

Full- f gyrokinetic simulations of Ohmic L-mode plasmas in linear and saturated Ohmic confinement regimes

Y. Idomura, G. Dif-Pradalier, X. Garbet, Y. Sarazin

To cite this version:

Y. Idomura, G. Dif-Pradalier, X. Garbet, Y. Sarazin. Full- f gyrokinetic simulations of Ohmic Lmode plasmas in linear and saturated Ohmic confinement regimes. Physics of Plasmas, 2023, 30 (4), pp.042508. 10.1063/5.0127346 cea-04264780

HAL Id: cea-04264780 <https://cea.hal.science/cea-04264780v1>

Submitted on 30 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

full-f gyrokinetic simulations of ohmic L-mode plasmas in linear and ² saturated ohmic confinement regimes

Y. Idomura, 1 G. Dif-Pradalier, 2 X. Garbet, 2 Y. Sarazin, 2 and the Tore Supra Team $^{2,\,a)}$ 3

1) ⁴ *JAEA, CCSE, Kashiwa, Chiba 277-0871, Japan*

2) ⁵ *CEA, IRFM, F-13108 St. Paul-lez-Durance cedex, France*

⁶ (*Electronic mail: idomura.yasuhiro@jaea.go.jp)

⁷ (Dated: 7 March 2023)

 Two time slices in linear and saturated ohmic confinement (LOC and SOC) regimes in a Tore Supra ohmic L-mode discharge are analyzed using nonlinear global full-*f* gyrokinetic simulations, and qualitative features of the LOC-SOC transition are reproduced. The exhaust of carbon impurity ions is caused by ion mixing, which is driven by the toroidal field stress. The intrinsic rotation develops in the opposite direction between the LOC and SOC phases, which is characterized by the different features of the mode asymmetry between trapped electron modes (TEMs) in the LOC phase and ion temperature gradient driven modes in the SOC phase, leading to the change of the profile shear stress. Here, the mode asymmetry or the ballooning angle depends not only on the profile shear and the E_r shear but also on the radial electric field E_r itself. The energy fluxes of electrons and deuterium ions are dominant in the LOC and SOC phases, respectively, and the ratio of the energy confinement time between two phases agree with the experimental value. Turbulent frequency spectra are characterized by quasi-coherent modes (QCMs) and broad-band spectra in the LOC and SOC phases, respectively. The QCMs are produced by a split of the toroidal mode number spectra of TEMs induced by the Doppler shift of poloidal $E \times B$ rotation due to E_r , which is sustained in the electron diamagnetic direction by the ripple induced counter-current rotation, and enhanced by higher temperature in the LOC phase.

21 I. INTRODUCTION

22 Ohmic L-mode discharges universally show a transition of ⁵³ ²³ the global energy confinement from the linear Ohmic con-²⁴ finement (LOC) regime, where the energy confinement time⁵⁵ τ_E increases linearly with a density ramp, to the saturated ⁵⁶ 26 Ohmic confinement (SOC) regime, where τ_E is saturated be-⁵⁷ 27 yond certain critical density. This phenomenon is called as the ⁵⁸ 28 LOC-SOC transition, and has been one of the long-standing ⁵⁹ ²⁹ issues in turbulent transport in magnetic confinement fusion 30 devices^{1,2}. The LOC-SOC transition is important not only for 31 the energy confinement but also for particle and momentum⁶² 32 transport. During the LOC-SOC transition, the exhaust of im-⁶³ $_{33}$ purity ions was observed in several devices^{3,4}, and the rever-34 sal or change of intrinsic rotation was universally observed in ⁶⁵ $_{35}$ many devices². Since the control of impurity ions and intrin-36 sic rotation is one of the critical issues in ITER, understanding ⁶⁷ 37 of the LOC-SOC transition is important. The LOC-SOC tran-⁶⁸ 38 sition is an interesting phenomenon also from the viewpoint of ⁶⁹ ³⁹ transport physics. Detailed turbulence measurements revealed ⁷⁰ the change of turbulent spectra, which are characterized by 71 41 the so-called quasi-coherent modes (QCMs) and broad-band⁷² ⁴² spectra in the LOC and SOC regimes, respectively⁵⁻⁷. Mod-43 ulation experiments with edge cold pulses showed nonlocal⁷⁴ ⁴⁴ transport in the LOC regime, while this feature disappeared in ⁷⁵ 45 the SOC regime⁴.

