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Abstract

We consider the simple random walk (or Pólya walk) on the one-dimensional
lattice subject to stochastic resetting to the origin with probability r at each
time step. The focus is on the joint statistics of the numbers N×

t of spontaneous
returns of the walker to the origin and N •

t of resetting events up to some observa-
tion time t. These numbers are extensive in time in a strong sense: all their joint
cumulants grow linearly in t, with explicitly computable amplitudes, and their
fluctuations are described by a smooth bivariate large deviation function. A non-
trivial crossover phenomenon takes place in the regime of weak resetting and late
times. Remarkably, the time intervals between spontaneous returns to the origin
of the reset random walk form a renewal process described in terms of a single
‘dressed’ probability distribution. These time intervals are probabilistic copies of
the first one, the ‘dressed’ first-passage time. The present work follows a broader
study, covered in a companion paper, on general nested renewal processes.

1 Introduction

This work builds upon a previous study on the replication of a renewal process at
random times, which is equivalent to nesting two generic renewal processes, or, alterna-
tively, to considering a renewal process subject to random resetting [1]. In that study,
we investigated the interplay between the two probability laws governing the distribu-
tion of time intervals between renewals, on the one hand, and resettings, on the other
hand, resulting in a phase diagram that highlights a rich range of behaviours.
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In the present work, we investigate the specific case where the internal renewal
process consists of the epochs of returns to the origin of the simple random walk (or
Pólya walk [2]) on the one-dimensional lattice, while the external one involves discrete-
time reset events at which the process is restarted from the origin with probability r
at each time step. The position xt of the walker at discrete time t thus obeys the
recursion

xt+1 =

{
0 with probability r,
xt + ηt+1 with probability 1− r,

(1.1)

where ηt = ±1 with equal probabilities. The walk starts at the origin, x0 = 0. Figure 1
illustrates a sample path of the walk, showing spontaneous returns to the origin marked
by crosses and reset events marked by dots. Figure 2 provides a depiction of these
temporal events and of the intervals of time between them.

Fig. 1 Example of a path of the Pólya walk on the one-dimensional lattice under stochastic
resetting, generated by a simulation with r = 0.08. The walk starts at the origin. It restarts
afresh at the origin at each resetting event, figured by a dot. Spontaneous returns to the
origin are figured by crosses.

Much of the research in the theory of resetting processes has predominantly con-
centrated on continuous time stochastic processes (see [3] for a review). In contrast,
relatively less emphasis has been devoted to discrete-time processes. An illustrative
example of these processes involves discrete-time random walks with continuous distri-
butions of steps subject to resetting [4]. Recent studies have delved into the statistics of
extremes and records of symmetric random walks with stochastic resetting [5, 6]. Fur-
thermore, investigations into discrete-time lattice random walks with resetting have
also been carried out. Examples include unidirectional random walks with random
restarts [7], random walks where the walker is relocated to the previous maximum [8],
and random walks with preferential relocations to previously visited locations [9].
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Fig. 2 Sketch of the temporal events for the path of figure 1. Spontaneous returns to the
origin of the walk are figured by crosses, resetting events by dots. The intervals of time
between two crosses, τ 1, τ 2, . . . , have common distribution ρ(τ) (see (2.1), (2.2)). The inter-
vals of time between two resettings, T 1, . . . ,T 4, have the geometric distribution (2.32). The
last interval, Bt, represents the backward recurrence time, or age of the resetting process at
time t, i.e., the time elapsed since the previous resetting event.

However, it is noteworthy that the Pólya walk subject to resetting, defined by (1.1),
has received relatively limited attention in the literature [6, 10–13]. References [10, 11]
deal with general first-passage properties of lattice random walks in discrete time,
with application to the Pólya walk, while [12] contains a study of some aspects of the
statistics of records for the same walk. In [13], an analysis of the survival probabil-
ity of symmetric random walks with stochastic resetting was performed, specifically
focussing on the probability for the walker not to cross the origin up to time t, includ-
ing the example of the Pólya walk (1.1). Finally, the statistics of extremes and records
for the Pólya walk with stochastic resetting are discussed in [6].

The focus of the present work is on the joint statistics of the numbers N×
t of

spontaneous returns to the origin of the reset Pólya walk (1.1), and N •
t , denoting the

count of reset events, up to a given time t. These are the simplest observables one can
think of for this process. Their sum N×•

t = N×
t +N •

t is the total time spent by the
walker at the origin.

The motivation for such a research stems from the analysis presented in the com-
panion paper [1]. The latter predicts that the more regular of two nested renewal
processes always governs the overall regularity of the entire process. Here, the two
renewal processes in question are made of the sequence of spontaneous returns to the
origin of the Pólya walk, on the one hand, and of the sequence of resetting events, on
the other hand. The latter—the more regular process of the two—is a Bernoulli pro-
cess, as can be seen on its definition (1.1). In such a circumstance, as demonstrated
in [1], ⟨N×

t ⟩ grows linearly in time and typical fluctuations of N×
t around its mean

value are relatively negligible. The purpose of the present work is to corroborate these
general results and complete them by a thorough quantitative analysis of the simple
specific case at hand—the Pólya walk under stochastic resetting.

The setup and the main outcomes of this research are as follows. Section 2 gives an
exposition of background concepts and results. For the Pólya walk without resetting
(section 2.1), we recall results concerning the distribution of the intervals between
consecutive returns to the origin, and the statistics of the number Nt of such returns
up to some time t. Section 2.2 contains a reminder on the statistics of resetting events
in discrete time. Section 3 presents the detailed derivation of the joint probability
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generating function of the random variables N×
t and N •

t at any finite time t. As a
first application of the key equation (3.20), derived in section 3.1, the mean values of
N×

t and N •
t are shown to grow linearly in time, as

⟨N×
t ⟩ ≈ A×t, ⟨N •

t ⟩ ≈ rt, ⟨N×•
t ⟩ ≈ At, (1.2)

where the amplitude

A = A× + r =

√
r

2− r
(1.3)

is identified with the steady-state probability for the walker to be at the origin. In
addition, we give in section 3.2 an interpretation of the distribution of N×

t in terms
of a single ‘dressed’ renewal process, and discuss its consequences. An in-depth inves-
tigation of the statistics of N×

t and N •
t in the late-time regime is done in section 4,

highlighting the fact that these quantities are extensive in a strong sense: their joint
cumulants grow linearly in time, as

⟨(N×
t )k(N •

t )
ℓ⟩c ≈ ck,ℓ t. (1.4)

We provide a method to evaluate all the cumulant amplitudes ck,ℓ, and we give the
explicit expressions of the first amplitudes corresponding to k + ℓ ≤ 3 (see (4.13)–
(4.15)). The above scaling law of cumulants is virtually equivalent to the statement
that large fluctuations of N×

t andN •
t far from their mean values obey a large deviation

formula of the form
P(N×

t ≈ ξt, N •
t ≈ ηt) ∼ e−I(ξ,η)t, (1.5)

where the bivariate large deviation function I(ξ, η) is the Legendre transform of
the bivariate entropy function S(λ, µ) generating the cumulant amplitudes ck,ℓ. The
ensuing univariate large deviation functions I•(η), I×(ξ), and I(φ), corresponding
respectively to N •

t , N×
t and their sum N×•

t , are plotted in figure 7. In the crossover
regime at weak resetting and late times, studied in section 5, it is found that

N×
t ≈

√
t ζ, (1.6)

where the rescaled random variable ζ has a limiting distribution with density f(ζ, u),
depending solely on the parameter u = rt = ⟨N •

t ⟩. Figure 8 shows the density f(ζ, u)
for several values of this parameter, illustrating the crossover between a half-Gaussian
form at u = 0 and a drifting Gaussian at large u. Section 6 contains a brief discussion,
where the main outcomes of the present work are put in perspective with those of the
companion paper [1]. Some calculation details pertaining to section 3 are relegated to
an appendix.

