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Reduced quasilinear (QL) and nonlinear (gradient-driven) models with scale separations, com-
monly used to interpret experiments and to forecast turbulent transport levels in magnetised plasmas
are tested against nonlinear models without scale separations (flux-driven). Two distinct regimes of
turbulence –either far above threshold or near marginal stability– are investigated with Boltzmann
electrons. The success of reduced models especially hinges on the reproduction of nonlinear fluxes.
Good agreement between models is found above threshold whilst reduced models would signifi-
cantly underpredict fluxes near marginality, overlooking mesoscale flow organisation and turbulence
self-advection. Constructive prescriptions whereby to improve reduced models is discussed.

Introduction – Fusion plasmas display the property,
common in dynamical systems that upon surpassing a
critical threshold, an instability may promptly build
up, inducing large fluxes which deplete the driving
gradients and inhibit the instability. Background gra-
dients thus hover in the vicinity of nonlinear near
marginal thresholds [1]. Many strategies have been
devised in modelling to mimic natural processes. All
are not equivalent and different choices may critically
affect the nature of computed statistical equilibria.
Forcing-dependent steady-states have indeed long

been observed in a variety of systems. Systems
with long-range interactions, either controlled in en-
ergy or in temperature display different equilibria
[2, 3]. Swirling flows controlled through either im-
posed torque or imposed velocity display distinct
steady states, as well as different dynamical regimes
[4]. In magnetised fusion plasmas, auxiliary heating
and current drive force the system out of equilibrium
through a constant flux. Mimicking nature, “flux-
driven” (FD) forcing adiabatically imparts a volumet-
ric flux to the system whose gradients self-consistently
adapt, leading to the observation of large-scale trans-
port events such as avalanches [5–11], secondary non-
linear structures such as zonal mean flows [12, 13] or
tertiary patterns such as staircases [14–19]. Such ob-
servations are absent or impaired when the system is
driven through a body force, which amounts to im-
posing fixed mean gradients. This “gradient-driven”
(GD) strategy is widely used in direct numerical com-
putations for it is computationally efficient. It indeed

enforces, with respect to the FD approach, spatial and
temporal scale separations between equilibrium and
fluctuations and solves for the fluctuations only.

Known differences between FD and GD frameworks
have been documented [17, 18, 20] and related as-
pects have been discussed in several reviews [21–23].
Whether these are of practical incidence in fusion-
relevant configurations is non trivial and these ques-
tions are likely exacerbated in near marginal regimes.
The matter is important for there are increasing re-
quirements for fast, reduced, yet reliable models to ex-
plore the vast parameter space of magnetised plasma
turbulence, interpret experimental results and fore-
cast future large experiments such as ITER. Cur-
rently, the more advanced reduced models are based
on quasilinear theory (QLT) [24–26]. With the ad-
vent of machine learning techniques, the ubiquitous
closure problem of QLT is approached through data-
driven techniques that use large-scale databases of gy-
rokinetic gradient-driven computations. Systematic
shortcomings, if any, within these reference GD strate-
gies are thus likely to be carried over to the reduced
models. Comprehensive understanding of discrepan-
cies between first-principles FD, GD and quasilinear
approaches is thus important and timely, and the topic
of this manuscript.

To this end, we confront reference results from non-
linear FD gyrokinetics using the Gysela framework
[27] to state-of-the-art GD nonlinear gyrokinetics and
GD quasilinear calculations, using respectively Gkw
[28] and QuaLiKiz [29, 30]. We further complement
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the study with a twofold confrontation with the QL
transport framework of QuaLiKiz–Jetto and with
the nonlinear local transport framework of Gene–
Tango. In these computations, Nr,eval instances of
QuaLiKiz or Gene [31] locally compute at vari-
ous radii reval,i (with 0 ≤ i ≤ Nr,eval) flux-surface-
averaged transport coefficients which are passed on
to the Jetto [32] or Tango [33] one-dimensional
integrated modelling suites and used to evolve pro-
files through flux-driven transport equations. After a
transport timescale, new local values at each reval,i lo-
cation from the evolved profiles are fed to local Qua-
LiKiz or Gene and the process loops. In practice
Nr,eval = 50 for QuaLiKiz–Jetto and Nr,eval = 9
for Gene–Tango.
Main results are: (i) steady-state predictions of

fluxes moderately depend on the nature of forcing well
above nonlinear threshold; (ii) near marginality how-
ever, nonlinear and quasilinear GD models sizeably
underpredict turbulent heat transport. Under a driv-
ing flux, profiles display ’stiffness’, i.e. hover in the
vicinity of their near-threshold flux-matching values.
Large, hot devices such as ITER are expected to be
stiff due to the temperature dependence of the gy-
roBohm heat flux scaling, making near marginality
a regime which models must confront. Proximity to
nonlinear thresholds implies additional complexity as
it favours secondary pattern formation and mesoscale
organisation. Despite this additional complexity, (iii)
the underlying assumptions of QLT hold well across
nonlinear regimes. We show that transport underpre-
diction rather stems from the choice of closure, i.e.
the nonlinear saturation rule. This work stresses the
relevance of QLT for model reductions of turbulence
whilst providing guidelines whereby reduced models
can be improved. The nonlinear and QL approaches
tested here are the current workhorse for estimating
transport and confinement in turbulent fusion plas-
mas. This work thus has implications for present-day
experimental data analysis and scenario extrapolation
for fusion production. Novel saturation rules should
strive to incorporate near marginal flux-driven speci-
ficities, often dubbed turbulence spreading [11, 34–38],
transport nonlocality or staircase organisation.
Frameworks compared – Models are often cat-
egorised on being either ‘local’ (e.g. ‘flux-tube’) or
‘global’. In the local approximation, mean profiles
are piecewise constant and boundary conditions pe-
riodic; in the global approach, both assumptions are

