal
process defined by a dressed density ρ(r)(τ), whose expression is given in (6.9), in terms of
the resetting rate r and of the probability density ρ(τ) of the internal process. This dressed
density is exponentially decaying, regardless of the nature of ρ(τ). The superscript in ρ(r)(τ)
is an abbreviation for replication or resetting, terms that we shall use interchangeably.

Beyond the analysis of the statistics of Nt, a second objective of the present paper is
to extend the study to other facets of the model and highlight how the ramifications of the
theory connect with other studies. We shall thus be led to consider the question of first-
passage time under restart for the process at hand, then revisit some questions related to
the study of continuous time random walks under resetting.

The paper is structured as follows. Section 2 provides an overview of key concepts and
results in renewal theory that will be used in the subsequent parts of this paper. The mate-
rial presented there is classical, with the exception of some more specific results. Section 3
gives the precise definition of the process under study, as well as the derivation of the key
equation (3.9) for the statistics of Nt, which is at the basis of subsequent developments.
Section 4 contains a detailed description of the phase diagram of the model, summarised
above, including all phase boundaries. Section 5 is devoted to the analysis of the asymptotic
distribution of Nt in region D (0 < θ2 < θ1 < 1), and to an in-depth study of the universal
distribution of the scaling variable Yθ1,θ2 . Section 6 applies the previous formalism to two
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special cases, where either the internal process, or the external one, are Poissonian. Section 7
deals with the distribution of the first-passage time for the occurrence of a cross (renewal
event of the replicated process) in the general case of an arbitrary density f(T ), where there
is no renewal description of the sequences of crosses. Section 8 is focussed on the number
of internal events in the last interval Bt (see figure 1), which is one of the primary quanti-
ties analysed in [6], thus extending the scope of the analysis made in this reference to the
entire θ1–θ2-plane. This section also makes the connection of the process under study with
continuous time random walks under resetting.

2 Overview of key concepts in renewal theory

This section provides an overview of key concepts and results in renewal theory that will be
used in the subsequent parts of this paper. Classical treatments of the subject can be found
in [1,2,3,4,5]. Here we follow the approach presented in [24] and supplement it with some
additional material.

2.1 Definition of an ordinary renewal process

Let us consider events occurring at the random epochs of time t1, t2, . . ., from some time
origin t = 0. The origin of time is taken on one of these events. When the intervals of
time between events, τ 1 = t1, τ 2 = t2 − t1, . . ., are iid random variables with common
density ρ(τ), the process thus defined is a renewal process3. Otherwise stated, τ 2, τ 3, . . . are
probabilistic copies of the first time interval τ 1

4. Hereafter we shall use the terms event or
renewal interchangeably.

A simple example of a renewal process in discrete time is given by the times of return
to the origin of the Pólya walk mentioned earlier. An even simpler example arises when
considering a continuous time random walk (ctrw) [25,26]. A ctrw is a random walk
subordinated to a renewal process. This means that the waiting times between jumps of the
walk, are, by definition, the time intervals of a renewal process. The jumps are iid random
variables η1, η2, . . . , with a distribution independent of that of the waiting times. In the
framework of renewal theory a ctrw is a renewal process with reward [3]. The cumulative
process considered in [6], recalled above, gives an illustration of a ctrw, where the shocks,
causing damages of magnitude η1, η2, . . . , correspond to the jumps. The cumulative damage
corresponds to the position of the walker. Moreover, as discussed later (see section 8), this
process is subject to resettings (replacements in [6]).

The survival probability, that is, the probability that no event occurred up to time t
(without counting the event at the origin), is given by

R(τ) = P(τ > τ) =

∫ ∞

τ

dt ρ(t). (2.1)

The tail behaviour of this distribution plays a crucial role in the subsequent analysis (and
more generally in the study of renewal processes). It induces a distinction between two main
classes of distributions, as summarised below.

3 We denote the random intervals of time τ1, τ2, . . . by bold letters, and their values in a given realisation
of the process by the regular letters τ1, τ2, . . . . The same convention applies to the sequence of time intervals
T 1,T 2, . . . defined in section 3. This avoids any ambiguity (see, e.g., the comment below (3.3)).

4 We do not consider here other cases of renewal processes where the first time interval τ1 has a different
distribution from that of the following time intervals τ2, τ3, . . . .
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Thin-tailed distributions

If the density ρ(τ) is either supported by a finite interval, or decaying faster than any power
law, all the moments of the random variable τ are finite. The Laplace transform of ρ(τ),
where s is conjugate to τ , is then given by the power series

L
τ
ρ(τ) = ρ̂(s) = ⟨e−sτ ⟩ =

∑
k≥0

(−s)k
k!

⟨τ k⟩.

More specifically, the above series is convergent if ρ(τ) either has finite support or decays
exponentially or faster, whereas it is only a formal power series if the decay of ρ(τ) is slower
than exponential.

Fat-tailed distributions

If ρ(τ) is characterised by a power-law fall-off with an arbitrary index θ > 0, parametrising
its tail as

R(τ) ≈
(τ0
τ

)θ

, (2.2)

where τ0 is a microscopic time scale, we have

ρ(τ) ≈ c

τ1+θ
, c = θτθ0 . (2.3)

Here, τ has only finitely many moments, as ⟨τ k⟩ is convergent only for k < θ.
For any value of the index θ that is not an integer, the Laplace transform ρ̂(s) of the

density has a singular part as s→ 0, of the form

ρ̂(s)sg ≈ c Γ (−θ)sθ.

We thus have

ρ̂(s) ≈
{
1− a sθ (θ < 1),
1− ⟨τ ⟩s+ a sθ (1 < θ < 2),

(2.4)

and so on, with more regular terms as θ lies between higher consecutive integers, and where
the positive amplitude a reads

a = c |Γ (−θ)| = |Γ (1− θ)|τθ0 . (2.5)

Whenever the index θ is an integer, ρ̂(s) is affected by logarithmic corrections. We mention
for further reference the case θ = 1, where we have

R(τ) ≈ τ0
τ
, ρ(τ) ≈ τ0

τ2

and

ρ̂(s) ≈ 1 + τ0s ln(τ⋆s). (2.6)

This expression involves, in general, two different microscopic time scales, the amplitude τ0
(describing the tail of the distribution) and the finite part τ⋆ (depending on details of the
whole distribution).

The class of thin-tailed distributions, where all the moments of τ are finite, corresponds
formally to θ = ∞.
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2.2 The number Nt of renewals

The number of renewals Nt that occur in the time interval (0, t) satisfies the condition

P(Nt ≥ n) = P(tn ≤ t), (2.7)

where the sum of the first n time intervals,

tn = τ 1 + τ 2 + · · ·+ τn, (2.8)

is the waiting time until the occurrence of the nth event, or, for short, the time of the nth
renewal. Correspondingly, the time intervals τ 1, τ 2, . . . obey the sum rule

τ 1 + τ 2 + · · ·+ τNt
+ bt = t, (2.9)

where bt is the backward recurrence time, or the age of the renewal process at time t, which
measures the time elapsed since the last renewal event. The distribution of Nt is given by

pn(t) = P(Nt = n)

=

∫
dτ1 . . . dτn db ρ(τ1) . . . ρ(τn)R(b) δ

( n∑
i=1

τi + b− t
)

= ((ρ⋆)n ⋆ R)(t), (2.10)

where the star denotes a temporal convolution and (ρ⋆)n denotes the nth convolution of the
density ρ(t). We have in particular

p0(t) = R(t) (2.11)

(see (2.1)). In Laplace space, (2.10) reads

p̂n(s) =L
t
pn(t) = ρ̂(s)n R̂(s), (2.12)

with

R̂(s) =
1− ρ̂(s)

s
. (2.13)

The distribution of Nt can be expressed compactly through its probability generating
function

Z(z, t) = ⟨zNt⟩ =
∑
n≥0

zn pn(t). (2.14)

Using (2.12), (2.13), this yields, in Laplace space,

Ẑ(z, s) =L
t
⟨zNt⟩ =

∑
n≥0

zn p̂n(s) =
R̂(s)

1− zρ̂(s)
,

i.e.,

Ẑ(z, s) =
1− ρ̂(s)

s(1− zρ̂(s))
. (2.15)

Note that Ẑ(1, s) = 1/s, as it should be. Expressions for the moments ⟨Nk
t ⟩ in Laplace space

can be obtained by differentiating (2.15) with respect to z at z = 1. We obtain in particular

L
t
⟨Nt⟩ = z

∂

∂z
Ẑ(z, s)

∣∣∣
z=1

=
ρ̂(s)

s(1− ρ̂(s))
, (2.16)

L
t
⟨N2

t ⟩ =
(
z
∂

∂z

)2

Ẑ(z, s)
∣∣∣
z=1

=
ρ̂(s)(1 + ρ̂(s))

s(1− ρ̂(s))2
. (2.17)
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2.3 Mean of the single-interval distribution

Another quantity of interest for the sequel is the mean of the single-interval distribution, that
is, the distribution of any of the intervals τ 1, τ 2, . . . , τNt

subject to the condition (2.9). This
observable, denoted by τ t is defined provided that Nt ≥ 1. In the event where Nt = 0, which
occurs with probability p0(t) given by (2.11), τ t is conventionally set to zero and therefore
does not contribute to its mean. We thus have, taking τ t to be the first interval,

⟨τ t⟩ =
∑
n≥0

∫
dτ1 . . . dτn db τ1 ρ(τ1) . . . ρ(τn)R(b) δ

( n∑
i=1

τi + b− t
)
. (2.18)

In Laplace space, it is readily found that [24]

L
t
⟨τ t⟩ =

1

s

∫ ∞

0

dτ τ ρ(τ)e−sτ = −1

s

dρ̂(s)

ds
. (2.19)

2.4 Asymptotic distribution of the time of the nth renewal

As can be seen on (2.7), the two quantities Nt and tn represent complementary facets of a
renewal process. In particular the asymptotic behaviours of these quantities in the long-time
regime go hand in hand. We start by discussing the simpler case of tn, before delving in that
of Nt in the next section.