2 Background concepts

2.1 Pólya walk without resetting

As is well documented (see, e.g., [14]), the sequence of returns to the origin of the
Pólya walk forms a discrete renewal process. Let us denote by T 0→0 the time of first
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return to the origin (from either side), and its distribution by

ρ(τ) = P(T 0→0 = τ). (2.1)

This quantity is non-zero whenever τ = 2, 4, . . . is an even integer. This is also the
common distribution of the intervals between two consecutive returns to the origin,
denoted by τ 1, τ 2, . . . , which are independent copies of T 0→0. The distribution ρ(τ)
is known in terms of its generating function [14]

ρ̃(z) =
∑
τ≥0

zτρ(τ) = 1−
√

1− z2. (2.2)

Introducing the binomial probabilities

bn =
(2n)!

(2nn!)2
=

(
2n
n

)
22n

, (2.3)

with generating function

b̃(z) =
∑
n≥0

bnz
n =

1√
1− z

, (2.4)

we have

ρ(2n) =
bn

2n− 1
(2.5)

for n ≥ 1, i.e.,

ρ(2) =
1

2
, ρ(4) =

1

8
, ρ(6) =

1

16
, ρ(8) =

5

128
, (2.6)

and so on. When the even time τ becomes large, we have

ρ(τ) ≈
√

2

πτ3
. (2.7)

The corresponding survival probability, defined as the complementary distribution
function of T 0→0,

R(τ) = P(T 0→0 > τ) =
∑
j>τ

ρ(j), (2.8)

obeys R(τ − 1)−R(τ) = ρ(τ). Its generating function reads

R̃(z) =
∑
τ≥0

zτR(τ) =
1− ρ̃(z)

1− z
=

1 + z√
1− z2

. (2.9)

We have therefore
R(2n) = R(2n+ 1) = bn, (2.10)
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i.e.,

R(0) = R(1) = 1, R(2) = R(3) =
1

2
, R(4) = R(5) =

3

8
, (2.11)

and so on. When τ becomes large, irrespective of its parity, we have

R(τ) ≈
√

2

πτ
. (2.12)

The asymptotic estimate (2.7) is minus twice the derivative of (2.12), as it should be,
because (2.7) only holds for even times τ .

We now focus on the distribution of the number Nt of returns of the walker to the
origin up to time t. This random variable is defined by the condition

τ 1 + · · ·+ τNt
≤ t < τ 1 + · · ·+ τNt+1, (2.13)

hence the total time t is decomposed into

t = τ 1 + · · ·+ τNt
+ bt, (2.14)

where the last interval, bt, is the backward recurrence time, or the age of the renewal
process at time t, i.e., the elapsed time since the last return to the origin. In the
present discrete setting, bt = 0, 1, . . . , τNt+1 − 1.

A realisation of the set of random variables τ 1, . . . , τNt , bt, withNt = n, denoted by

C̃ = {τ1, . . . , τn, b}, (2.15)

has weight

P (C̃) = ρ(τ1) . . . ρ(τn)R(b) δ
( n∑

i=1

τi + b, t
)
, (2.16)

where δ(i, j) is the Kronecker delta symbol.
The distribution of Nt ensues by summing the above weight over all variables {τi}

and b:

pn(t) = P(Nt = n) =
∑
{τi},b

ρ(τ1) . . . ρ(τn)R(b) δ
( n∑

i=1

τi + b, t
)
. (2.17)

The expression thus obtained is a discrete convolution, which is easier to handle by
taking its generating function with respect to t, which reads∑

t≥0

wt pn(t) = ρ̃(w)nR̃(w), (2.18)

where ρ̃(w) and R̃(w) are respectively given by (2.2) and (2.9). The distribution of Nt

can be expressed compactly through the probability generating function

Z(z, t) = ⟨zNt⟩ =
∑
n≥0

zn pn(t). (2.19)
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The generating function of the latter quantity with respect to t is

Z̃(z, w) =
∑
t≥0

wtZ(z, t) = R̃(w)
∑
n≥0

(zρ̃(w))n, (2.20)

i.e.,

Z̃(z, w) =
1− ρ̃(w)

(1− w)(1− zρ̃(w))
. (2.21)

In particular, the generating function with respect to t of the mean number ⟨Nt⟩
of returns reads∑

t≥0

wt⟨Nt⟩ =
∂

∂z
Z̃(z, w)

∣∣∣
z=1

=
ρ̃(w)

(1− w)(1− ρ̃(w))
=

1 + w

(1− w2)3/2
− 1

1− w
. (2.22)

We have therefore
⟨N2n⟩ = ⟨N2n+1⟩ = (2n+ 1)bn − 1, (2.23)

i.e.,

⟨N0⟩ = ⟨N1⟩ = 0, ⟨N2⟩ = ⟨N3⟩ =
1

2
, ⟨N4⟩ = ⟨N5⟩ =

7

8
, (2.24)

and so on. When time t becomes large, regardless of its parity, we have

⟨Nt⟩ ≈
√

2t

π
. (2.25)

The probability of having Nt = 0 is given by the generating function

∑
t≥0

wt p0(t) = Z̃(0, w) =
1− ρ̃(w)

1− w
= R̃(w) (2.26)

(see (2.9)). We thus recover the expected result

p0(t) = P(τ > t) = R(t). (2.27)

The asymptotic distribution of Nt in the regime of late times can be extracted
through a scaling analysis of (2.21). Setting w = e−s and z = e−p, and working to
leading order in the continuum regime where s and p are small, we obtain∫ ∞

0

dt e−st⟨e−pNt⟩ ≈ 1

s+ p
√
s/2

. (2.28)

Inverting the Laplace transforms in p and in s yields∫ ∞

0

dt e−st pn(t) ≈
√

2

s
e−

√
2s n, (2.29)
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and finally

pn(t) ≈
√

2

πt
e−n2/(2t). (2.30)

We have thus recovered the known property that the asymptotic distribution of the
number Nt of returns to the origin of the simple random walk is a half-Gaussian [15].
The limit of this distribution as n → 0 is consistent with the asymptotic behaviour
of R(t) given by (2.12). The moments of the distribution (2.30) read

⟨N2k
t ⟩ ≈ (2k)!

2kk!
tk, ⟨N2k+1

t ⟩ ≈
√

2

π
2kk! tk+1/2. (2.31)

In particular, the first moment agrees with (2.25).