relaxed. There are documented differences between
both approaches but for the present discussion, being
either local or global is secondary to the fact of be-
ing either gradient- or flux-driven. Large scale mean
(equilibrium) gradients, as the main source of free en-
ergy will of course contribute to driving meso- and
micro-scale dynamics. Micro- and meso-scales back
react non linearly on the equilibrium profiles via tur-
bulent fluxes. A central question is whether any scale
separation (in time and space) exists between turbu-
lence dynamics at micro- and meso-scales on the one
hand and equilibrium scales on the other hand. This
question is likely all the more critical close to (non-
linear) marginal stability where meso-scale dynamics
is more pronounced, memory of smaller scale turbu-
lent activity being ‘stored’ in meso-scale alteration of
equilibrium profiles.

Importantly, in flux-driven frameworks, no scale
separation between equilibrium and fluctuations is
postulated which implies that the sources and sinks
which drive the system out of equilibrium evolve on
length scales coarser than that of the turbulence as
well as on slow, adiabatic time scales. A continuum of
(turbulent) micro- and meso-scales can thus feedback
on meso- to macro-scales. In that respect, flux-driven
approaches are necessarily global whilst the inverse
is not true. One could thus argue that flux-driven
and global gradient-driven approaches should render
close results well above threshold. Closer to (nonlin-
ear) turbulence threshold, near marginal regimes are
precisely the regimes where global gradient-driven ap-
proaches may prove significantly different from flux-
driven approaches, for instance through manifestation
of Self-Organised Criticality-like phenomena. The cu-
rious reader is also referred to e.g. section 4 of Ref.[21],
which further illustrates these matters.

Flux-driven Gysela resolves ion Larmor radius
scale turbulence and collisional transport in global
tokamak geometry, spanning from r/a = 0 to r/a =
1.2, a being the minor radius of the torus. A centrally
peaked heat source drives a deuterium plasma out of
equilibrium. For r/a ≥ 1, a heat sink is progressively
applied which allows convergence to a steady temper-
ature profile on energy confinement times. Steady-
state and coarse-grained (see below) density n, tem-
perature T , source S and safety factor q profiles from
Gysela are shown in Fig.1. Together with the zonal
mean shear shown in Fig.2, they are the reference in-
puts used to initialise all the other codes. On practi-
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Figure 1. Radial Gysela profiles of ion and electron
temperature, heat source (left), density and safety fac-
tor (right) for both ‘near marginal’ and ‘above thresh-
old’ cases. The profiles are temporally averaged over
30, 000Ωci and radially through sliding windows of 60 ρi.

cal grounds, the Gysela profiles need some amount
of coarse graining or smoothing before serving as in-
put for either Gkw or QuaLiKiz: this is the essence
of the scale separation assumption inherent to the
gradient-driven approach. In a gradient-driven frame-
work and even more so in the local limit, profiles
are indeed required to be smooth below a cut-off ra-
dial scale ℓ ≤ ℓc = max(λlin, λE×B) whose physics
is not included within gradient-driven models. Here
λlin ≳ 10 − 20 ρi denotes the typical radial extent of
unstable growing modes and λE×B ≳ 10ρi the typical
width of meanE×B shear structures [15]. To this end,
Gysela observables are both time averaged at steady-
state over 30, 000Ωci —which is larger than a typi-
cal linear growth time and radially smoothed through
sliding windows of 60 ρi to smear out flux-driven speci-
ficities in the profiles. Here Ωci is the ion cyclotron
frequency. Sliding averages of 20 ρi have also been in-
vestigated and found insufficient near marginality to
smear out memory of meso-scale organisation from the
flux-driven framework. This point is further discussed
below whilst evoking the role of mean E×B shear.

Gradient-driven models on the other hand (either
local or global) exploit to numerical advantage the
assumption of a scale separation between a fixed
(mean) equilibrium and fluctuations. Sources and
sinks are also required in gradient-driven approaches
to maintain the system out of equilibrium; the im-
portant point is that they depend on the local dy-
namics of the plasma: maintaining fixed background
mean gradients thus acts so as to counter-act part
of the natural dynamics of the system (which would

naturally relax towards equilibrium), especially hin-
dering spreading and mesoscale dynamics. The ap-
pealing semantic contrast between local and global
may sometimes cloud the important fact that, espe-
cially near marginal stability, what matters is whether
these scale separations are postulated or not. Said
differently, models are better classified near marginal
stability on whether scale separations are postulated
or not, whether mesoscale organisation can develop
or not and turbulence spreading can occur, unhin-
dered. These questions have been documented both
with Boltzmann and kinetic electron responses —see
e.g. Fig.2 in Ref.[16], Figs. 5 and 9 in Ref.[17], Figs.10
and 11 in Ref.[18] and Refs.[39, 40]. Inclusion of elec-
tron dynamics bears additional physics that will be
specifically addressed in a coming work. In the present
manuscript, we compare as a first step all approaches
with Boltzmann electrons.