As we now show, when the number n of time intervals becomes large, the asymptotic
growth of tn obeys the following dichotomy, dictated by the law of large numbers.

Finite ⟨τ ⟩

In this case, i.e., for θ > 1, we have

⟨tn⟩ = n⟨τ ⟩. (2.20)

According to the law of large numbers, tn/n → ⟨τ ⟩ when n → ∞, in probability. This
essentially means that typical fluctuations of tn around its mean value grow less rapidly
than linearly in n. These fluctuations are therefore subextensive, i.e., relatively negligible.
They can be characterised more precisely as follows. If Var τ = ⟨τ 2⟩ − ⟨τ ⟩2 is finite, i.e., for
θ > 2, then

Var tn = nVar τ .

According to the central limit theorem, the difference tn − n⟨τ ⟩ grows as
√
n, and has an

asymptotic normal distribution. If, on the other hand, Var τ is divergent, i.e., for 1 < θ < 2,
the difference tn − n⟨τ ⟩ grows as n1/θ, and its asymptotic distribution is a Lévy stable law.

Divergent ⟨τ ⟩

In this case, i.e., for θ < 1, the law of large numbers does not apply. The sum tn grows more
rapidly than linearly in n and keeps fluctuating. Using (2.4) and (2.8), we have indeed

⟨e−stn⟩ = ρ̂(s)n ≈ e−nasθ ,

and therefore (see (2.5))

tn ≈ (an)1/θ Lθ = τ0 (Γ (1− θ)n)
1/θ

Lθ, (2.21)
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where the rescaled random variable Lθ is distributed according to the normalised one-sided
Lévy stable law of index θ, with density

fLθ
(x) =

∫
ds

2πi
esx−sθ (0 < x < +∞). (2.22)

The power-law tail

fLθ
(x) ≈ θ

Γ (1− θ)x1+θ

mirrors that of the underlying density ρ(τ).

Marginal situation

When θ = 1, the first moment ⟨τ ⟩ diverges logarithmically, thus the law of large numbers is
affected by logarithmic corrections. Using (2.6), we have indeed

⟨e−stn⟩ ≈ enτ0s ln(τ⋆s),

and therefore

tn ≈ nτ0

(
ln
nτ0
τ⋆

+Ξ

)
. (2.23)

The expression between the parentheses is the sum of a deterministic component, which grows
logarithmically with n, and of a finite fluctuating part Ξ, following a Landau distribution [27],

fΞ(ξ) =

∫
dz

2πi
ezξ+z ln z (−∞ < ξ < +∞). (2.24)

The right tail of this distribution,

fΞ(ξ) ≈
1

ξ2
(ξ → +∞),

mirrors that of the underlying density ρ(τ), and implies that ⟨Ξ⟩ is logarithmically divergent.

2.5 Asymptotic distribution of the number Nt of renewals

The results summarised below highlight the close connection between the statistics of the sum
tn of the first n time intervals for a fixed large number n of intervals, and of the number Nt

of renewals up to a fixed large observation time t. In particular, the dichotomy between finite
and infinite mean ⟨τ ⟩, described in section 2.4, also prevails for the asymptotic distribution
of Nt (see, e.g., [2,24]).

Finite ⟨τ ⟩

In this case, i.e., for θ > 1, the analysis of (2.16) and (2.17) shows that the mean number of
events scales as

⟨Nt⟩ ≈
t

⟨τ ⟩ , (2.25)

and Nt exhibits subextensive, i.e., relatively negligible, fluctuations around this mean value.
The two ensembles defined above are therefore equivalent, in the sense used in thermody-
namics. In other words, time and the number of events are asymptotically proportional to
each other, as testified by (2.20) and (2.25). Furthermore, these quantities are tightly related,
in the sense that the relative fluctuations between the two quantities are negligible.
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The fluctuations of Nt can be characterised more precisely as follows. If Var τ is finite,
i.e., for θ > 2, we have

VarNt ≈
Var τ

⟨τ ⟩3 t.

The difference Nt − t/⟨τ ⟩ grows as
√
t, and has an asymptotic normal distribution. If Var τ

is divergent, i.e., for 1 < θ < 2, the difference Nt − t/⟨τ ⟩ grows as t1/θ and its asymptotic
distribution is a Lévy stable law. To mention a further subtlety, the variance of Nt grows as
t3−θ, with an exponent larger than the exponent 2/θ describing typical square fluctuations.
The exponent difference 3 − θ − 2/θ = (2 − θ)(θ − 1)/θ is positive and vanishes both for
θ → 1 and for θ → 2 [24].

Renewal processes with a finite mean time interval ⟨τ ⟩ become stationary in the regime
of late times. One-time observables, such as the distribution of Bt or of the excess time
Et = tNt+1 − t, reach well-defined limiting forms, whereas two-time quantities depend solely
on the difference between the two times, asymptotically. For instance, the number of renewals
between times t and t+ t′ only depends on the time separation t′, when t is large [24].

Divergent ⟨τ ⟩

In this case, i.e., for θ < 1, the number Nt of events grows sublinearly with time and keeps
fluctuating. Its mean value can be obtained from (2.4), (2.16), yielding

⟨Nt⟩ ≈
sinπθ

πθ

(
t

τ0

)θ

. (2.26)

Moreover, its full distribution can be derived from (2.12), which translates to

p̂n(s) ≈ asθ−1 e−nasθ . (2.27)

Thus, setting

Nt ≈ Xθ
tθ

a
=

Xθ

Γ (1− θ)

(
t

τ0

)θ

, (2.28)

we find that the probability density of the rescaled random variable Xθ is

fXθ
(x) =

∫
dz

2πi
zθ−1ez−xzθ

(x > 0), (2.29)

which entails that the random variable Xθ can be written as [28,29]

Xθ = L−θ
θ , (2.30)

where the distribution of Lθ is the Lévy stable law (2.22). This manifests the equivalence
of (2.21) and (2.28), under the replacement of Nt by n, and tn by t: in the two ensembles
defined above, the number of events scales as a power of time with exponent θ. However,
at variance with the situation where ⟨τ ⟩ is finite, the asymptotic relations (2.21) and (2.28)
between time and the number of events involve a fluctuating variable, denoted by Lθ or Xθ,
respectively.

Renewal processes with a divergent ⟨τ ⟩ exhibit self-similar behaviour and universality at
late times. In particular, dimensionless observables such as the ratios Bt/t and Et/t, as well
as the rescaled occupation time, have non-trivial limiting distributions, that depend solely
on the exponent θ. Furthermore, the non-stationarity of the processes imply that two-time
quantities depend on both instances of time, asymptotically. For instance, the number of
renewals between times t and t + t′ now depends on both the waiting time t and the time
separation t′, a property referred to as aging [24].
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We also provide, for future reference, several results pertaining to the density fXθ
(x) of

the rescaled random variable Xθ. The integral representation (2.29) implies that fXθ
(x) is

regular at small x:

fXθ
(x) =

1

Γ (1− θ)
− x

Γ (1− 2θ)
+ · · · (2.31)

A saddle-point treatment shows that this density decays as a compressed exponential at
large x, for all 0 < θ < 1, according to

fXθ
(x) ∼ exp

(
−(1− θ)(θθx)1/(1−θ)

)
. (2.32)

This fast decay has two consequences. First, all the moments of Xθ are finite. They are given
by the explicit formula

⟨Xk
θ ⟩ =

k!

Γ (kθ + 1)
. (2.33)

Second, the corresponding Laplace transform f̂Xθ
(u) is an entire function in the whole u-

plane. This reads explicitly [2,28]

f̂Xθ
(u) =

∫ ∞

0

dx e−uxfXθ
(x) =

∑
k≥0

(−u)k
Γ (kθ + 1)

= Eθ(−u), (2.34)

where Eθ(z) is the Mittag-Leffler function of index θ (see [30] for a review)5.
Figure 3 shows plots of the density fXθ

(x) for several values of the index θ (see legend).
This distribution is a monotonically decreasing function of x for θ < 1/2, whereas it exhibits
a non-trivial maximum for 1/2 < θ < 1.

For θ → 0, the distribution of Xθ becomes a simple exponential, with density

fX0(x) = e−x, f̂X0(u) =
1

1 + u
.

For θ = 1/2, the distribution of Xθ is a half-Gaussian, with density

fX1/2
(x) =

e−x2/4

√
π

, f̂X1/2
(u) = eu

2

erfcu, (2.35)

where erfc is the complementary error function.
For θ → 1, the distribution of Xθ becomes degenerate:

fX1(x) = δ(x− 1), f̂X1(u) = e−u. (2.36)

Marginal situation

When θ = 1, the first moment ⟨τ ⟩ diverges logarithmically and the above results are affected
by logarithmic corrections. Let us focus on the mean number Nt of events. Inserting the
asymptotic expression (2.6) of ρ̂(s) into (2.16), we obtain

L
t
⟨Nt⟩ ≈ − 1

τ0s2 ln(τ⋆s)
,

hence

⟨Nt⟩ ≈
1

ln(t/τ⋆) + γ − 1

t

τ0
, (2.37)

5 The distribution of the random variable Xθ is named Mittag-Leffler by some authors [31]. Another
definition of the Mittag-Leffler distribution is used in other works, though (see, e.g., [32]).
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Fig. 3 Probability density fXθ
(x) of the rescaled random variable Xθ entering (2.28), for several values of

the index θ (see legend).

where γ is Euler’s constant.
Typical fluctuations of Nt around its mean value are again relatively negligible, albeit

marginally, as their typical size is smaller than ⟨Nt⟩ by one power of ln(t/τ⋆). Skipping
details, let us mention the formula

Nt ≈
1

ln(t/τ⋆) +Ξ

t

τ0
, (2.38)

where the random variableΞ has the Landau distribution (2.24). A comparison between (2.23)
and (2.38) again demonstrates a tight match between the two aforementioned ensembles.
Note however that there is no simple connection between (2.37) and (2.38), as ⟨Ξ⟩ is diver-
gent.