2.2 Statistics of resetting events

The resetting events also constitute a discrete renewal process, referred to in [1] as
the external renewal process. The integer intervals of time T 1,T 2 . . . between two
consecutive resettings have the geometric distribution

f(T ) = r(1− r)T−1 (T ≥ 1), (2.32)

whose complementary distribution function is given by

Φ(T ) =
∑
j>T

f(j) = (1− r)T (T ≥ 0). (2.33)

The corresponding generating functions read

f̃(z) =
∑
T≥1

zT f(T ) =
rz

1− (1− r)z
, (2.34)

Φ̃(z) =
∑
T≥0

zTΦ(T ) =
1− f̃(z)

1− z
=

1

1− (1− r)z
. (2.35)

The number of resetting events Mt is defined by the condition

T 1 + · · ·+ TMt ≤ t < T 1 + · · ·+ TMt+1, (2.36)

hence
t = T 1 + · · ·+ TMt +Bt, Bt = 0, 1, . . . ,TMt+1 − 1. (2.37)

The last interval Bt is the backward recurrence time, or the age of the resetting process
at time t, i.e., the elapsed time since the last resetting event.

A realisation of the set of random variables T 1, . . . ,TMt , Bt, with Mt = m,
denoted by

C = {T1, . . . , Tm, B}, (2.38)
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has weight

P (C) = f(T1) . . . f(Tm) Φ(B) δ
( m∑

i=1

Ti +B, t
)
. (2.39)

Following the same approach as in (2.21), we have

Y (y, w) =
∑
t≥0

wt⟨yMt⟩ = Φ̃(w)

1− yf̃(w)
=

1

1− (1− r + ry)w
. (2.40)

Hence
⟨yMt⟩ = (1− r + ry)t, (2.41)

implying that Mt = 0, . . . , t has the binomial distribution

P(Mt = m) =

(
t

m

)
rm(1− r)t−m (2.42)

at all times, in agreement with the property that resetting events are independent from
each other, and therefore form a Bernoulli process. In particular, the mean number of
resettings reads

⟨Mt⟩ = rt. (2.43)

3 Spontaneous returns to the origin and resetting
events

3.1 The key equation

As stated in the introduction, the main purpose of this work is to analyse the joint
distribution of the numbers N •

t of dots representing resetting events and N×
t of crosses

representing spontaneous returns to the origin, for the reset Pólya walk up to time t.
These numbers are respectively given by

N •
t =Mt, (3.1)

introduced above, and

N×
t = NT 1−1 +NT 2−1 + · · ·+NTMt−1

+NBt
, (3.2)

as illustrated on figure 1. The sum of these two numbers is denoted by

N×•
t = N×

t +N •
t , (3.3)

and reads

N×•
t =

t∑
τ=1

δ(xτ , 0), (3.4)

9



where xτ is the position of the walker at time τ (see (1.1)). This is the total time
spent by the walker the origin, either by a resetting event (a dot) or by a spontaneous
return (a cross).

Notice that the distribution of the number of dots, N •
t =Mt (see (3.1)), is known

from (2.40), (2.41), (2.42) and (2.43). Thus

Y(y, w) =
∑
t≥0

wt⟨yN•
t ⟩ = Y (y, w) =

1

1− (1− r + ry)w
, (3.5)

⟨yN•
t ⟩ = (1− r + ry)t, (3.6)

P(N •
t = N ) =

(
t

N

)
rN (1− r)t−N , (3.7)

⟨N •
t ⟩ = rt. (3.8)

Notice also that the situation simplifies in the following two special cases. First, in the
absence of resetting (r = 0), we have

N×
t = N×•

t = Nt, N •
t = 0, (3.9)

second, when a resetting event occurs at every time step (r = 1), then

N •
t = N×•

t = t, N×
t = 0. (3.10)

The central quantity for the determination of the joint statistics of N×
t and N •

t is
the generating function

Z(z, y, t) = ⟨zN×
t yN

•
t ⟩, (3.11)

where the average is taken over the external configurations C (see (2.38)), with weight
P (C) given by (2.39), and over the internal configurations C̃ (see (2.15)), with weight
P (C̃) given by (2.16). Thus

Z(z, y, t) =
∑
C
P (C)

∑
C̃
P (C̃) zN×

t yN
•
t , (3.12)

with the notations ∑
C

=
∑
m≥0

∑
{Ti, B}

,
∑
C̃

=
∑
n≥0

∑
{τi, b}

. (3.13)

The average over the internal variables of each term zNTi
−1 with weight P (C̃) gives

a factor Z(z, Ti − 1) (see (2.19)). We then average over the external variables with
weight P (C) to arrive at

⟨zN×
t yN

•
t ⟩ =

∑
C
P (C)ymZ(z, T1 − 1) . . . Z(z, Tm − 1)Z(z,B). (3.14)

10



The expression thus obtained is a discrete convolution, which is easier to handle by
taking its generating function with respect to t, leading to

Z̃(z, y, w) =
∑
t≥0

wtZ(z, y, t) =
∑
m≥0

ymφ̃(z, w)mψ̃(z, w) =
ψ̃(z, w)

1− yφ̃(z, w)
, (3.15)

with

φ̃(z, w) =
∑
T≥1

wT f(T )Z(z, T − 1), (3.16)

ψ̃(z, w) =
∑
B≥0

wBΦ(B)Z(z,B). (3.17)

The expressions (3.15)–(3.17) are quite general [1]. They hold for arbitrary distri-
butions ρ(τ) and f(T ), both in a continuous and in a discrete setting. For the case
at hand, the generating functions of Z(z, T ), f(T ) and Φ(T ) are respectively given
in (2.21), (2.34) and (2.35). We have therefore

φ̃(z, w) = rw Z̃(z, w̆),

ψ̃(z, w) = Z̃(z, w̆), (3.18)

where we introduced the shorthand notation

w̆ = (1− r)w, (3.19)

and finally

Z̃(z, y, w) =
Z̃(z, w̆)

1− rywZ̃(z, w̆)
. (3.20)

The expression (3.20), where Z̃(z, w) is given in (2.21), and ρ̃(w) in (2.2), is the key
result of this section.

The distribution ofN •
t =Mt is obtained by setting z = 1 in (3.20). We thus recover

the expression (3.5), since Z̃(1, y, w) = Y(y, w), as it should be. The distribution
of N×

t is obtained by setting y = 1 in (3.20). We thus have

Z̃(z, 1, w) =
∑
t≥0

wt⟨zN×
t ⟩ = Z̃(z, w̆)

1− rwZ̃(z, w̆)
. (3.21)

This formula relates the same quantity with and without resetting. Rational relation-
ships of this form are specific to Poissonian resetting in continuous time or to geometric
resetting in discrete time (see, e.g., [3–6, 11, 13]). Another interpretation of (3.21) will
be given in section 3.2.
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The general expression of the mean value ⟨N×
t ⟩ ensues from (3.15), and reads

∑
t≥0

wt⟨N×
t ⟩ =

d

dz
Z(z, y, w)

∣∣∣
z=y=1

(3.22)

=
1

1− f̃(w)

(∑
T≥1

wT ⟨NT−1⟩
f(T )

1− w
+
∑
B≥0

wB⟨NB⟩Φ(B)

)
. (3.23)

In the case at hand, this expression yields

∑
t≥0

wt⟨N×
t ⟩ = (1− w̆)ρ̃(w̆)

(1− w)2(1− ρ̃(w̆))
, (3.24)

which can alternatively be obtained from (3.20).
In the absence of resetting (r = 0), (3.24) gives back (2.22), as it should be, since

N×
t = Nt. In the presence of resetting (r ̸= 0), we obtain the linear growth law

⟨N×
t ⟩ ≈ A×t (3.25)

in the late-time regime, with

A× =
rρ̃(1− r)

1− ρ̃(1− r)
=

√
r

2− r
− r. (3.26)

In the regime of weak resetting, the mean value ⟨N×
t ⟩ exhibits a smooth crossover

between the square-root law (2.25) and the linear law (3.25). The complete determi-
nation of the distribution of N×

t throughout this crossover regime will be given in
section 5.