Gradient-driven nonlinear Gkw exists in both local
and global versions; it is here run in its local (flux-
tube) setting, solving a limited subset of the whole
plasma volume twisting around the torus due to the
magnetic shear of the background magnetic equilib-
rium. Gkw is compared to Gysela at 3 different
locations r/a = 0.3, 0.4 and 0.6. At each of these lo-
cations, one first computes the coarse-grained values
of the Gysela profiles (as detailed above) at equilib-
rium, shown in Figs.1 and 2. These values are used to
define the reference background Maxwellian for Gkw
at each location; Gkw then evolves the perturbed dis-
tribution function with reference to this fixed back-
ground. The resolution chosen for all Gkw runs
is such that resolved radial and poloidal wavenum-
bers extend from (kθρi)min = (krρi)min = 0.051 to
(kθρi)max = 2.6 and (krρi)max is adjusted to match
the radial resolution used in Gysela, i.e. 11.3 for the
‘above threshold’ case and 8.1 for the ‘near marginal’
one. This amounts to a radial box size which spans
1/(kr)min = 2π × 19.6 ρi ≈ 120 ρi at the low field
side midplane. A large radial box size of ∼ 120ρi
allows one to avoid unnatural interactions with the
periodic boundaries for the Gkw computations, in
consistency with the local framework, are radially-
periodic. Gkw thus effectively computes at each loca-
tion r/a = 0.3, 0.4 and 0.6 a nonlinear realisation in
the local gradient-driven approximation of the dynam-
ics locally expected of the coarse-grained flux-driven
Gysela profiles.

Further reducing model complexity, turbulent
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structures are expected with the quasilinear approx-
imation to bear memory in shape and localisation of
their linear generation mechanism. They remain ra-
dially thin around a reference magnetic surface and
only depend on local plasma parameters and on lo-
cal gradients. This is direct consequence of the as-
sumption which relates the distribution function fluc-
tuations to the potential fluctuations through local
equilibrium parameters. This induces, as with the
gradient-driven approach, a spatial scale separation
between a local turbulent behaviour, and a slower
and smoother evolution of the profiles. Quasilinear
QuaLiKiz is run here in 2 configurations: in its stan-
dalone version, it is inherently local; in its version
coupled to the transport code Jetto, the local trans-
port coefficients from QuaLiKiz are used as inputs
for transport equations, thus allowing for the equi-
librium to evolve on transport timescales whilst re-
taining the locality and scale separation assumptions
on shorter length- and time-scales. QuaLiKiz solves
the gyro-kinetic dispersion relation, here with Boltz-
mann electrons. For efficiency, the analytic distribu-
tion response is simplified by computing the shape of
the potential fluctuations in the fluid limit [29], while
keeping a kinetic treatment of the wave–particle res-
onance. Stable modes are neglected; unstable modes
are accounted for through a double power law in kθ for
the turbulent intensity spectrum. The amount of nu-
merical integrations is limited by performing the res-
onant velocity integration analytically. The effect of
zonal flow shear is modelled by perturbative modifica-
tion of this response. Extensive benchmarks with local
gradient-driven gyrokinetic codes have led to refining
the closure for the potential fluctuations [30, 41], cal-
ibrated to a database of local nonlinear gyrokinetic
simulations akin to those presented here with Gkw.

Finally, two additional series of computations have
been performed in ‘near marginal’ and ‘above thresh-
old’ settings using the integrated scheme of Gene–
Tango. This additional framework complements the
Gkw and QuaLiKiz–Jetto approaches: Gene is a
gradient-driven local nonlinear gyrokinetic framework
akin to Gkw and the transport framework of Tango
is similar to Jetto. Comparison between the com-
bined Gene–Tango and QuaLiKiz–Jetto frame-
works allows to test (i) the impact of the QL reduc-
tion with respect to nonlinear evolution. Since both
Gene and QuaLiKiz have scale separations built in
their framework, comparison of both approaches to

Gysela also allows to specifically assess (ii) the influ-
ence of the scale separation assumption. This point is
further discussed below and is found to be important
near marginal stability.

All 4 approaches can handle complex geometries
yet here, for the sake of simplicity, each is set to
run in the same simplified toroidal magnetic geom-
etry with circular and concentric flux surfaces B =
(B0R0/R)[reθ/qR0 + eφ], where eθ and eφ are the
unit vectors in the poloidal and toroidal directions,
B0 is the magnetic field on axis, r the minor radius
and R = R0 + r cos θ the major radius.

Let us close this section with 2 concluding remarks.
First, it is worth emphasising that the impact of the
type of forcing on turbulent transport and achievable
steady-states is not restricted to numerical simula-
tions. Experimentally, it is well documented in flu-
ids that the statistics of flow states as well as tran-
sitions between them may critically depend on the
type of forcing applied –e.g. in von Kármán flows ei-
ther at constant impeller speed or at constant torque
[4]. These observations are analogous to respectively
the gradient- and flux-driven cases discussed above.
Not surprisingly, the difference between both regimes
manifests close to transitions between two equilibrium
states while disappearing away from the transition.
Again, this behaviour is reminiscent of magnetised
plasma dynamics near marginal (nonlinear) stability
or above threshold.