2.6 Asymptotic behaviour of the mean of the single-interval distribution

The asymptotic analysis of the quantity defined in (2.18) can be done along the same lines
as above, using (2.19), and leads to the following results.

If, first, ⟨τ ⟩ is finite, i.e., θ > 1, then ⟨τ t⟩ converges to ⟨τ ⟩, in line with (2.25). On the
other hand, if ⟨τ ⟩ is divergent, i.e., θ < 1, we have

⟨τ t⟩ ≈
θτθ0
1− θ

t1−θ. (2.39)

The product of this quantity by the mean number of events (see (2.26)),

⟨Nt⟩⟨τ t⟩ ≈
sinπθ

π(1− θ)
t,

grows linearly in time, with a universal amplitude depending only on the exponent θ. In the
marginal situation where θ = 1, substituting (2.6) in (2.19) yields

L
t
⟨τ t⟩ ≈ −τ0

s
(ln(τ⋆s) + 1),
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hence

⟨τ t⟩ ≈ τ0

(
ln

t

τ⋆
+ γ − 1

)
. (2.40)

Thus, interestingly, (2.37) can be rewritten as

⟨Nt⟩ ≈
t

⟨τ t⟩
.

More precisely,

⟨Nt⟩⟨τ t⟩ =
(
1 +O

( 1

(ln t)2

))
t.

3 Two nested renewal processes: definition and general results

As depicted in figure 1, the stochastic process under study is obtained by the replication
of a renewal process, defined by the sequence τ 1, τ 2, . . . of iid random intervals of time,
with common probability density ρ(τ)—the internal renewal process—according to another
renewal process, defined by the sequence T 1,T 2, . . . of iid random intervals of time, with
common probability density f(T )—the external renewal process. Events separated by the
time intervals τ 1, τ 2, . . . , shown as crosses in figure 1, are referred to as internal events,
whereas events separated by the time intervals T 1,T 2, . . . , shown as dots, are referred to as
external events. We shall alternatively refer to external events as resetting events, since the
process defined in this manner can also be interpreted as a renewal process, characterised by
the density ρ(τ), that is reset at random time intervals, drawn from the density f(T ).

In the following, our objective is to analyse the stochastic process made of these two
nested renewal processes, with a focus on the statistics of the number Nt of internal events
occurring up to time t. We shall be mostly interested in the case where the two probability
densities of the internal and external processes have power-law decays of the form

ρ(τ) ≈ θ1 τ
θ1
0

τ1+θ1
, f(T ) ≈ θ2 T

θ2
0

T 1+θ2
, (3.1)

with arbitrary positive exponents θ1, θ2. As mentioned earlier, thin-tailed distributions with
finite moments of all orders formally correspond to taking infinite values for these exponents.

The number of resetting events, i.e., of time intervals T 1,T 2, . . . , up to time t is denoted
by Mt. These intervals obey the sum rule

T 1 + T 2 + · · ·+ TMt
+Bt = t, (3.2)

where the backward recurrence time Bt is, as previously defined, the time elapsed since the
last resetting event. Within each interval T i, there are NT i internal events induced by ρ(τ).
The total number of these internal events up to time t is given by

Nt = NT 1
+NT 2

+ · · ·+NTMt
+NBt

. (3.3)

In this expression, NT 1
, NT 2

, . . . are doubly stochastic quantities, to be distinguished from
NT1 , NT2 , . . . , since the time variables T 1,T 2, . . . are random variables themselves. The
former are averaged over both internal and external processes, the latter on the internal
process only (see (4.1)).

All information on the distribution of Nt is encoded in the generating function

Z(z, t) = ⟨zNt⟩,
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where the average is taken over the realisations C = {T1, T2, . . . , B} of the external variables
T 1,T 2, . . . , Bt, with the weight (for fixed Mt = ν)

P (C) = f(T1) . . . f(Tν)Φ(B) δ
( ν∑

i=1

Ti +B − t
)
, (3.4)

where

Φ(B) = P(T > B) =

∫ ∞

B

dT f(T )

is the survival probability of the external process, and over the realisations C̃ = {τ1, τ2, . . . , b}
of the internal variables, τ 1, τ 2, . . . , bT , attached to each interval T 1,T 2, . . . , with the weight
(for fixed NT = n)

P (C̃) = ρ(τ1) . . . ρ(τn)R(b) δ
( n∑

i=1

τi + b− T
)
.

Thus
Z(z, t) =

∑
C
P (C)

∑
C̃1,C̃2,...

P (C̃1)zNT1P (C̃2)zNT2 . . . ,

with the notations∑
C

=
∑
ν≥0

∫ ∞

0

dT1 . . . dTν dB,
∑
C̃

=
∑
n≥0

∫ ∞

0

dτ1 . . . dτn db.

The average over the internal variables of each term zNTi with the weight P (C̃) gives a factor
Z(z, Ti) (see (2.14)). We then average over the external variables with the weight P (C) to
obtain

Z(z, t) =
∑
C
P (C)Z(z, T1) . . . Z(z, Tν)Z(z,B). (3.5)

This expression is a convolution, which is easier to handle in Laplace space, leading to

Ẑ(z, s) =L
t
Z(z, t) =

∑
ν≥0

∫ ∞

0

dT1 e
−sT1f(T1)Z(z, T1)· · ·

∫ ∞

0

dB e−sBΦ(B)Z(z,B) (3.6)

with

φ̂(z, s) =

∫ ∞

0

dT e−sT f(T )Z(z, T ), (3.7)

ψ̂(z, s) =

∫ ∞

0

dT e−sTΦ(T )Z(z, T ), (3.8)

thus finally

Ẑ(z, s) =
ψ̂(z, s)

1− φ̂(z, s)
. (3.9)

This key equation is the starting point of all forthcoming developments.
Expressions for the moments ⟨N k

t ⟩ in Laplace space can be obtained by differentiat-
ing (3.9) with respect to z at z = 1, along the lines of (2.16). We thus obtain

L
t
⟨Nt⟩ =

I1(s)

s(1− f̂(s))
+

I2(s)

1− f̂(s)
, (3.10)

L
t
⟨N 2

t ⟩ =
I1(s) + sI2(s) + I3(s) + sI4(s)

s(1− f̂(s))
+

2I1(s)(I1(s) + sI2(s))

s(1− f̂(s))2
, (3.11)
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with the definitions

I1(s) =

∫ ∞

0

dT e−sT f(T )⟨NT ⟩, I2(s) =

∫ ∞

0

dT e−sTΦ(T )⟨NT ⟩,

I3(s) =

∫ ∞

0

dT e−sT f(T )⟨N2
T ⟩, I4(s) =

∫ ∞

0

dT e−sTΦ(T )⟨N2
T ⟩. (3.12)

Let us note, for later reference (see section 8), that, by applying the same reasoning, we
can obtain the expression of ⟨zNBt ⟩ in Laplace space. Indeed, we have (see (3.5))

⟨zNBt ⟩ =
∑
C
P (C)Z(z,B),

hence (see (3.6))

L
t
⟨zNBt ⟩ = ψ̂(z, s)

1− f̂(s)
. (3.13)

It follows that

L
t
P(NBt

= n) =

∫∞
0

dT e−sTΦ(T )pn(T )

1− f̂(s)
, (3.14)

and therefore

L
t
⟨Nk

Bt
⟩ =

∫∞
0

dT e−sTΦ(T )⟨Nk
T ⟩

1− f̂(s)
. (3.15)

In particular,

L
t
⟨NBt⟩ =

I2(s)

1− f̂(s)
, (3.16)

which is the second term on the right-hand side of (3.10). Accordingly, the first term on the
right-hand side of the latter equation represents the Laplace transform of the mean sum of
the first Mt terms in (3.3).

4 Phase diagram

The asymptotic behaviour of the number Nt of internal events in the long-time regime is
determined by the characteristics of the underlying probability densities ρ(τ) and f(T ), and
chiefly by their tail exponents θ1 and θ2. The subsequent analysis evidences four regions,
labelled in order of increasing complexity, and depicted in the phase diagram presented in
figure 2. The behaviour of Nt along the boundaries between these regions is considered at
the end of this section.

Region A (θ2 > 1)

When the first moment ⟨T ⟩ of the external density f(T ) is finite, that is, if θ2 > 1, the first
term in the right-hand side of (3.10) gives the leading contribution as s → 0 (see section 8
for an analysis of the second term). The integral I1(s) defined in (3.12) has a finite limit for
s → 0, which represents the mean number ⟨NT ⟩ of internal events in the random interval
(0,T ) [3,33], i.e.,

I1(0) = ⟨NT ⟩ =
∫ ∞

0

dT f(T )⟨NT ⟩ =
〈∑

n≥0

n pn(T )
〉
, (4.1)
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where the average in the rightmost expression pertains to the random variable T . The de-
nominator of the first term in the right-hand side of (3.10) behaves as ⟨T ⟩s2, thus, finally,

⟨Nt⟩ ≈
⟨NT ⟩
⟨T ⟩ t. (4.2)

The interpretation of this result is intuitively clear: asymptotically, ⟨Nt⟩ is the product of
the mean number ⟨NT ⟩ of internal events between two resettings by the mean number of
resettings in (0, t) (see (2.25)),

⟨Nt⟩ ≈ ⟨NT ⟩⟨Mt⟩. (4.3)

Similarly, the square of I1(0) gives the leading contribution to (3.11) as s → 0. We thus
obtain the estimate

⟨N 2
t ⟩ ≈

⟨NT ⟩2
⟨T ⟩2 t2 ≈ ⟨NT ⟩2⟨Mt⟩2,

demonstrating that typical fluctuations of Nt around its mean value (4.2) are relatively
negligible.