⁴⁶ The LOC-SOC transition has been analyzed based on⁷⁷ 47 theory of micro-instabilities^{3,8}, linear gyrokinetic calcula-48 tions^{6,9–18}, nonlinear gyrokinetic simulations^{19–26}, and trans-49 port models^{21,22,27}. Many of these theoretical analyses ⁵⁰ showed transition of linearly most unstable modes from

trapped electron modes (TEMs) to ion temperature gradient ⁵² driven modes (ITGs), while the importance of a mixed mode state including subdominant modes was pointed out in Ref.18. Here, the density ramp increases a collisional stabilization effect of TEMs, while the exhaust of impurity ions reduces a dilution stabilization effect of ITGs. Gyrokinetic simulations of ⁵⁷ ITGs and TEMs were validated against fluctuation measurements. In Ref.21, the LOC-SOC transition on Alcator C-Mod was analyzed using nonlinear global δf gyrokinetic simulations, and turbulent spectra obtained from the phase contrast imaging in the experiment and from its synthetic diagnostics in the simulation showed qualitative agreements. In Refs.23 and 28, the LOC-SOC transition on Tore Supra was analyzed using nonlinear local δf gyrokinetic simulations, and turbulent spectra obtained from the reflectometry measurement in the experiment and its synthetic diagnostics in the simulation showed QCMs and broad-band spectra in the LOC and SOC regimes, respectively. Regarding turbulent transport, many works analyzed heat transport, while understanding of particle and momentum transport has not been matured. On Tore Supra, carbon impurity content in the LOC regime is at a non-tracer level, and the mechanism of the exhaust of carbon impurity ions, which is linked with transport of electrons and deuterium ions through the ambipolar condition, is still an open issue. A study on momentum transport leading to the change of intrinsic rotation is very limited, because nondiffusive momentum transport is induced by various symmetry breaking effects, which are not determined within local gyrokinetic models. The Coriolis pinch effect and the residual stress effect, in which the profile shear was prescribed, were examined against the ASDEX Upgrade (AUG) experiment us-⁸² ing local gyrokinetic calculations, and the residual stress due ϵ **s** to the shear of radial electric field E_r , which is determined ⁸⁴ by neoclassical poloidal rotation, and the profile shear was ss shown to be important²⁰. On the other hand, in Ref. 24–26,

^{a)}Y. Peysson and Tore Supra Team, Nuclear Fusion 41, 1703 (2001).

² duced based on the balance between the diffusive momentum ³ flux and the residual stress computed using nonlinear global δf gyrokinetic simulations with zero rotation. Here, the mo-

- ⁵ mentum diffusivity is estimated using the heat diffusivity and ⁶ a given Prandtl number, and the turbulent residual stress was
-
- ⁷ correlated with the shear of turbulent zonal flows and the tur-

 bulent intensity gradient. In Ref. 29, intrinsic rotation profiles in the AUG experiment were analyzed using nonlinear global 10 δ *f* gyrokinetic simulations, where rotation and density pro- files are evolved, and it was shown that intrinsic flow gradi- ents at experimental levels were formed mainly by the profile shear stress. Therefore, theoretical understanding of momen- tum transport is not converged, and further global simulations are needed. Finally, in spite of the development of gyroki- netic modeling and theory, any single model cannot capture all aspects of the above complicated physics in the LOC-SOC transition in a self-consistent manner.

¹⁹ To address this challenging issue, we need global full-*f* gy-²⁰ rokinetic models, which compute both plasma turbulence and ²¹ plasma profiles in a self-consistent manner including multi-²² ple transport channels induced by collisional and turbulent ²³ transport. This capability enables us to study the following ef- 24 fects, which are important for understanding transport physics $\frac{1}{59}$ 25 in the LOC-SOC transition. Firstly, the formation of intrin- 26 sic rotation is directly computed under the strict toroidal an- 61 $_{27}$ gular momentum conservation^{30–32}, in which in addition to 28 the turbulent Reynolds stress, other mechanisms such as the $_{63}$ 29 neoclassical Reynolds stress, the toroidal field stress, and the ϵ_{64} 30 $J \times B$ torque make significant contributions. Also, various 31 symmetry breaking mechanisms such as the shear of the ra- $\frac{1}{2}$ dial electric field E_r and zonal flows, the profile shear, and $\frac{1}{2}$ 33 the turbulent intensity gradient are involved consistently, and ϵ their relative importance can be examined. Secondly, E_r is ϵ_0 35 determined self-consistently, and the resulting effects such as $\frac{1}{70}$ $\frac{36}{14}$ the Doppler shift of turbulent spectra, turbulence suppression $\frac{1}{71}$ $\frac{37}{27}$ by the E_r shear, and the residual stress induced by E_r and E_r $\frac{72}{27}$ shear are analyzed in a straightforward manner. Thirdly, self-39 consistent interaction of multiple transport channels gives the $\frac{1}{24}$ $\frac{40}{10}$ following effects. The collisional ion-electron coupling de-41 termine the ion heating condition in Ohmic L-mode plasmas. 42 Particle fluxes of electrons and multi-species ions satisfy the $\frac{1}{77}$ 43 ambipolar condition, which is important in analyzing impu- $\frac{1}{78}$ rity transport at a non-tracer level. Particle and momentum ⁴⁵ transport channels are coupled through the toroidal angular 46 momentum conservation. It is noted that in general, global δf ⁴⁷ gyrokinetic models or gradient driven simulations involve ar-⁴⁸ tificial source/sink terms everywhere in a plasma to fix plasma ⁴⁹ profiles, and neoclassical physics is excluded. Therefore, im-⁵⁰ portant conservation properties such as the toroidal angular ⁵¹ momentum conservation and the ambipolar condition are not ⁵² guaranteed or at least modified, which make study of the ⁵³ above effects difficult. In addition, former works on compar-⁵⁴ isons of flux driven global full-*f* gyrokinetic simulations and 55 gradient driven global δf gyrokinetic simulations showed sig- δf ⁵⁶ nificantly different properties in avalanche like nonlocal trans- 57 port, zonal flows, and staircase structures $33,34$. These motivate 58 us to address the LOC-SOC transition via flux driven global 89