Summing expressions (3.8) and (3.25), we end up with

⟨N×•
t ⟩ ≈ At, (3.27)

with

A =

√
r

2− r
. (3.28)

Both amplitudes A× and A vanish as

A× ≈ A ≈
√
r

2
(3.29)

as r → 0. This square-root scaling will be corroborated by the analysis of the crossover
regime (see section 5). The amplitude A× vanishes quadratically as

A× ≈ (1− r)2

2
(3.30)

12
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Fig. 3 Amplitudes A• = r, A× and their sum A entering the growth laws (3.8), (3.25)
and (3.27) of ⟨N •

t ⟩, ⟨N×
t ⟩ and ⟨N×•

t ⟩, plotted against the resetting probability r.

as r → 1, testifying that the presence of a cross, i.e., of a spontaneous return of the
walker to the origin, requires at least two successive time steps without resetting. This
amplitude reaches its maximum A×

max = 0.134884 . . . for r = 0.160713 . . . As for the
amplitude A of ⟨N×•

t ⟩, it increases monotonically from 0 to 1 as r increases in the
same range of values. Figure 3 shows plots of the amplitudes A• = r, A×, and of their
sum A, against the resetting probability r.

The formula (3.28) can be compared with the expression derived in [6] for the
position distribution of the walker in the nonequilibrium stationary state reached in
the limit of infinitely large times, namely

p(x) =

√
r

2− r
λ−|x|, λ =

1 +
√
r(2− r)

1− r
. (3.31)

This distribution falls off exponentially with the distance to the resetting point, i.e.,
the origin, where it reaches its maximum

p(0) =

√
r

2− r
. (3.32)

The identity A = p(0) is to be expected, as both sides represent the fraction of time
spent by the walker at the origin. Formally, this identity can be derived by taking the
mean values of (3.4) and using the fact that the occupation probability of the origin
at time t, ⟨δ(xt, 0)⟩, tends to p(0) at late times.

3.2 The reset process seen as a ‘dressed’ renewal process

It is interesting to note that there exists another interpretation of the expression (3.21),
encoding the full statistics of N×

t . This expression is of the form (2.21), up to the

13
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Fig. 4 The time intervals between spontaneous returns to the origin (crosses) of the reset
random walk form a renewal process, described in terms of the ‘dressed’ probability distribu-

tion (3.34). These time intervals are probabilistic copies of the first one, T
(r)
0→0, the ‘dressed’

first-passage time. (Compare to figure 2.)

replacement of ρ̃(w) by

ρ̃(r)(w) =
(1− w̆)ρ̃(w̆)

1− w + rwρ̃(w̆)
. (3.33)

This implies that the interarrival times between spontaneous returns to the origin
(crosses in figure 2) remain, in the presence of resetting, independent, identically
distributed, random variables, whose common probability distribution,

ρ(r)(τ) = P(T (r)
0→0 = τ), (3.34)

has a generating function given by (3.33), and depends only on the resetting proba-
bility r (see (3.35)). In other words, these interarrival times form a renewal process,
defined by the ‘dressed’ distribution (3.34), i.e., they are probabilistic replicas of the

‘dressed’ first-passage time T
(r)
0→0 (or, in the present context, time of first return to the

origin), as depicted in figure 4. The superscript in these expressions is an abbreviation
for replication or resetting.

The first few values of ρ(r)(τ) read

ρ(r)(1) = 0, ρ(r)(2) =
1

2
(1− r)2, ρ(r)(3) =

1

2
r(1− r)2,

ρ(r)(4) =
1

8
(1− r)4 +

1

2
r2(1− r)2 +

1

2
r(1− r)3 =

1

8
(1− r2)2. (3.35)

The first three expressions are easy to guess, whereas the fourth is the sum of the
probabilities of the following events: {return to the origin in four steps without any
resetting}, {two resettings first, then return to the origin in two steps}, and finally
{one step away from the origin, a resetting, then return to the origin in two steps}.
The right-hand sides in (3.35) give back (2.6), when r = 0.

The existence of the aforementioned dressed renewal process is a remarkable phe-
nomenon, which occurs whether the time intervals between resetting events, pertaining
to the external renewal process, follow an exponential distribution in continuous
time (resulting in a Poisson process), as described in [1], or a geometric distribution
(see (2.32)) in discrete time (resulting in a Bernoulli process), as described above. This
allows us to access several characteristic features of the reset Pólya walk by considering
quantities pertaining to the dressed renewal process, as we now elaborate.

14



The ‘dressed’ survival probability is naturally defined, in line with (2.8), as

R(r)(τ) = P(T (r)
0→0 > τ) =

∑
j>τ

ρ(r)(j). (3.36)

Starting from (3.33) and using (2.9), as well as the corresponding generating function
for the dressed distribution,

R̃(r)(w) =
1− ρ̃(r)(w)

1− w
, (3.37)

we can establish the following connection between the generating functions for the
survival probabilities (2.8) and (3.36) in the absence or in the presence of resetting,

R̃(r)(w) =
R̃(w̆)

1− rwR̃(w̆)
. (3.38)

The same relation holds for the probability of not crossing the origin up to integer
time t, for a discrete-time walker with continuous steps [4], or for the Pólya walk [13].

The moments of T
(r)
0→0 can be derived from (3.33). We have in particular

⟨T (r)
0→0⟩ =

1

A× , (3.39)

meaning that ⟨T (r)
0→0⟩ has a minimum at r = 0.160713 . . . , and that (3.25) can be

recast as

⟨N×
t ⟩ ≈ t

⟨T (r)
0→0⟩

, (3.40)

which is consistent with intuition.
Another quantity of interest is the probability of occurrence of a cross (spontaneous

return to the origin of the Pólya walk) at time t, in the absence or in the presence of
resetting, i.e., respectively,

U(t) = ⟨Nt⟩ − ⟨Nt−1⟩, U (r)(t) = ⟨N×
t ⟩ − ⟨N×

t−1⟩ (t ≥ 1), (3.41)

completed by U(0) = U (r)(0) = 1. The corresponding generating functions are given
by (see (2.22))

Ũ(w) =
1

1− ρ̃(w)
, Ũ (r)(w) =

1

1− ρ̃(r)(w)
. (3.42)

We have U(2n) = bn (see (2.3)), whereas U(2n+1) = 0. For t large, U (r)(t) converges
very rapidly to A×. The expression of U (r)(t) in the crossover regime of weak resetting
and late times will be given in (5.22).

The tail of the dressed distribution ρ(r)(τ) falls off exponentially as

ρ(r)(τ) ∼ e−στ . (3.43)
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Fig. 5 Amplitude A× (see (3.25) and (3.39)) and decay rate σ (see (3.43)), plotted against
the resetting probability r.