Region B (θ2 < 1 < θ1)

In this region, since θ2 < 1, the first moment of the external density f(T ) is divergent. In
the present context, (2.2), (2.3), (2.4) and (2.5) become

f(T ) ≈ θ2T
θ2
0

T 1+θ2
, Φ(T ) ≈ T θ2

0

T θ2
, (4.4)

1− f̂(s) ≈ a2s
θ2 , a2 = Γ (1− θ2)T

θ2
0 . (4.5)

The integrals I1(s) and I2(s) are divergent for s → 0, and their leading behaviour can be
estimated by using ⟨NT ⟩ ≈ T/⟨τ ⟩. We thus obtain

I1(s) + sI2(s) ≈
a2
⟨τ ⟩ s

θ2−1,

where both integrals contribute to the above estimate, hence

L
t
⟨Nt⟩ ≈

1

⟨τ ⟩s2 ,

and finally

⟨Nt⟩ ≈
t

⟨τ ⟩ . (4.6)

The integrals I3(s) and I4(s) are also divergent as s→ 0. Some algebra yields the estimate

⟨N 2
t ⟩ ≈

t2

⟨τ ⟩2 ,

showing that typical fluctuations of Nt around its mean value are again relatively negligible.
To conclude, asymptotically, the internal process is not influenced by the external one, as
far as the mean ⟨Nt⟩ is concerned.
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Region C (θ1 < θ2 < 1)

In this region, both exponents are less than unity, which implies that large fluctuations in
the statistics of Nt are to be expected. Since θ1 < θ2, it is also expected that the number of
internal events between any two consecutive resettings is typically finite and of the order of
⟨NT ⟩. This is corroborated by the fact that the expression (4.1) for I1(0) is convergent for

θ1 < θ2. Using the estimate (4.5) for 1− f̂(s) in (3.10), we obtain

⟨Nt⟩ ≈ ⟨NT ⟩
sinπθ2
πθ2

(
t

T0

)θ2

. (4.7)

As in region A, ⟨Nt⟩ has the form (4.3), i.e., it is asymptotically the product of the mean
number ⟨NT ⟩ of internal events between two resettings by the mean number of resettings in
(0, t), given in the present case by (2.26).

This product structure extends to the entire asymptotic distribution of Nt. This can be
shown by estimating (3.9) as follows. Anticipating that typical values of Nt will be large,
we set z = e−p, and analyse the regime where p is small. To leading order as p → 0, the
numerator ψ̂(z, s) can be replaced by

ψ̂(1, s) = Φ̂(s) =
1− f̂(s)

s
≈ a2s

θ2−1.

The analysis of the denominator of (3.9) requires some care. We have

1− φ̂(z, s) =

∫ ∞

0

dT f(T )
(
1− e−sTZ(z, T )

)
≈

∫ ∞

0

dT f(T )
(
1− e−sT + p⟨NT ⟩

)
≈ 1− f̂(s) + p⟨NT ⟩
≈ a2s

θ2 + p⟨NT ⟩,

where we used the expansion Z(z, T ) = 1− p⟨NT ⟩+ · · · . Finally, (3.9) reduces to

L
t
⟨e−pNt⟩ ≈ a2s

θ2−1

a2sθ2 + p⟨NT ⟩
,

yielding for the distribution of Nt in the continuum limit

L
t
fNt(n) ≈

a2s
θ2−1

⟨NT ⟩
exp

(
−na2s

θ2

⟨NT ⟩

)
.

Comparing this expression to (2.27), we obtain the scaling result

Nt ≈ ⟨NT ⟩
Xθ2

Γ (1− θ2)

(
t

T0

)θ2

≈ ⟨NT ⟩Mt, (4.8)

where the rescaled random variableXθ2 has density fXθ2
(x), given by (2.29). This expression,

which generalises (4.7), shows that Nt is, asymptotically, equal to the product of the mean
number ⟨NT ⟩ of internal events between two resettings by the random number of resettings
(see (2.28)).
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Region D (θ2 < θ1 < 1)

In this region, the statistics of Nt is more complex. First, since both exponents are less
than unity, large fluctuations in Nt are to be expected. Second, the number of internal
events between any two consecutive resettings is itself expected to diverge for late times.
The integrals I1(s) and I2(s) are indeed divergent as s→ 0. Their leading behaviour can be
estimated by using the expression (2.26) of ⟨NT ⟩, where θ is replaced by θ1. We thus obtain

I1(s) + sI2(s) ≈
sinπθ1
πθ1

T θ2
0

τθ10
Γ (θ1 − θ2)s

θ2−θ1 .

Substituting this expression and the estimate (4.5) for 1− f̂(s) into (3.10), we obtain

⟨Nt⟩ ≈ Eθ1,θ2

sinπθ1
πθ1

(
t

τ0

)θ1

, Eθ1,θ2 =
Γ (θ1 − θ2)

Γ (θ1)Γ (1− θ2)
, (4.9)

which is the product of the enhancement factor Eθ1,θ2 by the mean number of events of the
internal process in the absence of resetting (see (2.26)). The enhancement factor becomes
unity as θ2 → 0, in which case (4.9) gives back (2.26), where θ is replaced by θ1. This factor is
an increasing function of θ2, which diverges as θ2 → θ1 (see section 5.5 for further discussion
on these two limits).

The presence of the enhancement factor Eθ1,θ2 , which depends continuously on the two
exponents θ1 and θ2, confirms that region D is where the distribution of Nt exhibits the
highest level of complexity. The analysis of the entire asymptotic distribution of Nt in this
region is the focus of section 5.

We conclude this section by examining the behaviour of Nt along the boundaries between
the various regions of the phase diagram shown in figure 2, in order of increasing complexity.

Between regions A and B (θ2 = 1 and θ1 > 1)

If θ2 goes to unity from region A, both ⟨NT ⟩ and ⟨T ⟩ diverge at the same pace, and their
ratio goes to the finite limit 1/⟨τ ⟩, hence the expressions (4.2) and (4.6) match smoothly.

Between regions A and C (θ2 = 1 and 0 < θ1 < 1)

Along this phase boundary, ⟨NT ⟩ is convergent, and f̂(s) ≈ 1 + T0s ln(T⋆s), in analogy
with (2.6). Inserting these estimates into (3.10), we obtain

L
t
⟨Nt⟩ ≈ − ⟨NT ⟩

T0s2 ln(T⋆s)
,

hence

⟨Nt⟩ ≈
⟨NT ⟩

ln(t/T⋆) + γ − 1

t

T0
.

This can be rewritten as (see (2.40))

⟨Nt⟩ ≈
⟨NT ⟩
⟨T t⟩

t,

which matches with (4.2). One can verify that typical fluctuations of Nt around its mean
value are marginally negligible. This property, which holds all over region A, is emerging in
region C as well in the limit θ2 → 1 (see (2.36)).
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Between regions B and D (θ1 = 1 and 0 < θ2 < 1)

Along this phase boundary, the integrals I1(s) and I2(s) are divergent as s→ 0. Their leading
behaviour can be estimated by inserting the expression (2.37) of ⟨NT ⟩ into (3.12). We thus
obtain

I1(s) + sI2(s) ≈ − T θ2
0 Γ (1− θ2)

τ0 s1−θ2 ln(τ⋆s)
.

Substituting this expression and the estimate (4.5) for 1− f̂(s) into (3.10), we obtain

L
t
⟨Nt⟩ ≈ − 1

τ0s2 ln(τ⋆s)
,

hence

⟨Nt⟩ ≈
1

ln(t/τ⋆) + γ − 1

t

τ0
,

thus (see (2.40))

⟨Nt⟩ ≈
t

⟨τ t⟩
,

which matches with (4.6).
Typical fluctuations of Nt around its mean are again marginally negligible. This property,

which holds all over region B, is emerging in region D as well in the limit θ1 → 1 (see (5.30)).

Between regions C and D (0 < θ1 = θ2 < 1)

Along this phase boundary, the integral I1(s) is logarithmically divergent, whereas I2(s)
can be neglected. Denoting by θ the common value of θ1 and θ2, and inserting the expres-
sions (2.26) and (3.1) into (3.12), we obtain

L
t
⟨Nt⟩ ≈ − sinπθ

πΓ (1− θ)τθ0

ln s

s1+θ
,

where the finite part of the logarithm has no simple expression in general and will therefore
be omitted. This yields

⟨Nt⟩ ≈
sin2 πθ

π2θ

(
t

τ0

)θ

ln t. (4.10)

At variance with all other phase boundaries, the number Nt of internal events keeps fluctuat-
ing in the present situation. It is indeed clear that Nt is proportional to the reduced random
variable Xθ as the phase boundary is approached from either side. This property, which holds
all over region C, is emerging in region D as well in the limit θ2 → θ1 (see (5.32)). The pro-
portionality constant between Nt and Xθ is determined by comparing the expressions (4.10)
of ⟨Nt⟩ and (2.33) of ⟨Xθ⟩. We thus obtain the asymptotic estimate

Nt ≈
sinπθ

π

Xθ

Γ (1− θ)

(
t

τ0

)θ

ln t

along the boundary between regions C and D.

The quadruple point (θ1 = θ2 = 1)

Skipping every detail, we mention that the mean number of internal events scales as

⟨Nt⟩ ≈
ln ln t

ln t

t

τ0

at the quadruple point where the four regions of the phase diagram meet.
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5 Asymptotic distribution of Nt in region D (0 < θ2 < θ1 < 1)

The growth law (4.9) of the mean number ⟨Nt⟩ of internal events in region D suggests to
postulate the scaling form

Nt ≈
Yθ1,θ2

Γ (1− θ1)

(
t

τ0

)θ1

, (5.1)

in analogy with (2.28), where the rescaled random variable Yθ1,θ2 has a non-trivial universal
distribution depending only on the two exponents θ1 and θ2, whose density will be denoted
by fYθ1,θ2

(y). The current section is dedicated to a thorough examination of this probability
density.