Last, comes the important question of the non-
linear saturation of turbulence in all 3 approaches.
E × B shear has at least two components, a mean
part and a fluctuating part which may affect and reg-
ulate the system differently, over different timescales
and through possibly distinct pumping and damping
mechanisms. In Gysela both components are self-
consistently computed and act in concert. A radial
force balance Er − VTBP + VPBT = ∇p/ne is sat-
isfied throughout the computation [42]. This is not
so for QuaLiKiz, Gkw or Gene for which the mean
part is unconstrained. It is an input that can be freely
imposed in local approaches without breaking consti-
tutive orderings, echoing the fact that the above radial
force balance is not required to be satisfied. Gkw and
Gene thus only compute the fluctuating E×B shear
as part of the nonlinear response. For QuaLiKiz in
its standalone version, the mean E×B shear is an in-
put as well and the effect of the fluctuating E×B flows
on the saturation of turbulence is part of the closure
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scheme, thus approximated from local nonlinear gy-
rokinetics. In the QuaLiKiz–Jetto framework this
must be slightly nuanced: (i) the transport equation
leads to an evolving pressure gradient; (ii) toroidal ve-
locity VT can either be prescribed from measurements
or self-consistent from the momentum transport equa-
tion including external torque andQuaLiKizmomen-
tum transport and (iii) poloidal velocity VP is eval-
uated from the neoclassical transport model Nclass
[43]. The QuaLiKiz–Jetto interface then estimates
Er through radial force balance. From there comes
the perpendicular velocity shear input into QuaLiKiz
at each radial grid point. Note that a similar proce-
dure exists in the Gene–Tango interface but has not
been used for the present study. Note as well that
even with this consistent evaluation of radial force
balance not all relevant flows are taken into account
in these approaches and in particular no structur-
ing at mesoscales can occur due to the built-in scale
separation assumptions. In the case of QuaLiKiz
there are also additional missing intrinsic rotation or
turbulence-generated zonal flows effects.
In the present manuscript, we focus on testing con-

sequences of constitutive assumptions in the models
and therefore choose to impose in Gkw and Qua-
LiKiz the local values of mean E×B shear from Gy-
sela. One could also ask for a complementary ap-
proach and e.g. only consider the self-consistent fluc-
tuating E × B shear from nonlinear Gkw or Gene
or the shear effectively allowed in QuaLiKiz through
the choice of closure and ask how this would com-
pare to Gysela. This is done in the Gene–Tango
framework where the mean E×B shear from Gysela
is not imposed and only the fluctuating E ×B shear
fromGene is included. A comprehensive discussion of
these issues is beyond the scope of the present work
but one would expect discrepancies between models
to be especially visible near marginal stability. In-
deed, the possibility to self-consistently evaluate the
mean E × B shear is directly connected to the role
of mesoscale organisation and only fully present in
flux-driven Gysela. To illustrate this point, let us
emphasise that computed fluxes from Gkw and espe-
cially fromQuaLiKiz show significant sensitivity near
marginality to imposed levels of mean E × B shear
(within one standard deviation) when mean E × B
shear profiles from Gysela are only smoothed over
20 ρi (approximately twice the mean flow width or
the width of mean profile corrugations [18]). This

sensitivity is much less pronounced with the 60 ρi ra-
dial smoothing of the Gysela profiles reported here.
This is certainly illustrative of the important role
that mean E ×B shear plays in FD approaches near
marginality. Conversely, the fact that QuaLiKiz–
Jetto and Gene–Tango provide comparable results
with the 60 ρi radial smoothing despite different im-
posed levels of mean E × B shows that the strong
coarse graining applied to Gysela effectively min-
imises discrepancies with the other approaches. The
near marginal flux underprediction which we report
below is thus likely significant and possibly a lower-
bound estimate of actual differences.

This question of a consistent evaluation of mean
E×B shear/of mesoscale organisation is certainly an
interesting one for prospective gradient-driven com-
putations which would aim to provide quantitative
answers for new/untested plasma configurations for
which there is no a priori “ground truth” (experimen-
tal or flux-driven). To try to mitigate this problem lo-
cal frameworks are thus increasingly coupled to trans-
port equations, which provide a step towards a more
self-consistent coupling between mean and fluctua-
tions. In that respect, the lingering discrepancy be-
tween Gysela on the one hand and both QuaLiKiz–
Jetto and Gene–Tango on the other hand, visible
in Fig.4-(c), is certainly indicative of the fact that cou-
pled models where the turbulence model is yet based
on a scale separation still miss part of the dynamics
near marginal stability. This important observation
certainly calls for further studies on the matter, whilst
especially relaxing the assumption of Boltzmann elec-
trons.
Two distinct regimes – Two paradigmatic simula-
tion regimes are considered in the electrostatic regime
with Boltzmann electrons. Both cases are run in the
so-called “local limit” [44], at ρ∗ = ρi/a ≤ 1/250,
where comparison to local Gkw is fair. Coarse-
grained (see above) radial profiles of normalised tem-