The decay rate σ is such that w0 = eσ is the smallest zero of the denominator of (3.33),
obeying

r2(1− r)w3
0 + r2w2

0 + (1− r)w0 − 1 = 0. (3.44)

The dependence of the decay rate σ on r is qualitatively similar to that of the ampli-
tude A× (see figure 5). It vanishes as σ ≈ r as r → 0, and as σ ≈ (1 − r)2/2 as
r → 1 (compare to (3.29) and (3.30)), reaching its maximum σmax = 0.126530 . . . for
r = 0.260465 . . .

As a summary, while the original renewal process made of the spontaneous returns
to the origin of the Pólya walk is not stationary, since the distribution (2.7) has a
fat power-law tail, the dressed renewal process defined by the exponentially decaying
distribution (3.43) becomes eventually stationary (see [1, 16]).

The formula (3.33) is presented in [11] within a different context. It appears as
an application to geometric resetting of a general formula concerning the distribution
of first-passage times in a generic discrete-step walk in the presence of an arbitrary
distribution of reset events. This reference solely focuses on first-passage properties. In
particular, it does not delve into the renewal structure of the spontaneous returns to
the origin of the reset Pólya walk defined by (1.1). The method used in [11] to derive
the distribution of the first-passage time for an arbitrary distribution of reset events,
which builds upon prior research [10, 17, 18], is revisited in [1].

4 Cumulants and large deviations in the late-time
regime

In this section we continue the investigation of the joint statistics of the quantities
N×

t (number of dots) and N •
t (number of crosses) for the Pólya walk in the late-time

regime. We shall demonstrate that these variables are extensive in a strong sense, first
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by examining their joint cumulants and then by investigating the corresponding large
deviation functions.

4.1 Cumulants

The starting point of the analysis is again the key formula (3.20). The late-time regime
is governed by the smallest zero w⋆(z, y) of the denominator of that formula, which
entails an exponential law of the form

⟨zN×
t yN

•
t ⟩ ∼ w⋆(z, y)

−t (4.1)

for the joint probability generating function of N×
t and N •

t in the late-time regime.
Introducing the notations

z = eλ, y = eµ, (4.2)

and
w⋆(z, y) = e−S(λ,µ) (4.3)

brings the estimate (4.1) for the generating function of the joint cumulants of N×
t and

N •
t to the more familiar form

⟨eλN×
t +µN•

t ⟩ ∼ eS(λ,µ)t. (4.4)

The exponential law (4.4) implies that all joint cumulants grow linearly with time, as

⟨(N×
t )k(N •

t )
ℓ⟩c ≈ ck,ℓ t, (4.5)

where the amplitudes ck,ℓ are the coefficients of the series expansion

S(λ, µ) =
∑

k+ℓ≥1

ck,ℓ
λk

k!

µℓ

ℓ!
(4.6)

of the entropy function S(λ, µ) entering (4.4).
In particular, setting λ = µ in (4.4) yields

⟨eλN×•
t ⟩ ∼ eS(λ,λ)t, (4.7)

so that S(λ, λ) generates the amplitudes of the cumulants of N×•
t = N×

t +N •
t in the

late-time regime. We have
⟨(N×•

t )n⟩c ≈ Cn t, (4.8)

with

S(λ, λ) =
∑
n≥1

Cn
λn

n!
(4.9)

and

Cn =

n∑
k=0

(
n

k

)
ck,n−k. (4.10)
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In order to derive explicit expressions for the function S(λ, µ) defined in (4.3),
and therefore for the cumulant amplitudes ck,ℓ and Cn, we need an expression of
the smallest zero of the denominator in (3.20). This is done in Appendix A, yielding
w⋆(z, y) = w1, where w1 is known explicitly from (4.2), (A2), (A4), (A5) and (A6),
whence, finally,

S(λ, µ) = − lnw1. (4.11)

By expanding the expression above as a power series in λ and µ, we obtain explicit
expressions for the cumulants ck,ℓ and Cn, which can be further reduced to expressions
linear in

A =

√
r

2− r
(4.12)

(see (3.28)), with coefficients rational in r. The first few formulas given below testify
that their complexity increases very fast with the order of the cumulants. To first
order in λ and µ, we have

c1,0 = A− r,

c0,1 = r,

C1 = A, (4.13)

in agreement with (3.8), (3.26) and (3.28). To second order, we have

c2,0 = −4− 3r

2− r
A+

2 + 4r − 9r2 + 5r3 − r4

(2− r)2
,

c1,1 =
1− r

2− r
A− r(1− r),

c0,2 = r(1− r),

C2 = −A+
2− r2

(2− r)2
. (4.14)

To third order, we have

c3,0 =
3 + 38r − 76r2 + 46r3 − 8r4

r(2− r)3
A

− 12 + 14r − 66r2 + 73r3 − 43r4 + 15r5 − 2r6

(2− r)3
,

c2,1 = − (1− r)(4− 5r)

(2− r)2
A

+
r(1− r)(12− 32r + 30r2 − 13r3 + 2r4)

(2− r)3
,

c1,2 =
(1− r)(1− 2r)

(2− r)2
A− r(1− r)(1− 2r),

c0,3 = r(1− r)(1− 2r),
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C3 =
3 + 20r − 31r2 + 10r3 + r4

r(2− r)3
A− 3(2− r2)

(2− r)2
. (4.15)

More specific results can be derived in a few special and limiting situations. We have
observed that the statistics of N •

t is simple, as its distribution is the binomial (3.7).
This leads to two consequences. First, all its cumulants have an exact linear behaviour
in t at all times:

⟨(N •
t )

ℓ⟩c = c0,ℓ t. (4.16)

Second, the cumulant amplitudes c0,ℓ can be derived from (3.6), which amounts to

S(0, µ) =
∑
ℓ≥1

c0,ℓ
µℓ

ℓ!
= ln(1− r + reµ). (4.17)

The first few amplitudes read

c0,1 = r, c0,2 = r(1− r),

c0,3 = r(1− r)(1− 2r), c0,4 = r(1− r)(1− 6r + 6r2). (4.18)

The first three expressions agree with (4.13)–(4.15). The amplitudes c0,ℓ are polyno-
mials in r of increasing degrees, obeying the linear differential recursion [19]

c0,ℓ+1 = r(1− r)
dc0,ℓ
dr

(ℓ ≥ 1). (4.19)

They read explicitly

c0,ℓ =

ℓ∑
k=1

(−1)k−1(k − 1)!

{
ℓ

k

}
rk, (4.20)

where
{

ℓ
k

}
are the Stirling numbers of the second kind.

In the regime of strong resetting (r → 1), we have

S(λ, µ) = µ+ (1− r)(e−µ − 1) + (1− r)2(e−µ − e−2µ + 1
2 (e

λ−2µ − 1)) + · · · (4.21)

For r = 1, only c0,1 = 1 is non-zero, in agreement with (3.10). To first order in
1− r, only the c0,ℓ are non-zero, as there are no crosses at this order. Their behaviour
c0,ℓ ≈ (−1)ℓ(1− r) for ℓ ≥ 2 agrees with (4.20). All cumulant amplitudes ck,ℓ become
non-trivial to second order in 1− r.

The regime of weak resetting (r → 0) is more subtle. This richness is related to
the crossover phenomenon that will be examined in section 5. An inspection of the
formulas (4.13), (4.14) and (4.15) yields the scaling ck,ℓ ∼ A2−k, with A ≈

√
r/2

(see (3.28)), at least for odd k. This observation can be corroborated by the following
scaling analysis. Let us assume that the cumulant amplitudes behave as

ck,ℓ ≈ bk,ℓA
2−k (4.22)
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as A → 0, i.e., r → 0, where the bk,ℓ are constants to be determined. This ansatz
translates into the scaling form

S(λ, µ) ≈ A2 F (h, µ), (4.23)

with

h =
λ

A
, F (h, µ) =

∑
k+ℓ≥1

bk,ℓ
hk

k!