5.1 Fundamental integral equation

Our starting point is again the exact expression (3.9). As in section 4, anticipating that
typical values of Nt are large for late times, we set z = e−p, and analyse the regime where p
is small. The scaling form (2.28) of Nt implies that the generating function Z(z, t) defined
in (2.14) scales as

Z(z, t) ≈ f̂Xθ1
(u), u =

p

Γ (1− θ1)

(
t

τ0

)θ1

(5.2)

(see (2.34)) in the regime where p is small and t is large.
Inserting the tail expressions (4.4) and the scaling form (5.2) into the expression (3.8) for

ψ̂(z, s), and changing the integration variable from T to the corresponding rescaled variable u,
we obtain the scaling form

ψ̂(z, s) ≈ T θ2
0 sθ2−1 I(λ), (5.3)

where

λ = τ0s

(
Γ (1− θ1)

p

)1/θ1

(5.4)

and

I(λ) =
λ1−θ2

θ1

∫ ∞

0

du e−λu1/θ1
u(1−θ2)/θ1−1f̂Xθ1

(u). (5.5)

Using the definition (3.7) of φ̂(z, s), the denominator of (3.9) can be written as

1− φ̂(z, s) = 1−
∫ ∞

0

dT f(T ) e−sTZ(z, T )

= 1− f̂(s) +

∫ ∞

0

dT f(T ) e−sT
(
1− Z(z, T )

)
.

Using again (4.4) and (5.2), we obtain the scaling form

1− φ̂(z, s) ≈ (T0s)
θ2 K(λ), (5.6)

with
K(λ) = Γ (1− θ2) + θ2 J(λ), (5.7)

and

J(λ) =
λ−θ2

θ1

∫ ∞

0

du e−λu1/θ1
u−1−θ2/θ1

(
1− f̂Xθ1

(u)
)
. (5.8)

Finally, inserting (5.3) and (5.6) into (3.9), we are left with the estimate

Ẑ(z, s) ≈ I(λ)

sK(λ)
. (5.9)
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On the other hand, the postulated scaling law (5.1) yields

Ẑ(z, s) ≈
∫ ∞

0

dt e−st

∫ ∞

0

dy e−uyfYθ1,θ2
(y), (5.10)

where u is defined in (5.2). Using the rescaled variable λ introduced in (5.4), as well as
µ = u1/θ1 , whereby st = λµ, we have

Ẑ(z, s) ≈ λ

s

∫ ∞

0

dµ e−λµ

∫ ∞

0

dy e−µθ1yfYθ1,θ2
(y). (5.11)

A comparison between (5.9) and (5.11) corroborates the scaling form (5.1) and yields an
integral equation for the density fYθ1,θ2

(y), of the form

L(λ) = R(λ), (5.12)

with, on the left-hand side,

L(λ) = λ

∫ ∞

0

dµ e−λµ

∫ ∞

0

dy e−µθ1yfYθ1,θ2
(y), (5.13)

and, on the right-hand side,

R(λ) =
I(λ)

K(λ)
. (5.14)

The fundamental equation (5.12) is the starting point of the analysis that follows, where
we successively investigate the moments of Yθ1,θ2 (section 5.2), the behaviour of its probabil-
ity density fYθ1,θ2

(y) at small and large y (sections 5.3 and 5.4), the three limiting situations
corresponding to the edges of region D (section 5.5), a measure of the fluctuations (sec-
tion 5.6), and finally an integral representation of fYθ1,θ2

(y) (section 5.7).

5.2 Moments of Yθ1,θ2

The moments of Yθ1,θ2 can be extracted from (5.12) as follows. Consider first its left-hand
side L(λ) given by (5.13). Expanding the exponential in the innermost integral as a power
series in µθ1 and performing the integrals, we can recast L(λ) as a power series in the variable

ζ = −λ−θ1 , (5.15)

reading

L(λ) ≡ L̃(ζ) =
∑
k≥0

Γ (kθ1 + 1)

k!
⟨Y k

θ1,θ2⟩ ζk. (5.16)

Similarly, by inserting the power series (2.34) for f̂Xθ1
(u) into (5.5) and (5.8) and performing

the integrals, we obtain the following power series in ζ:

I(λ) ≡ Ĩ(ζ) =
∑
k≥0

Γ (kθ1 + 1− θ2)

Γ (kθ1 + 1)
ζk, (5.17)

K(λ) ≡ K̃(ζ) = −θ2
∑
k≥0

Γ (kθ1 − θ2)

Γ (kθ1 + 1)
ζk. (5.18)

The functions Ĩ(ζ) and K̃(ζ) are simple generalisations of the Wright function (see [34]
and references therein). They are analytic in the complex ζ-plane cut along the positive real
axis from 1 to ∞. They are related by the differential identity

Ĩ(ζ) = K̃(ζ)− θ1
θ2
ζK̃ ′(ζ),
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where the accent denotes a differentiation, entailing that (see (5.14))

R(λ) ≡ R̃(ζ) =
Ĩ(ζ)

K̃(ζ)
= 1− θ1

θ2

ζK̃ ′(ζ)

K̃(ζ)
(5.19)

is nearly a logarithmic derivative.
By identifying the coefficients of successive powers of ζ in the power series L̃(ζ) (see (5.16))

and R̃(ζ) (see (5.17), (5.18), (5.19)), we obtain explicit expressions for the moments of Yθ1,θ2 ,
depending only on the exponents θ1 and θ2:

⟨Yθ1,θ2⟩ =
θ1 Γ (θ1 − θ2)

Γ (θ1 + 1)2Γ (1− θ2)
,

⟨Y 2
θ1,θ2⟩ =

4θ1 Γ (2θ1 − θ2)

Γ (2θ1 + 1)2Γ (1− θ2)

+
2θ1θ2 Γ (θ1 − θ2)

2

Γ (θ1 + 1)2Γ (2θ1 + 1)Γ (1− θ2)2
,

⟨Y 3
θ1,θ2⟩ =

18θ1 Γ (3θ1 − θ2)

Γ (3θ1 + 1)2Γ (1− θ2)

+
18θ1θ2 Γ (θ1 − θ2)Γ (2θ1 − θ2)

Γ (θ1 + 1)Γ (2θ1 + 1)Γ (3θ1 + 1)Γ (1− θ2)2

+
6θ1θ

2
2 Γ (θ1 − θ2)

3

Γ (θ1 + 1)3Γ (3θ1 + 1)Γ (1− θ2)3
,

and so on. The expression for ⟨Yθ1,θ2⟩ given above is in accordance with (4.9). Higher moments
have expressions of increasing complexity, involving gamma functions of more and more
different arguments.

In the regime where θ1 and θ2 simultaneously go to 0, the moments of Yθ1,θ2 maintain a
non-trivial rational dependence on the ratio α = θ2/θ1, such that 0 < α < 1. The preceding
expressions indeed reduce to

lim
θ1,θ2→0

⟨Yθ1,θ2⟩ =
1

1− α
,

lim
θ1,θ2→0

⟨Y 2
θ1,θ2⟩ =

2(2− 2α+ α2)

(2− α)(1− α)2
,

lim
θ1,θ2→0

⟨Y 3
θ1,θ2⟩ =

6(6− 12α+ 12α2 − 5α3 + α4)

(3− α)(2− α)(1− α)3
. (5.20)

5.3 Behaviour at small values of Yθ1,θ2

The behaviour of the density fYθ1,θ2
(y) at small y can be extracted from (5.12) by noticing

that y → 0 corresponds to µ→ ∞ and to λ→ 0 (see (5.13)).
Let us assume provisionally that the exponents θ1 and θ2 obey the inequality θ1+θ2 < 1.

The behaviour of I(λ) at small λ can be obtained by inserting into (5.5) the behaviour of

f̂Xθ1
(u) at large u, namely (see (2.31))

f̂Xθ1
(u) ≈ 1

Γ (1− θ1)u
.

We thus obtain

I(λ) ≈ Γ (1− θ1 − θ2)

Γ (1− θ1)
λθ1 .
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The behaviour of J(λ) and K(λ) at small λ read (see (5.7), (5.8))

J(λ) ≈ Cλ−θ2 , K(λ) ≈ Cθ2λ
−θ2 ,

with

C =
1

θ1

∫ ∞

0

du e−λu1/θ1
u−1−θ2/θ1

(
1− f̂Xθ1

(u)
)
.

An integration by parts followed by some algebra yields

C =
Γ (1− θ2/θ1)

θ2
⟨Xθ2/θ1

θ1
⟩,

where Xθ1 has density fXθ1
(x) (see (2.29)). Extending the moment formula (2.33) to the

non-integer value k = θ2/θ1, we obtain

C =
Γ (1− θ2/θ1)Γ (1 + θ2/θ1)

θ2Γ (1 + θ2)
,

and finally

R(λ) ≈ Γ (1− θ1 − θ2)Γ (1 + θ2)

Γ (1− θ1)Γ (1− θ2/θ1)Γ (1 + θ2/θ1)
λθ1+θ2 , (5.21)

as long as the inequality θ1 + θ2 < 1 holds. When this inequality is not obeyed, the above
singular term is still there, but it is subleading with respect to a regular term linear in λ.

The power-law singularity in (5.21) suggests to assume the power-law behaviour

fYθ1,θ2
(y) ≈ Ayω (y → 0). (5.22)

Inserting this scaling expression into (5.13), performing the integrals, and identifying expo-
nents and amplitudes with (5.21) yields

ω =
θ2
θ1

and

A =
Γ (1 + θ2)

Γ (1− θ1)Γ (1− θ2/θ1)Γ (1 + θ2/θ1)2
.

The power-law behaviour (5.22) of the density of Yθ1,θ2 as y → 0 is different from that of the
density of Xθ, which goes to a finite constant as x→ 0 (see (2.31)). However, when θ2 → 0,
the exponent ω tends to zero, and the amplitude A matches with this constant.

5.4 Behaviour at large values of Yθ1,θ2

In order to analyse the tail behaviour of the density fYθ1,θ2
(y) for large values of y, we use the

property that the latter behaviour is related to the asymptotic growth law of the moments
⟨Y k

θ1,θ2
⟩ at large k. The latter can be estimated by considering the denominator K̃(ζ) of the

right-hand side R̃(ζ) of (5.12), given by the power series (5.18). As ζ increases from 0 to 1,
i.e., its radius of convergence, K̃(ζ) decreases from the positive value K̃(0) = Γ (1 − θ2) to
some finite negative value K̃(1). There is therefore a critical value of ζ, denoted by ζc, such
that

K̃(ζc) = 0. (5.23)

Both R̃(ζ) and L̃(ζ) therefore have a simple pole at ζc. As a consequence of (5.16), we have

⟨Y k
θ1,θ2⟩ ∼

k!