Case ρ⋆,50 R/a ν⋆,50 (q50 ; q95) τ = Ti/Te

near marginal 1/250 3.2 0.24 (1.4 ; 4.0) 1 < τ < 1.3

above thresh. 1/350 6 0.02 (1.7 ; 2.8) 0.9 < τ < 1

Table I. Main plasma parameters in considered cases. Sub-
scripts 50 and 95 respectively denote parameter values es-
timated at locations r/a = 0.5 and r/a = 0.95.
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Figure 2. Radial profiles of normalised temperature gra-
dients (blue and red, left axis) and zonal flow shear
(green, right axis) for the ’above threshold’ (top) and ’near
marginal’ (bottom) cases. Shaded areas represent tempo-
ral standard deviation; black hourglass symbols (⋊⋉) linear
instability thresholds R/Llin

T at vanishing E × B shear;
red squares (■) nonlinear thresholds R/LTc estimated by
Gkw in the local limit, including the Gysela E×B shear.

perature gradients R/LT = −R∂rT/T and zonal flow
shear are plotted in Fig.2 for the ‘above threshold’
(top) and ‘near marginal’ (bottom) cases. Shaded ar-
eas represent temporal standard variations. The large
deviation from the mean shearing rate in the ‘near
marginal’ case (bottom, right axis) results from the
meandering of staircases, which have already been re-
ported to play an important role in this regime of
parameters [18]. The linear (black hourglass symbols)
and nonlinear (red squares) thresholds are discussed
in next section. In order to broadly span parameter
regimes, main plasma parameters vary significantly
between cases, as illustrated in Table I. This choice
echoes the fact that parameter space is broad and
parsing it is uneasy. A comprehensive discussion of
the precise impact of each parameter: ρ⋆, aspect ratio
R/a, τ ,. . . is a daunting task. We take a first step in
this direction and choose to broadly span parameters

from the ‘near marginal’ case to the ‘above threshold’
case. One wishes thus to minimise the possibility that
found conclusions may strongly depend on the precise
corner of parameter space that is investigated. Of
course the present approach will require to be comple-
mented by further dedicated studies specially focusing
on scanning one parameter or the other.

Our choice of parameters in Table I is however not
totally random as we have performed with Gysela
extensive aspect ratio (in the range R/a = 3−10) and
ρ⋆ scans (in the range ρ−1

⋆ = 190−380) and found nu-
merically a confinement time scaling law of the form:
τc Ωci ∝ (R/a)0.88 ρ−2.4

⋆ [45]. The ‘near marginal’ case
has both a larger ρ⋆ and a lower aspect ratio than the
‘above threshold’ case. Given the above scaling, one
may expect for the ‘near marginal’ case a degraded
confinement with respect to what would have been
obtained should we have run the ‘near marginal’ pro-
files with the R/a and ρ⋆ parameters of the ‘above
threshold’ case. This is an important point: the
parameters chosen for the ‘near marginal’ case are
not such that they strengthen flux-driven specifici-
ties. Rather the opposite: beneficial zonal flow activ-
ity through mesoscale staircase organisation is indeed
observed to be enhanced at smaller ρ⋆ values [14], al-
lowing to recover favourable gyro-Bohm-like confine-
ment scaling by taming avalanching/spreading activ-
ity through successive staircase steps (see e.g. sec-
tion 2.4 in Ref.[18]). Anticipating on the following
sections, the discrepancy found in the near marginal
regime between Gysela on the one hand and ei-
ther Gkw, QuaLiKiz, QuaLiKiz–Jetto or Gene–
Tango on the other hand strengthens the necessity
to further understand and incorporate near marginal
physics in reduced gradient-driven or quasilinear mod-
els of turbulence.

For each set of local values of the Gysela param-
eters, two thresholds are to be distinguished: linear
R/Llin

T represents the normalised temperature gradi-
ent above which an unstable mode grows, at vanishing
E×B shear. The inclusion of self-generated flow shear
–nonlinear in essence– introduces a second threshold
R/LTc, indicative of the nonlinear saturation of tur-
bulence [46], in particular by zonal flows. Practically,
R/LTc is computed in local GD frameworks as the
minimum local temperature gradient which provides a
non-vanishing nonlinear heat flux. It is estimated with
Gkw through a series of increasing R/LT nonlinear
computations, whilst imposing local E×B shear val-
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ues from flux-driven Gysela. We call ‘above thresh-
old’ the regime such that R/Llin

T < R/LTc ≪ R/LT ,
characterised by a static, smooth zonal mean shear
γE = ∂2

r ⟨ϕ⟩/B and subdominant zonal fluctuations.
The flux-surface average of the electric potential is ⟨ϕ⟩,
ϕ̃ are its fluctuations. We call ‘near marginal’ regimes
such that R/Llin