µℓ

ℓ!
. (4.24)

Inserting the scaling form (4.23), with the notations (4.2), into (A1), and expanding
to the first non-trivial order in A, we obtain that the scaling function F (h, µ) obeys
the quadratic equation

2F 2 − (8(eµ − 1) + h2)F + 8(eµ − 1)2 − 2h2 = 0, (4.25)

hence

F (h, µ) = 2(eµ − 1) +
h2

4
+ h

√
eµ +

h2

16
. (4.26)

Each term of the expression (4.26) is responsible for the scaling (4.22) of some of the
cumulant amplitudes as A→ 0. The first term yields

c0,ℓ ≈ 2A2 ≈ r (4.27)

for all ℓ ≥ 1, in agreement with (4.20). The second term yields

c2,0 → 1

2
(4.28)

as r → 0, in agreement with (4.14). The third term of (4.26) is an odd function of h,
and therefore concerns odd values of k. Introducing the series expansion√

1 +
x

16
=
∑
p≥0

ap
(2p+ 1)!

xp, ap = (−1)p−1 (2p+ 1)!

16p(2p− 1)
bp (4.29)

(see (2.3)), i.e.,

a0 = 1, a1 =
3

16
, a2 = − 15

256
, a3 =

315

4096
, (4.30)

and so on, we obtain

c2p+1,ℓ ≈ ap
(
− 1

2 (2p− 1)
)ℓ
A1−2p. (4.31)

All cumulant amplitudes ck,ℓ with odd k therefore obey the scaling ansatz (4.22), while
the cumulant amplitudes with even k are subleading as r → 0, with the exception of
those previously mentioned in (4.27) and (4.28). Finally, the cumulant amplitudes Cn

for odd n are governed by the term k = n in (4.10). We have therefore

C2p+1 ≈ apA
1−2p, (4.32)
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whereas the Cn with even n are subleading as r → 0, except C2 ≈ c2,0 ≈ 1/2.

4.2 Large deviations

The result (4.4) has an alternative interpretation in terms of large deviations [20–23]. It
implies that the joint probability distribution of N×

t and N •
t falls off exponentially as

P(N×
t ≈ ξt, N •

t ≈ ηt) ∼ e−I(ξ,η)t (4.33)

in the regime of late times, for fixed densities ξ of crosses and η of dots. The estimate

⟨eλN×
t +µN•

t ⟩ ∼
∫

dξ

∫
dη e[λξ+µη−I(ξ,η)]t ∼ eS(λ,µ)t (4.34)

shows that the bivariate functions S(λ, µ) and I(ξ, η) are related by a Legendre
transformation of the form

S(λ, µ) + I(ξ, η) = λξ + µη, (4.35)

with

ξ =
∂S

∂λ
, η =

∂S

∂µ
, λ =

∂I

∂ξ
, µ =

∂I

∂η
. (4.36)

In the late-time regime, the joint distribution of N×
t and N •

t becomes peaked
around the point

ξ0 = A× = A− r = c1,0, η0 = A• = r = c0,1, (4.37)

in agreement with (3.8), (3.25) and (4.13). The form of the bivariate large deviation
function I(ξ, η) around (ξ0, η0) is governed by the regime where λ and µ are small.
Using the series expansion (4.6), we are left with the quadratic form (see (4.14))

I(ξ, η) ≈ c0,2(ξ − ξ0)
2 − 2c1,1(ξ − ξ0)(η − η0) + c2,0(η − η0)

2

2(c2,0c0,2 − c21,1)
, (4.38)

describing the Gaussian bulk of the joint distribution of N×
t and N •

t .
The subsequent analysis shows that the domain of permitted values of the densi-

ties ξ and η is the triangle ABC shown in figure 6. The large deviation function I(ξ, η)
is continuous all along the boundary of the triangle. Its behaviour near the vertices
and the edges of the triangle is governed by the regime where λ and/or µ are large,
either positive or negative.

The vertex A = (0, 0) is reached for λ and µ → −∞. We obtain S(−∞,−∞) =
ln(1− r), and so

IA = I(0, 0) = − ln(1− r). (4.39)

This can be interpreted as follows. Point A corresponds to the situation where the
system is empty. The absence of resettings (η = 0) brings a weight (1 − r)t. Given
this condition, the probability of the system containing no crosses (ξ = 0) is R(t)
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Fig. 6 Triangular domain of permitted values of densities ξ of returns to the origin of the
walk (crosses) and η of resetting events (dots).

(see (2.27)), which falls off as a power of time (see (2.12)), and thus does not contribute
to the large deviation function. The vertex B = (1/2, 0) is reached for λ → −∞ and
µ→ +∞. We obtain

IB = I(1/2, 0) = − ln(1− r) +
1

2
ln 2. (4.40)

The absence of resettings (η = 0) indeed again brings a weight (1 − r)t. Given this
condition, when time t is even, the number N×

t of crosses takes its maximal value t/2,
and ξ = 1/2, if the walk consists of a sequence of t/2 back-and-forth excursions on
either side of the origin. This constraint brings a weight 2−t/2. The vertex C = (0, 1)
is reached for λ→ +∞ and µ→ −∞. We obtain

IC = I(0, 1) = − ln r. (4.41)

The condition η = 1 indeed amounts to having a resetting event at each time step.
This brings a weight rt, and there is no space left for crosses.

Along the edge AB, I(ξ, 0) increases monotonically from IA to IB. Along AC, I(0, η)
is not monotonic and exhibits a minimum, to be identified with I×(0) (see below).
Finally, a generic point along BC is reached for λ and µ → +∞ in such a way that
the difference λ − 2µ is kept fixed. The large deviation function thus obtained is not
monotonic and exhibits a minimum.

Let us now turn to the univariate large deviation functions associated with N •
t ,

N×
t and their sum N×•

t . In the case of N •
t , (4.33) yields

P(N •
t ≈ ηt) ∼ e−I•(η)t (0 < η < 1), (4.42)

where
I•(η) = min

ξ
I(ξ, η) = µη − S(0, µ) (4.43)
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is the Legendre transform of the function S(0, µ) given in (4.17). We thus obtain the
simple expression

I•(η) = η ln
η

r
+ (1− η) ln

1− η

1− r
, (4.44)

with limit values
I•(0) = IA, I•(1) = IC, (4.45)

and a quadratic behaviour

I•(η) ≈ (η − r)2

r(1− r)
(4.46)

around η0 = r.
In the case of N×

t , (4.33) yields

P(N×
t ≈ ξt) ∼ e−I×(ξ)t (0 < ξ < 1/2), (4.47)

where
I×(ξ) = min

η
I(ξ, η) = λξ − S(λ, 0) (4.48)

is the Legendre transform of S(λ, 0). This function has the limit value

I×(1/2) = IB (4.49)

and the quadratic behaviour

I×(ξ) ≈ (ξ −A×)2

2c2,0
(4.50)

around ξ0 = A× = c1,0. The limit value I×(0) is given by the decay rate of the

distribution of T
(r)
0→0, introduced in (3.43),

I×(0) = σ, (4.51)

since P(N×
t = 0) = R(r)(t) ∼ e−σt, according to (3.36).