Γ (kθ1 + 1) ζkc
, (5.24)
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Fig. 4 Quantity ζc defined by (5.23) and entering the estimates (5.24) and (5.25), plotted against the ratio
α = θ2/θ1 for several values of θ1 (see legend).

up to an inessential constant. Comparing the asymptotic estimate (5.24) to the exact ex-
pression (2.33) of the moments of Xθ, we are led to the conclusion that the tail behaviour
of fYθ1,θ2

(y) is obtained by replacing θ by θ1 and x by the product ζcy in the compressed
exponential estimate (2.32), obtaining thus

fYθ1,θ2
(y) ∼ exp

(
−(1− θ1)(θ

θ1
1 ζcy)

1/(1−θ1)
)
. (5.25)

This result depends on θ2 only through the quantity ζc, defined in (5.23). The latter has
a non-trivial dependence on θ1 and θ2, decreasing from 1 to 0 as θ2 is increased from 0 to θ1.
It is plotted in figure 4 against the ratio α = θ2/θ1 for several values of θ1 (see legend). For
θ2 → 0, it can be argued that ζc departs from unity with an exponentially small singularity
of the form

1− ζc ∼ exp

(
−| ln(1− θ1)|

θ2

)
. (5.26)

For θ2 → θ1, the estimate (5.31), to be derived below, yields the linear behaviour

ζc ≈
π

sinπθ1
(θ1 − θ2). (5.27)

In the regime where θ1 and θ2 simultaneously go to 0, the series (5.18) reduces to

K̃(ζ) = −α
∑
k≥0

ζk

k − α
,

with α = θ2/θ1, so that ζc keeps a non-trivial dependence on the ratio α (thick black curve
in figure 4). The estimates (5.26) and (5.27) can be made more precise in this regime:

1− ζc = exp

(
− 1

α
+
π2α

6
+ · · ·

)
(α→ 0),

ζc = (1− α) + (1− α)2 + · · · (α→ 1).



Replicating a renewal process at random times 25

5.5 Three limiting situations

The three limiting situations of interest correspond to the edges of the triangular region D
(see figure 2), that is, θ2 → 0, θ1 → 1, and θ2 → θ1.

Limit θ2 → 0

In this limit, the series (5.17) and (5.18) reduce to

Ĩ(ζ) =
1

1− ζ
, K̃(ζ) = 1, R̃(ζ) =

1

1− ζ
, (5.28)

thus (5.16) yields

⟨Y k
θ1,0⟩ =

k!

Γ (kθ1 + 1)
.

A comparison with (2.33) leads to the conclusion that, in this limit, the distribution of Yθ1,θ2
becomes that of Xθ1 (see (2.29)). In other words,

lim
θ2→0

fYθ1,θ2
(y) = fXθ1

(y). (5.29)

This result can be understood as follows. When θ2 → 0, the distribution of the time intervals
T 1,T 2, . . . becomes very broad, entailing that the largest of them, Tmax = max(T 1,T 2, . . . ),
nearly spans the whole time interval (0, t). More precisely, using the expression given in [35,
eq. (3.34)] for the limiting ratio

lim
t→∞

1

t
⟨Tmax⟩ =

∫ ∞

0

dx

1 + xθex
∫ x

0
duu−θe−u

,

it can be checked that this ratio goes to unity as θ → 0 (where θ stands for θ2 in the
present context), meaning that the entire process simplifies to the internal process over a
time interval Tmax ≈ t. See also the comment below (4.9) on this limit.

Limit θ1 → 1

In this limit, by inserting f̂1(u) = e−u (see (2.36)) into the integrals (5.5) and (5.8), and
performing the latter integrals, we obtain, after some algebra,

R(λ) =
λ

λ+ 1
, R̃(ζ) =

1

1− ζ
,

whereby (5.16) yields

⟨Y k
1,θ2⟩ = 1.

In the limit θ1 → 1, the distribution of Yθ1,θ2 thus becomes degenerate:

lim
θ1→1

fYθ1,θ2
(y) = δ(y − 1), (5.30)

regardless of the value of θ2. The scaling variable Xθ has the same degenerate distribution
as θ → 1 (see (2.36)).



26 Claude Godrèche and Jean-Marc Luck

Limit θ2 → θ1

In this limit, the series (5.18) become singular, in the sense that the term corresponding to
k = 1 diverges. Setting

θ2 = θ1 − ε,

we obtain

Ĩ(ζ) ≈ Γ (1− θ1),

K̃(ζ) ≈ Γ (1− θ1)−
ζ

Γ (θ1) ε
, (5.31)

R̃(ζ) ≈ 1

1− sinπθ1
πε

ζ

,

whereby (5.16) yields

⟨Y k
θ1,θ1−ε⟩ ≈

(
sinπθ1
πε

)k
k!

Γ (kθ1 + 1)
.

A comparison with (2.33) leads to the following equivalence

Yθ1,θ1−ε ≈
sinπθ1
πε

Xθ1 , (5.32)

to leading order as ε = θ1 − θ2 → 0, where Xθ1 is distributed according to (2.29), with
exponent θ1. In other words,

fYθ1,θ1−ε
(y) ≈ πε

sinπθ1
fXθ1

(
πε

sinπθ1
y

)
.

5.6 A measure of fluctuations

In order to obtain a quantitative measure of the size of the fluctuations of Yθ1,θ2 , we consider
its reduced variance, denoted by

V =
VarYθ1,θ2
⟨Yθ1,θ2⟩2

=
⟨Y 2

θ1,θ2
⟩

⟨Yθ1,θ2⟩2
− 1. (5.33)

The explicit expressions (5.24) of the first two moments of Y yield

V =
4Γ (θ1 + 1)4Γ (1− θ2)Γ (2θ1 − θ2)

θ1Γ (2θ1 + 1)2Γ (θ1 − θ2)2
+

2θ2Γ (θ1 + 1)2

θ1Γ (2θ1 + 1)
− 1. (5.34)

For a fixed θ1, V takes its maximal value,

Vmax =
2Γ (θ1 + 1)2

Γ (2θ1 + 1)
− 1 =

⟨X2
θ1
⟩

⟨Xθ1⟩2
− 1 (5.35)

at both endpoints of region D, namely for θ2 → 0 and θ2 → θ1, where Yθ1,θ2 becomes
proportional to Xθ1 .

For intermediate values of θ2, the distribution of Yθ1,θ2 has less pronounced fluctuations,
testified by a smaller value of the reduced variance V . Figure 5 shows plots of the ratio

W =
V

Vmax
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Fig. 5 Ratio W = V/Vmax, where V is the reduced variance of the scaling variable Yθ1,θ2 (see (5.33)), and
Vmax is given by (5.35), plotted against the ratio α = θ2/θ1 for several values of θ1 (see legend). Thick black
curves: limit expressions (5.36) and (5.37).

against the ratio α = θ2/θ1 for several values of θ1 (see legend). This quantity starts decreas-
ing from its initial value W = 1 for α = 0, goes through a minimum, and increases back to
W = 1 for α = 1. The minimum gets deeper and deeper as θ1 is increased from 0 to 1. In
the regime where θ1 and θ2 simultaneously go to 0, the expression (5.34) reduces to

W =
2− 3α+ 2α2

2− α
= 1− 2α(1− α)

2− α
, (5.36)

in accord with (5.20). This expression reaches a non-trivial minimum Wmin = 4
√
2 − 5 =

0.656854 . . . for α = 2−
√
2 = 0.585786 . . . In the opposite limit (θ1 → 1), we have

W = 1− α, (5.37)

testifying that the limits θ1 → 1 and θ2 → θ1 do not commute.

5.7 Integral representation of the density

The fundamental equation (5.12) also yields an integral representation of the density fYθ1,θ2
(y).

Its left-hand side has the structure of two nested Laplace transforms. Successively inverting
these two transforms yields formally

fYθ1,θ2
(y) = θ1

∫
dλ

2πiλ

∫
dµ

2πi
µθ1−1eλµ+µθ1yR(λ).

Changing integration variables from µ to z = λµ and from λ to ζ (see (5.15)), we obtain

fYθ1,θ2
(y) =

∫
dζ

2πi

∫
dz

2πi
zθ1−1ez−zθ1ζ y︸ ︷︷ ︸ R̃(ζ).
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1ζ
c

Fig. 6 The complex ζ-plane. Green symbol: pole of R̃(ζ) at ζ = ζc. Blue line: branch cut of R̃(ζ) from 1 to
∞. Black dashed lines are at angles ±(1− θ1)π/2 beyond which the density fXθ1

(ζy) looses its exponential

decay. Red curve: Integration contour Γ to be used in the representation (5.38).

The expression underlined with a brace is merely the integral representation (2.29) of the
density fXθ1

(x), up to the replacement of the variable x by the product ζy. We have thus
established the integral formula

fYθ1,θ2
(y) =

∫
Γ

dζ

2πi
fXθ1

(ζy) R̃(ζ), (5.38)

which represents the density fYθ1,θ2
(y) as a continuous superposition of densities of the type

fXθ1
(x), with weight R̃(ζ) given in (5.19). The integration contour Γ is described below and

shown in figure 6.

Let us start by considering the limit of (5.38) as θ2 → 0. The expression (5.28) shows that
R̃(ζ) has a simple pole at ζ = 1, with residue −1. In order to recover (5.29), the integration
contour Γ must encircle this pole once in the clockwise direction.

In the generic situation (0 < θ2 < θ1 < 1), R̃(ζ) has two singularities on the positive
real axis, specifically a simple pole at ζ = ζc between 0 and 1 and a branch cut extending
from 1 to ∞, as shown in figure 6. The density fXθ1

(ζy) has the compressed exponential

decay (2.32) as long as the real part of (ζy)1/(1−θ1) is positive, i.e., ζ stays between the lines
at angles ±(1− θ1)π/2. The integration contour Γ entering (5.38) should thus be placed as
shown in the figure.