T < R/LT ⪅ R/LTc. Proximity
from below to R/LTc is a hallmark of near marginal-
ity, featuring a well-defined staircase pattern of flows
and associated temperature corrugations which me-
anders within the time interval –hence the large shear
deviation– and significant avalanching activity [18].
Kubo numbers of order unity – QLT is valid [47]
in the low Kubo number limit K = τjump/τint < 1,
ratio of a jumping time τjump of particles from one
turbulent eddy to the next over a nonlinear eddy-
particle interaction time τint. Kubo numbers are es-
timated from the Gysela flux-driven data in various
ways, summarised in Tab.II. With analogy to incom-
pressible fluids, particles trapped in turbulent convec-
tive cells explore eddies in a typical turn-over time
given by the local vorticity τ trapint ∼ B/⟨|∇2

⊥ϕ̃|2⟩1/2.
Whilst they undergo this vortical motion they also
drift in about τ⋆jump ∼ Lθ(eB/∇T ) from one turbu-
lent structure to the next at the typical speed of the
local diamagnetic velocity. Alternatively, the slower
evolution of the potential field provides a relevant cor-
relation time τ corrjump for turbulent fluctuations, trade-
off between unstable growth and nonlinear satura-
tion. It must be computed as a Lagrangian correlation
time, in the co-moving frame of the eddies to correct
for the Doppler shift due to turbulence mean rota-
tion and the eddy velocity. We estimate it through
image registration, following the toroidal shift be-
tween 3-dimensional turbulence snapshots of ϕ̃. It
is compared to turbulence-driven stochastic transport
times of particles which, assuming a diffusive ansatz
for E × B fluctuations, drift across eddies in about
τdiff,xint = Lx/⟨|ṽE,x|2⟩1/2, with x = {r, θ} and Lx the

Particle trapping Ktrap
transverse drifts τ⋆

jump

eddy turn-over τ trap
int

Random walks K
{r,θ}
diff

Lagrang. correlation time τ corr
jump

E×B random walk τ
diff,{r,θ}
int

Table II. Five typical wave–particle and turbulent times
lead to three Kubo number combinations, shown in Fig.3.

Figure 3. Kubo numbers for the principal nonlinear dy-
namics in the problem. Plain and plusses: turbulent ra-
dial and poloidal E×B velocity effect during a turbulent
auto-correlation time. Circles: trapping of particles due to
turbulent vorticity during transverse crossing of the tur-
bulent filament.

transverse correlation lengths computed fromGysela
outputs. Interestingly, employing a Eulerian correla-
tion time would result in severe Kubo number over-
estimation, locally up to factors of 25.

Three Kubo numbers, combinations of the above
nonlinear times are plotted in Fig.3 for both ‘above
threshold’ and ‘near marginal’ regimes. The various
definitions for K, coherent, provide the following pic-
ture: (i) on the basis of order unity Kubo numbers,
QLT should be marginally valid. Yet, as shown below,
key assumptions at the heart of the QLT reduction
remain valid throughout nonlinear evolution, which
strengthens the case for quasi-linear integrated mod-
elling. Interestingly also, (ii) consistently larger K
values near marginality stress the more percolative
nature of transport there. Avalanching emerges as
a key theme to distinguish between ‘above threshold’
and ‘near marginal’ regimes as they likely underpin
the larger K values computed near marginality. It is
a likely indication that incorporating avalanching and
its zonal mean flow regulation may significantly alter
transport predictions and improve model behaviour
near marginality.
Near marginal heat flux underprediction –
Heat fluxes are computed with QuaLiKiz, Gkw or
Gene from the Gysela time-averaged steady-state
profiles plotted in Figs.1 and 2 with the same de-
gree of approximations (electrostatic & Boltzmann
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Figure 4. (a) and (b): gradient-driven QuaLiKiz and Gkw heat fluxes confronted to reference flux-driven Gysela
flux levels, based on the Gysela profiles of Fig.2 and expressed in gyro-Bohm unit. Gray shaded areas represent
a standard deviation of Gysela heat fluxes during the considered time interval, as profiles fluctuate. Red and blue
shaded areas represent the sensitivity of QuaLiKiz to these profile variations; the hourglass symbols that of Gkw to a
increased input temperature gradients. The reversed approach is followed in panel (c): heat fluxes in QuaLiKiz–Jetto
and Gene–Tango are made to match the Gysela reference fluxes; the unknowns are thus the QuaLiKiz–Jetto and
Gene–Tango profiles. The remarkable agreement above threshold and large over-prediction of the temperature gradient
near marginality are consistent with results in panels (a) and (b). This emphasises model reduction adequacy in ‘above
threshold’ regimes and missing physical ingredients in ‘near marginal’ regimes.

electrons). All codes have different normalisations,
with Gysela e.g. being normalized to Q̂Gys =
Q/(n0T0vTi0) with vTi0 = (T0/mi)