Finally, in the case of N×•
t = N×

t +N •
t , (4.33) yields

P(N×•
t ≈ φt) ∼ e−I(φ)t (0 < φ < 1), (4.52)

where
I(φ) = min

ξ
I(ξ, φ− ξ) = λφ− S(λ, λ) (4.53)

is the Legendre transform of S(λ, λ). The limit values

I(0) = IA, I(1) = IC, (4.54)

coincide with (4.45). The function I(φ) has the expected quadratic behaviour

I(φ) ≈ (φ−A)2

2C2
(4.55)
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Fig. 7 Univariate large deviation functions I•(η), I×(ξ), and I(φ), corresponding to N •
t ,

N×
t and their sum N×•

t , respectively, for a resetting probability r = 0.3, so that η0 = 0.3,
ξ0 = 0.120084 . . . and φ0 = 0.420084 . . . (arrows).

around φ0 = A = C1.
Figure 7 shows plots of the univariate large deviation functions I•(η), I×(ξ), and

I(φ), respectively corresponding to N •
t , N×

t and their sum N×•
t , for a resetting prob-

ability r = 0.3. Numerical values of these functions are obtained by means of (4.11).
All derivatives required by the Legendre transform (4.35), (4.36) are worked out by
analytical means. For instance,

ξ =
∂S

∂λ
= −∂ lnw1

∂ ln z
= − z

w1

∂w1

∂z
=

z ∂P/∂z

w ∂P/∂w

∣∣∣∣
w=w1

(4.56)

(see (A1)) is a rational expression in r, z, y and w1.

5 Crossover regime at weak resetting

The statistics of the number N×
t of crosses exhibits a non-trivial behaviour in the

crossover regime of weak resetting (r → 0) and late times (t→ ∞). In the absence of
resettings, the mean value ⟨N×

t ⟩ scales as
√
t (see (2.25)), while in the case of weak

resetting, it scales as
√
r t (see (3.25) and (3.26)). These two estimates become com-

parable when the product rt is of order unity. Interestingly, the latter is precisely the
value of the mean number of resettings ⟨N •

t ⟩ (see (3.8)), which implies that a finite
number of resetting events are sufficient to induce a macroscopic crossover in the statis-
tics of N×

t . This phenomenon has also been described in other observables, including
the maximum and number of records of random walks under weak resetting [5, 6].

The full distribution of N×
t throughout this crossover regime can be derived

from (3.20). Setting w = e−s, y = 1 and z = e−p, and working to leading order in the
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continuum regime where r, s and p are small, we obtain∫ ∞

0

dt e−st⟨e−pN×
t ⟩ ≈ 1

s+ p
√

(r + s)/2
. (5.1)

Inverting the Laplace transform in p yields∫ ∞

0

dt e−st P(N×
t = N ) ≈

√
2

r + s
exp

(
− s

√
2

r + s
N
)
. (5.2)

The two expressions above are very similar to (2.28) and (2.29). We thus infer
from (5.2) that the number N×

t of crosses scales as

N×
t ≈

√
t ζ, (5.3)

where the rescaled random variable ζ has a limiting distribution with density f(ζ, u),
depending only on the parameter

u = rt = ⟨N •
t ⟩. (5.4)

Introducing the ratio λ = s/r, (5.2) becomes

f(ζ, u) =
√
2u

∫
dλ

2πi

eλu√
λ+ 1

exp

(
− λ√

λ+ 1

√
2u ζ

)
. (5.5)

This expression cannot be made more explicit, except at ζ = 0, resulting in the
following value:

f(0, u) =
√
2u

∫
dλ

2πi

eλu√
λ+ 1

=

√
2

π
e−u. (5.6)

Hereafter we examine the behaviour of this distribution in the regimes where the
parameter u is either small or large. We then shift our focus to the analysis of the
moments and the cumulants of ζ.

Behaviour for u ≪ 1

The behaviour of f(ζ, u) for small u can be derived by setting λ = p2/u in (5.5), and
expanding the integrand as a power series in u at fixed p. We thus obtain

f(ζ, u) =

∫
dp

2πi
ep

2−
√
2pζ

[
2
√
2 +

(
2ζ

p
−

√
2

p2

)
u+ · · ·

]
=

√
2

π
e−ζ2/2 +

(
2ζ erfc

ζ√
2
−
√

2

π
e−ζ2/2

)
u+ · · · , (5.7)

where erfc is the complementary error function. The first term matches the half-
Gaussian asymptotic distribution (2.30) of N×

t in the absence of resetting.
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Fig. 8 Distribution f(ζ, u) of the rescaled number ζ of returns to the origin in the weak-
resetting crossover regime (see (5.3)), for several values of the parameter u = rt (see legend).

Behaviour for u ≫ 1

Let us define the random variable X by

ζ =

√
u

2
+X. (5.8)

The behaviour of f(ζ, u) for large u can then be derived by setting λ = p/
√
2u in (5.5)

and expanding the integrand as a power series in 1/
√
u at fixed p. We thus obtain,

with ζ =
√
u/2 + x,

f(ζ, u) =

∫
dp

2πi
ep

2/4−px

(
1 +

8p2x− 3p3 − 8p

16
√
2u

+ · · ·
)

=
e−x2

√
π

(
1 +

x(2x2 + 1)

4
√
2u

+ · · ·
)
. (5.9)

Whenever the parameter u is large, the random variable ζ therefore consists of a large
deterministic part, growing as

√
u, along with a fluctuating component X of order

unity. To leading order, the distribution of X is a Gaussian with variance 1/2.
Figure 8 shows the distribution f(ζ, u) for several values of the parameter u = rt

(see legend). The plotted distributions exhibit a smooth but rather rapid crossover
between a half-Gaussian form at u = 0 (see (5.7)) and a shifted Gaussian at large u
(see (5.9)). In particular, the maxima of the curves converge very fast to their limit
1/
√
π = 0.564189 . . .
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Moments of ζ

Equation (5.5) yields the following formula for the moments of ζ:

µk(u) = ⟨ζk⟩ =
∫ ∞

0

dζ ζk f(ζ, u) =
k!

(2u)k/2

∫
dλ

2πi
eλu

(λ+ 1)k/2

λk+1
. (5.10)

These moments only depend on the parameter u = rt. They are such that

⟨(N×
t )k⟩ ≈ µk(u) t

k/2 (5.11)

throughout the crossover regime. The moments (2.31) in the absence of resetting yield

µ2n(0) =
(2n)!

2nn!
, µ2n+1(0) =

√
2

π
2nn!. (5.12)

The results above suggest that the moments µk(u) have different analytical expressions
according to the parity of the integer exponent k. This is indeed the case.

For even k = 2n, the integrand in the rightmost side of (5.10) is a rational function
of λ. Expanding out (λ+ 1)n, we readily obtain

µ2n(u) =
(2n)!n!