The integral representation (5.38) is very appealing conceptually. It is however not easy
to handle in practice. The specific techniques introduced earlier are indeed far more efficient
when exploring diverse facets of the distribution of Yθ1,θ2 , such as the calculation of moments,
the behaviour of the density fYθ1,θ2

(y) at small values of y, and the three limiting situations
associated with the edges of region D.

The representation (5.38) simplifies in the special case where θ1 = 1/2. First of all, the
density fX1/2

(x) has the simple form (2.35). The power series Ĩ(ζ) and K̃(ζ) (see (5.17), (5.18))
also become simpler. The arguments of all gamma functions are of the form k/2+ c for var-
ious c. This suggests to consider separately even (k = 2n) and odd (k = 2n+ 1) values of k.
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Fig. 7 Probability density fY1/2,θ2
(y), obtained by means of the integral representation (5.38), using (2.35)

and (5.40), for θ1 = 1/2 and several values of θ2 (see legend).

We thus obtain

Ĩeven(ζ) =
∑
n≥0

Γ (n+ 1− θ2)

n!
ζ2n = Γ (1− θ2)(1− ζ2)θ2−1, (5.39)

Ĩodd(ζ) =
∑
n≥0

Γ (n+ 3
2 − θ2)

Γ (n+ 3
2 )

ζ2n+1 =
Γ ( 32 − θ2)

Γ ( 32 )
ζF

(
3

2
− θ2, 1;

3

2
; ζ2

)
,

K̃even(ζ) = −θ2
∑
n≥0

Γ (n− θ2)

n!
ζ2n = Γ (1− θ2)(1− ζ2)θ2 ,

K̃odd(ζ) = −θ2
∑
n≥0

Γ (n+ 1
2 − θ2)

Γ (n+ 3
2 )

ζ2n+1 = −θ2Γ (
1
2 − θ2)

Γ ( 32 )
ζF

(
1

2
− θ2, 1;

3

2
; ζ2

)
,

where F (a, b; c; z) is the hypergeometric series. Thus (5.19) reads

R̃(ζ) =
Ĩeven(ζ) + Ĩodd(ζ)

K̃even(ζ) + K̃odd(ζ)
. (5.40)

The formulas (2.35), (5.39) and (5.40) turn the representation (5.38) into an efficient tool
to evaluate the density fY1/2,θ2

(y) numerically. Figure 7 shows the distribution thus obtained,
for several values of θ2 (see legend). The general trend is that, as θ2 is increased from 0 to
θ1, the density fYθ1,θ2

(y) broadens while its maximum shifts to the right.

To close, we mention that the representation (5.38) simplifies whenever θ1 = p/q is
a rational number. First, the density fXθ

(x) is related to the stable Lévy law of index
θ (see (2.30)), which is known to admit explicit expressions in terms of special functions
whenever θ is rational [36,37]. Furthermore, the series Ĩ(ζ) and K̃(ζ) can be expressed as
linear combinations of q hypergeometric series, by generalising the above construction. The
resulting expressions however soon become pretty cumbersome.
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6 Two special cases

6.1 Poissonian internal process

When ρ(τ) is exponential, of the form

ρ(τ) = λe−λτ , ρ̂(s) =
λ

λ+ s
, (6.1)

the internal renewal process is a Poisson process, implying, as shown below, that the statistics
of Nt is Poisson, too, regardless of the distribution f(T ) characterising the external process.
In the phase diagram of figure 2, this case lies on the right boundaries of regions A and B,
where θ1 = ∞.

For the internal process, the expression (2.15) simplifies to

Ẑ(z, s) =
1

s+ (1− z)λ
, (6.2)

hence

Z(z, t) = e(z−1)λt, (6.3)

implying that the number Nt of renewals up to time t has a Poisson distribution with
parameter λt,

P(Nt = n) = e−λt (λt)
n

n!
. (6.4)

For the entire process, we have

φ̂(z, s) =

∫ ∞

0

dT f(T )e−sT e(z−1)λT = f̂(s+ (1− z)λ),

ψ̂(z, s) =

∫ ∞

0

dT Φ(T )e−sT e(z−1)λT = Φ̂(s+ (1− z)λ) =
1− f̂

(
s+ λ(1− z)

)
s+ λ(1− z)

,

and (3.9) simplifies to

Ẑ(z, s) =
1

s+ (1− z)λ
,

which is identical to (6.2), implying that Nt has a Poisson distribution (6.4) with parame-
ter λt, regardless of the external density f(T ). This result has the following interpretation. As
a consequence of (6.3), the numbers of points in the successive intervals T 1,T 2, . . . , Bt have
independent Poisson distributions, with respective parameters λT 1, λT 2, . . . , λBt, implying
that their sum Nt has a Poisson distribution whose parameter is the sum of all parameters,
i.e., λt.

We have in particular, using the fact that λ = 1/⟨τ ⟩,

⟨Nt⟩ =
t

⟨τ ⟩ .

In region A, this result is in agreement with (4.2), since ⟨NT ⟩ = ⟨T ⟩/⟨τ ⟩, while for region B,
this result is precisely (4.6).
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6.2 Poissonian resetting and dressed renewal process

Poissonian resetting, which is the simplest—and the most studied—case of stochastic reset-
ting, corresponds to the circumstance where f(T ) is exponential, of the form

f(T ) = re−rT , (6.5)

hence Φ(T ) = e−rT . In the phase diagram of figure 2, this case lies on the upper boundary
of region A, where θ2 = ∞.

The general results of section 3 also simplify in this situation. We have indeed

φ̂(z, s) = rẐ(z, r + s), ψ̂(z, s) = Ẑ(z, r + s),

implying that (3.9) takes on the familiar form

Ẑ(z, s) =
Ẑ(z, r + s)

1− rẐ(z, r + s)
, (6.6)

which could alternatively have been obtained from a renewal equation6 and where Ẑ(z, s) is
given by (2.15). Hence

Ẑ(z, s) =
1− ρ̂(r + s)

s+ (r − (r + s)z)ρ̂(r + s)
. (6.7)

When r → 0 the replication disappears and we consistently retrieve (2.15). By differentiat-
ing (6.7) with respect to z at z = 1, we obtain in particular

L
t
⟨Nt⟩ =

(r + s)ρ̂(r + s)

s2(1− ρ̂(r + s))
,

entailing that, in the long-time regime,

⟨Nt⟩ ≈
rρ̂(r)

1− ρ̂(r)
t =

ρ̂(r)

1− ρ̂(r)

t

⟨T ⟩ , (6.8)

which is of the form (4.2) or (4.3).
Remarkably enough, the expression (6.7) is of the form (2.15), where ρ̂(s) is replaced by

the expression

ρ̂(r)(s) =
(r + s)ρ̂(r + s)

s+ rρ̂(r + s)
. (6.9)

We conclude that, in the present circumstance of Poissonian resetting, the events of the inter-
nal process (the crosses in figure 1) are exactly described by a single renewal process, defined
by the dressed density ρ(r)(τ), depending on the resetting rate r and on the distribution

ρ(τ). This is the common probability density of the dressed interarrival times τ
(r)
1 , τ

(r)
2 , . . . ,

such that
ρ̂(r)(s) = ⟨e−sτ (r)⟩.

As r → 0, the dressed density ρ(r)(τ) reduces to the bare one ρ(τ), as expected.
Notice that, if one substitutes (2.13) in (6.9), the Laplace transform of the dressed survival

probability R̂(r)(s) = (1− ρ(r)(s))/s takes on the familiar form (see, e.g., [9])

R̂(r)(s) =
R̂(r + s)

1− rR̂(r + s)
.

Considerations on the survival probability and the first-passage time in the general case of
an arbitrary resetting density f(T ) will be presented in section 7.

6 See [9] and references therein for similar relationships with other observables.
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In the particular case where ρ(τ) is the exponential distribution (6.1), we recover ρ(r)(τ) =
ρ(τ), irrespective of the rate r, in agreement with the results of section 6.1. The simplest
non-trivial example is the case where ρ(τ) is the convolution of two exponentials, namely

ρ(τ) = λ2τe−λτ , (6.10)

leading to

ρ(r)(τ) =
λ2

ω
e−(λ+r/2)τ sinhωτ, ω =

√
r(4λ+ r)

2
.

The dressed density ρ(r)(τ) generically has an exponential decay,

ρ(r)(τ) ∼ e−µτ ,

where the decay rate µ is the opposite of the nearest zero of the denominator of (6.9)7,
obeying µ = rρ̂(r − µ). All moments of ρ(r)(τ) are therefore finite. We have in particular
(see (6.8))

⟨τ (r)⟩ = 1− ρ̂(r)

rρ̂(r)
.

This expression is expected to be related to ⟨τ ⟩ at weak resetting. More precisely, when ⟨τ ⟩
is finite, that is to say if θ1 > 1, then ⟨τ (r)⟩ does indeed converge to ⟨τ ⟩ as r → 0. Conversely,
if ⟨τ ⟩ is infinite, meaning θ1 < 1, ⟨τ (r)⟩ diverges as r → 0, according to

⟨τ (r)⟩ ≈ Γ (1− θ1)τ
θ1
0

r1−θ1
. (6.11)

This expression is to be compared to the marginal mean of a single time interval, given
by (2.39), with θ = θ1 < 1. The two expressions (2.39) and (6.11) are similar, with 1/r
playing the role of the observation time. In particular, both prefactors diverge in the θ1 → 1
limit.