1/2 the ion thermal
velocity. In Fig.4–(a) and (b), fluxes from all codes are
in the units of Q̂ = Q̂Gys/Q̂gB, with Q̂gB = ρ2⋆,50 a/R
and values of ρ⋆,50 and R/a given in Tab.I. Consis-
tent rescaling factors have been applied to QuaLiKiz
and Gkw fluxes. Non-axisymmetric (turbulent) con-
tributions to heat fluxes are shown in Fig.4–(a) and
(b). Turbulence spreading and profile corrugations,
inherent to flux-driven complexity are absent or hin-
dered in all QL or GD approaches. A fair comparison
thus requests that the Gysela reference data be sig-
nificantly coarse-grained before being handed over to
Gkw, Gene or QuaLiKiz as input profiles. This
smoothing includes the E × B shear profiles. Hence
the time averaging over 30, 000Ωci and radial smooth-
ing over 60 ρi performed on the Gysela observables,
as detailed above —to smear out visible flux-driven
specificities in the profiles. The stabilising effect of
mean zonal flow shear is accounted for in Gkw and
QuaLiKiz whilst locally imposing the smoothed ref-
erence Gysela mean shear values. In Gene–Tango

only the fluctuating E × B shear is included —see
discussion above. Sensitivity to gradient fluctuations,
inherent to gradient-driven approaches is further as-
sessed by additional scans in R/LT and E×B shear
within one temporal standard deviation of the Gy-
sela profiles.
Without inclusion of E × B shear stabilisation [i]

QuaLiKiz heat fluxes are overestimated with respect
to Fig.4 by over an order of magnitude (not shown
here). With the inclusion of shear, [ii] at locations of
low or vanishing E × B shear and despite the 60 ρi
smoothing, gradient-driven (standalone) QuaLiKiz
commonly displays [subplots (a) and (b)] variations
by factors in heat fluxes from one radial position to
the next whilst Gkw exhibits much less sensitivity
to E ×B shear stabilisation. Interestingly, this large
sensitivity of QuaLiKiz to shear is mitigated when
called within the integrated framework of Jetto [32]
to allow for a flux-driven QL profile evolution, driven
by a central source that mimics the one of Gysela
[subplot (c)]. In the regime above threshold [iii] rea-
sonable agreement in computed fluxes is found across
fidelity hierarchy. Conversely near marginality, [iv]
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despite significant smoothing, heat flux discrepancies
in Fig.4–(b) are well outside allowed gradient sensi-
tivity and fluctuation ‘error’ bars. Secular growth of
zonal flows in Gkw is responsible for the observed
large flux underprediction. This echoes previous ob-
servations casting concern on near marginal gradient-
driven predictions [17]. The soundness of separating
fluctuations from mean is thus clearly questioned near
marginality.
The conclusions above are further confirmed when

comparing FD Gysela to the FD quasilinear frame-
works of QuaLiKiz–Jetto and Gene–Tango, in
the same two regimes. In subplot (c), profiles from
QuaLiKiz–Jetto andGene–Tango are evolved un-
til heat fluxes match the nonlinear Gysela reference
fluxes. The figure of merit now becomes how close
evolved quasilinear or nonlinear profiles are at flux
equilibrium with those of Gysela. Remarkable [v]
profile agreement is found for both approaches in the
‘above threshold’ case, which in the case of Qua-
LiKiz also echoes the agreement in fluxes displayed
in panel (a). Near marginality however, [vi] a large
over-prediction of the temperature is required for both
QuaLiKiz–Jetto and Gene–Tango to carry the
same flux asGysela. Interestingly, the fact that both
quasilinear QuaLiKiz–Jetto and nonlinear Gene–
Tango frameworks provide consistent results illus-
trates the fact that [vii] the QL reduction is not a pri-
ori responsible for the observed flux under-prediction
in the ‘near marginal’ regime. A constitutive ingre-
dient is missing in this regime, at least with Boltz-
mann electrons, which is due to either the local or the
gradient-driven approximation. This rather clearly
[viii] points towards a problem with the scale separa-
tion assumption near marginality and gives a workable
route for improvement.
Axis for improvement: saturation rules – Flux
discrepancies between Gysela and Gkw likely stems
from disregarding the feedback of fluctuations on an
assumed fixed ”equilibrium”. This enforces local and
single-valued flux–gradient relations, underestimates
turbulence spreading, avalanching and mesoscale or-
ganisation. All of which contribute to transport, espe-
cially near marginality. Discrepancies withQuaLiKiz
may either come from violating assumptions central to
QLT –linearity of fluctuations– or by inheriting short-
comings akin to those of Gkw, through the choice of
saturation rules.
To disentangle these questions, we compute in

Figure 5. Testing spectral distribution of key fundamental
quantities: (a) linear cross-phases, (c) heat flux, (d) sat-
uration rule and (b) their ratio, proxy to the dispersion
relation from Gysela (−−−), Gkw (×) and QuaLiKiz (◦),
averaged over radial interval 0.3 ⩽ r/a ⩽ 0.7.

Fig.5, for all three approaches, the complex argument
αn of the n-th Fourier component of the heat flux
[panel (a)] –a proxy for the linear cross-phase between
electric potential and pressure fluctuations. They de-
pend on the toroidal wave number n labelling each
eigenmode which is related to the normalised poloidal
wave vector kθρi through: kθρi = (a/r)n q ρ⋆. In
the present cases, the n = 25 toroidal wave num-
ber corresponds to, at mid-radius a/r = 2: kθρi =
25∗1.4∗2/250 = 0.28 and kθρi = 25∗1.7∗2/350 ≈ 0.24
for the ‘near marginal’ and ‘above threshold’ cases,
respectively. In Gysela, QGys