2n

n∑
m=0

um

m!(n−m)!(n+m)!
, (5.13)

namely

µ2(u) =
u+ 2

2
, µ4(u) =

u2 + 8u+ 12

4
, µ6(u) =

u3 + 18u2 + 90u+ 120

8
, (5.14)

and so on. The moment µ2n(u) is a polynomial of degree n in u. Its constant term
(m = 0) matches the first expression in (5.12), whereas its leading term (m = n) yields

µ2n(u) ≈
(u
2

)n
, (5.15)

in agreement with (5.8).
For odd k = 2n+ 1, the integrand in the rightmost side of (5.10) is now the ratio

of a rational function by
√
λ+ 1. Proceeding as before, we obtain

µ2n+1(u) =
(2n+ 1)!(n+ 1)!

(2u)n+1/2

n+1∑
m=0

gn+m(u)

m!(n+ 1−m)!(n+m)!
, (5.16)

with

gn(u) = n!

∫
dλ

2πi

eλu

λn+1
√
λ+ 1

=

∫ u

0

dv (u− v)n
e−v

√
πv
. (5.17)
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It can be shown using two integrations by parts that these functions obey the three-
term linear recursion

gn(u) = (u− n+ 1
2 )gn−1(u) + (n− 1)ugn−2(u), (5.18)

with initial values

g0(u) = erf
√
u, g1(u) = (u− 1

2 ) erf
√
u+

√
u

π
e−u. (5.19)

We thus obtain

µ1(u) = (2u+ 1)
erf

√
u

2
√
2u

+
e−u

√
2π
,

µ3(u) = (8u3 + 36u2 + 18u− 3)
erf

√
u

16u
√
2u

+ (4u2 + 16u+ 3)
e−u

8u
√
2π
, (5.20)

and so on. The general structure of the odd moments emerges from the above exam-
ples. Their values at u = 0 (see (5.12)) cannot be easily read off, as more and more
compensations are involved in taking the u→ 0 limit. To leading order at large u, we
have

µ2n+1(u) ≈
(u
2

)n+1/2

, (5.21)

again in agreement with (5.8).
To close, we mention that the probability U (r)(t) introduced in (3.41) scales as

U (r)(t) ≈ G(u)√
t

(5.22)

throughout the crossover regime, with

G(u) = 1
2µ1(u) + uµ′

1(u) =

√
u erf

√
u√

2
+

e−u

√
2π
. (5.23)

The probability U (r)(t) exhibits even-odd oscillations, so that (5.22) actually describes
the behaviour of the local average 1

2 (U
(r)(t) + U (r)(t− 1)).

Cumulants of ζ

In order to compare the above analysis of the crossover with the outcomes of section 4,
let us consider the cumulants

γk(u) = ⟨ζk⟩c. (5.24)

At large values of u, neglecting exponentially small corrections, these quantities read

γ1(u) ≈ 2u+ 1

2
√
2u

, γ2(u) ≈
4u− 1

8u
,
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γ3(u) ≈ 6u− 1

16u
√
2u
, γ4(u) ≈

3

32u2
,

γ5(u) ≈ −3(10u− 3)

128u2
√
2u
, γ6(u) ≈ − 15

64u3
. (5.25)

The cumulants of ζ appear to have a simpler dependence on u than the corresponding
moments. To leading order as u≫ 1, the odd cumulants scale as

γ2n+1(u) ≈ an

(u
2

)1/2−n

, (5.26)

in agreement with (4.31), where the amplitudes an are given in (4.29). The second
cumulant (variance) admits a finite limit 1/2, to be identified with the limit of c2,0,
whereas higher even cumulants scale as

γ2n(u) ≈
αn

un
, (5.27)

for some constants αn. They are therefore subleading with respect to the odd ones.

6 Discussion

To conclude, let us put the main outcomes of the present work in perspective with
those of the companion paper [1]. The point process considered in this latter work
involves two generic nested renewal processes, an internal one characterised by the
distribution ρ(τ) of interarrival times, and an external one characterised by the dis-
tribution f(T ) of time intervals between resetting events. In [1], the main emphasis
was on the number N×

t of (internal) renewal events occurring within a fixed obser-
vation time t. The statistics of this observable revealed a wide variety of asymptotic
behaviours, dependent on the values of the exponents θ1 and θ2 governing the tails
of the distributions ρ(τ) and f(T ). These findings highlight the dominance of the
more regular of the two processes, specifically the one with the larger tail exponent,
θ̃ = max(θ1, θ2). More specifically, N×

t grows linearly in time and has relatively neg-

ligible fluctuations whenever θ̃ > 1, whereas N×
t ∼ tθ̃ grows subextensively over time

while continuing to fluctuate for θ̃ < 1.
The reset Pólya walk considered in the present work is a specific instance of the

general process made of two arbitrary nested renewal processes. The internal renewal
process describes the spontaneous returns of the walker to its starting point, whereas
the external one consists of resettings, taking place with probability r at each time
step. In the phase diagram of [1], this example corresponds to θ1 = 1/2 and θ2 = ∞,
and hence θ̃ = ∞, so that a high degree of regularity is expected for the entire process.

The present analysis corroborates this prediction and completes it by a breadth of
quantitative results concerning the joint statistics of the numbers N×

t of crosses (spon-
taneous returns) and N •

t of dots (resetting events) in the regime of late times. The
most salient of these outcomes—highlighted in the introduction—concerning the lin-
ear growth of all joint cumulants ⟨(N×

t )k(N •
t )

ℓ⟩c and the smoothness of the bivariate
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large deviation function I(ξ, η), testify that the numbers N×
t and N •

t are extensive in
a very strong sense, and that the reset Pólya walk indeed manifests a very high degree
of regularity. This characteristic can be related to the exponentially decaying, hence
strongly localised, steady-state distribution of the walker’s position under stochastic
resetting (see (3.31)). It would be worth investigating whether similar regularity prop-
erties also manifest themselves in other observables pertaining to the Pólya walk under
resetting.
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Appendix A Zeros of the denominator of (3.20)

This appendix is devoted to the determination of the zeros of the denominator of (3.20)
in the variable w. Using (2.21) and (2.2), and eliminating the square root entering the
formula thus obtained, results in a polynomial equation of degree three for the zeros
w(z, y), reading

P (r, z, y, w) = P3w
3 + P2w

2 + P1w + P0 = 0, (A1)

with

P3 = (1− r)((1− r)z + ry)2, P2 = r2y2 − (1− r)2z2,

P1 = (1− r)(1− 2z)− 2ryz, P0 = 2z − 1. (A2)

Polynomial equations of degree three can be solved analytically, either by Cardano’s
method or by the trigonometric method. Here, we adopt the latter approach, which
has the advantage that no complex numbers are involved when the three zeros are
real. This is indeed the case here, for small enough real λ and µ. Setting w = B + x,
we arrive at a reduced equation for x,

x3 + px+ q = 0, (A3)

with

B = − P2

3P3
, p =

P1

P3
− P 2

2

3P 2
3

, q =
P0

P3
− P1P2

3P 2
3

+
2P 3

2

27P 3
3

. (A4)

The condition for all zeros to be real reads 4p3 + 27q2 < 0, implying in particular
p < 0. These zeros then read

w1 = B + σ cos(θ − 2π/3),

w2 = B + σ cos θ,
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w3 = B + σ cos(θ + 2π/3), (A5)

with

σ = −
√

−4p

3
, cos 3θ = − 4q

σ3
(0 ≤ θ ≤ π/3). (A6)

For small enough real λ and µ, the smallest of the three zeros is w1, which is positive,
so that

S(λ, µ) = − lnw1, (A7)

that is (4.11).
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