7 First-passage time under restart

In the case of Poissonian resetting (see section 6.2), the intervals of time τ
(r)
1 , τ

(r)
2 , . . . between

successive internal events (shown as crosses in figure 1) are iid and drawn from the dressed

density ρ(r)(τ). This means that τ
(r)
2 , τ

(r)
3 , . . . are probabilistic copies of the first interval,

τ
(r)
1 , which itself is the time of the first occurrence of a renewal, or first-passage time for

short, in the presence of resetting.
In the general case where the external process has an arbitrary density f(T ), there is no

such renewal description for the sequence of crosses in terms of a dressed density. Neverthe-
less, the time of the first occurrence of a renewal for the process with resetting, or first-passage
time, remains well defined, even if the subsequent time intervals between crosses are now no
longer probabilistic copies of this first interval. Hereafter, we shall keep the same notations

τ
(r)
1 and ρ(r)(τ) to refer to this first-passage time and its probability density. The latter

density can be derived in two complementary ways, as we now show.
We start from the observation that

Z(0, t) = P(Nt = 0) = P(τ (r) > t) =

∫ ∞

t

dτ ρ(r)(τ),

7 In the example (6.10), µ = λ+ r/2− ω decreases continuously from λ to 0 as r is increased.
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hence, in Laplace space,

Ẑ(0, s) =L
t
Z(0, t) =L

t
P(Nt = 0) =

1− ρ̂(r)(s)

s
. (7.1)

We now refer to (3.7), (3.8) and (3.9) to obtain

Ẑ(0, s) =
ψ̂(0, s)

1− φ̂(0, s)
, (7.2)

with

φ̂(0, s) =

∫ ∞

0

dT e−sT f(T )Z(0, T ) =

∫ ∞

0

dT e−sT f(T )R(T ) (7.3)

and

ψ̂(0, s) =

∫ ∞

0

dT e−sTΦ(T )R(T ). (7.4)

Put together, the above equations lead to the desired result

ρ̂(r)(s) = ⟨e−sτ
(r)
1 ⟩ =

∫∞
0

dT e−sT ρ(T )Φ(T )

1−
∫∞
0

dT e−sT f(T )R(T )
. (7.5)

The identity ∫ ∞

0

dT
(
ρ(T )Φ(T ) + f(T )R(T )

)
= 1,

which simply states that P(τ < T ) + P(τ > T ) = 1, allows one to check that ρ̂(r)(0) = 1,
i.e., that the density ρ(r)(τ) is normalised. In the particular case where f(T ) is exponential
(see (6.5)), (7.5) becomes (6.9), as it should be.

By taking the derivative of (7.5) with respect to s at s = 0, the following formal expression

for the mean value of τ
(r)
1 is obtained:

⟨τ (r)
1 ⟩ =

∫∞
0

dTR(T )Φ(T )∫∞
0

dTρ(T )Φ(T )
.

This expression is convergent, so that the mean first-passage time is well defined, when the
tail exponents obey the inequality

θ1 + θ2 > 1.

Interestingly enough, the above inequality does not show up in the construction of the phase

diagram of figure 2. This discrepancy lies in the fact that the nature of τ
(r)
1 is that of a

‘boundary’ observable, whereas the phase diagram concerns the ‘bulk’ observable Nt. The
same observation applies for the statistics of the ‘boundary’ observable NBt

(see section 8).
In order to better understand the meaning of the result (7.5), we present an alternative

derivation, inspired by [38,19,13]. The first-passage time τ
(r)
1 obeys the recursion

τ
(r)
1 =

{
τ if τ < T ,

T + (τ
(r)
1 )′ if τ > T ,

(7.6)

where (τ
(r)
1 )′ is an independent copy of τ

(r)
1 . Let

p = P(τ < T ) =

∫ ∞

0

dT ρ(T )Φ(T ). (7.7)

Iterating (7.6), we obtain

τ
(r)
1 = T̃ 1 + · · ·+ T̃ k + τ̃ k+1,
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with probability p(1− p)k, where the tilde indicates that these random variables are condi-
tioned by the inequalities on the right-hand side of (7.6). We thus infer that

ρ̂(r)(s) =
∑
k≥0

p(1− p)kf̂T̃ (s)
k fτ̃ (s) =

pfτ̃ (s)

1− (1− p)f̂T̃ (s)
,

where

fτ̃ (τ) =
ρ(τ)Φ(τ)

p
, fT̃ (T ) =

f(T )R(T )

1− p
.

which, again, lead to (7.5). We refer to [38,19,13] for further considerations on the topic of
first passage under restart.

Yet another derivation of (7.5), based on a renewal equation for the survival probability

P(τ (r)
1 > t), can be found in [9] (see also references therein).

8 Number of internal renewals NBt in the last interval

As mentioned earlier, nested renewal processes have been initially introduced in the context
of reliability problems [6,39,40,41]. Studying the statistics of NBt was one of the primary
aims of [6]. This quantity represents the number of internal renewals in the interval Bt,
which is the backward recurrence time for the external renewal process (see figure 1). In [6],
the study was restricted to the case of thin-tailed distributions for both the internal and
external renewal processes, where the statistics of NBt becomes stationary at long times.
Here we shall be interested in exploring the phase diagram in the whole θ1–θ2-plane.

8.1 On the statistics of NBt

The statistics of NBt
can be determined by utilising (3.13), (3.14), (3.15) and (3.16).

Let us focus on the asymptotic behaviour of its mean ⟨NBt
⟩. Figure 8 gives a summary

of the results obtained using techniques similar to those outlined in section 4, as elaborated
below.

Beforehand, to gain an intuitive understanding of this phase diagram, one can compare
the mean values of the two time intervals: Bt for the resetting process, and τ t for the internal
renewal process. For the former, we have [24]

⟨Bt⟩ ∼


O(1) θ2 > 2,

t2−θ2 1 < θ2 < 2,

t θ2 < 1,

while (see (2.39))

⟨τ t⟩ ∼
{
O(1) θ1 > 1,

t1−θ1 θ1 < 1,

for the latter. For instance, when both exponents are greater than unity, ⟨NBt⟩ ∼ ⟨Bt⟩/⟨τ t⟩ ∼
O(1), when both exponents are less than unity, ⟨NBt

⟩ ∼ ⟨Bt⟩/⟨τ t⟩ ∼ tθ1 , and so on.
A more detailed approach is as follows. The number of renewals NBt

in the random
interval Bt can be expressed, asymptotically, as

NBt ≈


Bt

⟨τ ⟩ , θ1 > 1,

Xθ1

Γ (1− θ1)

(
Bt

τ0

)θ1

θ1 < 1

(8.1)
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Fig. 8 Asymptotic behaviour of the mean number of internal renewals ⟨NBt ⟩ in the interval Bt, the backward
recurrence time of the external process.

where, asymptotically,

Bt ≈
{
Beq θ2 > 1,

tβ θ2 < 1.
(8.2)

The densities of the expressions in the right-hand side of this equation are

fB,eq(B) =
Φ(B)

⟨T ⟩ ≈ 1

⟨T ⟩

(
T0
B

)θ2

,

for the first line, while the density of the rescaled random variable β is

fβ(x) =
sinπθ

π
x−θ(1− x)θ−1 = β1−θ,θ(x) (0 < x < 1),

where

βa,b(x) =
Γ (a+ b)

Γ (a)Γ (b)
xa−1(1− x)b−1

is the beta distribution on [0, 1] [24].

The asymptotic expressions of ⟨NBt
⟩ follow readily from (8.1) and (8.2), using (3.16) or,

equivalently, in direct space,

⟨NBt⟩ =
∫ t

0

dB fBt(t, B)⟨NB⟩,

where, in ⟨NB⟩, the temporal interval B is fixed.
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Thus, if θ1 > 1,

⟨NBt
⟩ ≈



⟨T 2⟩
2⟨τ ⟩⟨T ⟩ , θ2 > 2,

T θ
0

(2− θ2)⟨τ ⟩⟨T ⟩ t
2−θ2 , 1 < θ2 < 2,

1− θ2
⟨τ ⟩ t, θ2 < 1.

If θ1 < 1, we have

⟨NBt
⟩ ≈



I2(0)

⟨T ⟩ , 1 + θ1 < θ2,

sinπθ1 T
θ2
0

πθ1 τ
θ1
0 ⟨T ⟩

t1+θ1−θ2

1 + θ1 − θ2
, 1 < θ2 < 1 + θ1,

sinπθ1
πθ1

⟨βθ1⟩
(
t

τ0

)θ1

, θ2 < 1.

The constant numerator appearing in the first line is the finite limit of I2(s) when s→ 0,

I2(0) =

∫ ∞

0

dT Φ(T )⟨NT ⟩.

Finally, notice that NBt contributes to the total sum Nt, given in (3.3), in regions B and
D only. However, in both regions, its behaviour differs from that of Nt. In region B, Nt has
negligible fluctuations around its mean, while NBt

∼ tβ keeps fluctuating, which means that
the fluctuations of the sum of the Mt first terms in (3.3) compensate those of NBt

. In region
D, Nt ∼ Yθ1,θ2 t

θ1 , while NBt
∼ Xθ1β

θ1tθ1 , meaning that all the complexity of the behaviour
of Nt lies in the sum of the Mt first terms in (3.3).

8.2 Continuous time random walk subject to resetting

As mentioned earlier (see section 2), a continuous time random walk subject to resetting
involves two nested renewal processes. The process considered in [6], and recalled in section 1,
is equivalent to a continuous time random walk, where the shocks, causing damages of
magnitude η1, η2, . . . , with common density fη, correspond to the jumps. The cumulative
damage of the component in use is to be identified with the position of the walker at time t,
that is,

Xt = η1 + η2 + · · ·+ ηNBt
,

with probability density

fXt
(x) =

∑
n≥0

(fη⋆)
n(x)P(NBt

= n).

Assuming, for instance, that the distribution of the steps η1, η2, . . . is symmetric, one easily
finds that the mean squared displacement of the walker reads

⟨X2
t ⟩ = ⟨NBt

⟩⟨η2⟩.
The computation of the mean squared displacement for a continuous time random walk under
power-law resetting has previously been addressed in [20], resulting in a phase diagram for
the asymptotic time dependence of this quantity in the θ1–θ2-plane. This phase diagram
corresponds precisely to the one depicted in figure 8.

Acknowledgements It is a pleasure to thank Pierre Vanhove for an interesting discussion.
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