n = −i|Qn|eiαn =∫
v̂rE,n

2
3

(
P̂ ∗
||,n/2 + P̂ ∗

⊥,n

)
dθ, where parallel and trans-

verse components of the pressure and the radial com-
ponent of the E×B drift are computed from 3D out-
put data. The n-Fourier components of the heat flux
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|Qn| and of the squared potential |ϕn|2, i.e. the sat-
uration rule are respectively shown in panels (c) and
(d). Panel (b) displays their ratio, a proxy for the dis-
persion relation, sometimes called ‘QL flux integrals’.
Clearly, linear cross-phases display reasonable

agreement, within factors of 2 and across all regimes.
They are not responsible for the flux discrepancies.
Factors of disagreement –and avenues of improvement
for QL modeling– are essentially twofold: [i] 90% of
the heat flux is carried by modes n ∈ [[5, 50]] in the
‘above threshold’ regime; all approaches provide simi-
lar conclusions. Near marginality however, flux is car-
ried in Gysela and Gkw through n ∈ [[5, 70]], twice
the amount of active modes with respect to Qua-
LiKiz. Furthermore, [ii] saturation rules are clearly
responsible for much of the observed flux discrep-
ancies. In the ‘above threshold’ regime, flux spec-
tra agree well [panel (c)] –though this results from
a surprising compensation: the potential, or satura-
tion rule [panel (d)] is under-estimated, the disper-
sion relation [panel (b)] is over-estimated yet heat flux
spectra in the ‘above threshold’ regime are in reason-
able agreement. No such compensation occurs near
marginality; there severe under-estimation of the po-
tential spectrum is clearly responsible for the under-
prediction of fluxes.
Outlook – The success of reduced models especially
hinges on the reproduction of nonlinear gyrokinetic
fluxes [30]. Flux under-prediction in the dynamically
important regime of near marginal stability is thus a
matter of importance. At the heart of this paper lies
the fact that fkux-driven (FD) and gradient-driven
(GD) models provide significantly different flux pre-
dictions with Bolzmann electrons close to marginal
stability R/LTc, which underpins basic discrepancies
in how nonlinear saturation of turbulence is modelled.
This should foster renewed interest in ways to com-
plete quasilinear (QL) or GD models near marginality.
The robustness of linear features [48] across fidelity
hierarchy and across turbulent regimes is encourag-
ing perspective and provides constructive directions
whereby reduced models could be improved.
Discrepancies between the nonlinear frameworks

of Gysela and of both Gkw and Gene–Tango
are strong indications that turbulence spreading and
mesoscale patterning are in fact central to accurate
transport predictions near marginality. Larger Kubo
numbers near marginality, as shown in Fig.3 rein-
force this point, which is also differently stressed by

recent works in the plasma edge [11, 38]. The fact
that QuaLiKiz behaves better near marginality than
Gkw is possibly because the QL closure does not in-
clude the long-lived zonal flows that quench transport
near marginality in GD approaches [17]. In Qua-
LiKiz, stable modes are neglected and the turbulent
intensity spectrum is fitted [30, 41] onto databases
of GD nonlinear computations, similar to those pre-
sented here withGkw. With this procedure, QL mod-
els inherit the shortcomings of the primitive gradient-
driven models onto which they are adjusted. The
near marginal transport shortfall inQuaLiKiz indeed
largely comes from issues with the QL closure, i.e.
the choice of saturation rule and not the QL reduc-
tion, per se. The QuaLiKiz–Jetto framework pro-
vides a step towards coupling fluctuations with mean
dynamics. This framework yet emphasises a similar
near-marginal flux under-prediction, well reproduced
by the similar yet fully nonlinear framework of Gene–
Tango. This is further indication that the leading-
order problem is likely the assumption of a scale sepa-
ration between ‘equilibrium’ mean scales and fluctuat-
ing scales, the latter not being able to feed back onto
the former. In the case of QuaLiKiz, this scale sep-
aration is inherited from the choice of the saturation
rule.

This provides directions for improvement. In phys-
ical terms, near marginal regimes require description
of transport below or at linear stability and of pos-
sible coupling to modes presently predicted as stable
in QuaLiKiz. Importantly, it also requires to model
the self-advection (spreading) of turbulent domains
and the possibility of non-monotonic flux-gradient re-
lations. Several routes can be explored. In the spirit
of current frameworks, QL models could be trained
on near marginal flux-driven databases such as pro-
vided by the likes of Gysela. This would likely lead
to QL closures with regime-dependent turbulent in-
tensity spectra. Alternatively to present closures, QL
models could also be coupled to dynamic equations for
the turbulence intensity, e.g. in the form of reaction–
diffusion [49] or k − ϵ equations [50], enriching acces-
sible nonlinear dynamics.

The present work provides a framework of under-
standing. Ongoing studies are concerned with fur-
ther characterising the ‘above threshold’ and ‘near
marginal’ regimes [51] when kinetic features of elec-
tron dynamics are present. This is important to as-
sess relevance for Iter extrapolations. Electron dy-
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namics is indeed known to locally modify turbulence
organisation near low order rational surfaces [52] yet,
interestingly, key features of near marginal turbulence
with Boltzmann electrons (flow patterning, shear ef-
fectiveness and staircase organisation) —central here
to the ‘near marginal’ regime— robustly endure in ki-
netic electron regimes [39].
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