 $t₂$ (SOC)

 $\sum_{i=1}^{n}$ t_{r} (LOC) 3 5 $\overline{\mathcal{I}}$ $\overline{4}$ 6 $t[s]$

FIG. 1. Evolution of stored thermal energy *Wth*, line averaged density \bar{n} , and effective charge number Z_{eff} in Tore Supra ohmic L-mode discharge 48102. $t_1 \sim 3.1$ s is in a LOC phase, and $t_2 \sim 6.1$ s is in a SOC phase. Reproduced with permission from Plasma Phys. Control. Fusion 59, 064010 $(2017)^{23}$. Copyright 2017 IOP Publishing.

full-*f* gyrokinetic simulations.

In this study, we address the LOC-SOC transition on Tore ⁶¹ Supra using the Gyrokinetic Toroidal 5D full-*f* Eulerian code ⁶² GT5D³⁵⁻³⁷, which computes an electrostatic global full-*f* model in multi-species plasmas with kinetic electrons. The conditions of numerical experiments are based on Tore Supra ohmic L-mode discharge 48102, which were already analyzed in detail based on nonlinear local δf gyrokinetic simu- ϵ_7 lations²³. The latter work showed validation studies on heat transport and turbulent spectra, while momentum transport and impurity transport have not been analyzed yet. In this work, we address all transport channels and the correspond-⁷¹ ing turbulent spectra with a single global full-*f* gyrokinetic model in a self-consistent manner.

The remainder of the paper is organized as follows. In Sec.II, the experimental data, calculation models, and simulation parameters are explained. In Sec.III, the validity of sim-⁷⁶ ulation parameters with scaled plasma sizes is discussed. In Sec.IV, numerical experiments in the LOC and SOC phases are presented, in which transport properties of particle, momentum, and energy transport are discussed, and turbulent spectra are analyzed. Finally, a summary is given in Sec.V.

II. CALCULATION MODEL

In this work, we analyze Tore Supra ohmic L-mode discharge 48102, which was discussed in detail in Refs.6, 14, 23, and 28. As shown in Figs.1 and 2, the discharge is charac-⁸⁵ terized by a density ramp, leading to transition from the LOC regime to the SOC regime. In the LOC-SOC transition, the trend of the energy confinement time is changed from the linear increase proportional to the electron density to the saturation, the effective charge number Z_{eff} is decreased by ex-

FIG. 2. (a) electron density, (b) electron temperature, (c) ion temperature, and (d) toroidal rotation profiles of carbon impurity ions at five time slices in Tore Supra ohmic L-mode discharge 48102. Reproduced with permission from Plasma Phys. Control. Fusion 57, 035002 (2015)¹⁴. Copyright 2015 IOP Publishing.

1 hausting carbon impurity ions, and the relative intrinsic rota-16

² tion direction with respect to the edge rotation velocity is re- 17

3 versed (see Fig.2(d)). We focus on two time slices in the LOC 18

and SOC regimes, $t_1 \sim 3.1$ s and $t_2 \sim 6.1$ s, which were ana-19

⁵ lyzed in Ref.23. In the latter work, it was shown that the LOC

⁶ and SOC phases are respectively dominated by TEM and ITG, 21

⁷ and the electron temperature gradient driven mode is unstable ₂₂

only in the SOC phase.

Numerical experiments are conducted using GT5D, which 24 10 computes electrostatic ion scale turbulence driven by ITG and 25 **11** TEM. In the gyro-center coordinates, $\mathbf{Z} = (t; \mathbf{R}, v_{\parallel}, \mu, \alpha)$, a 12 conservative form of the electrostatic gyrokinetic equation is $_{27}$ ¹³ commonly used for all particle species including electron,

$$
\frac{\partial \mathscr{J}_s f_s}{\partial t} + \nabla \cdot (\mathscr{J}_s \dot{\mathbf{R}} f_s) + \frac{\partial}{\partial v_{\parallel}} (\mathscr{J}_s \dot{v}_{\parallel} f_s)
$$

$$
= \mathscr{J}_s \sum_{s'} C(f_s, f_{s'}) + \mathscr{J}_s S_{src,s} + \mathscr{J}_s S_{snk,s}, \qquad (1)
$$

$$
\dot{\mathbf{R}} = v_{\parallel} \mathbf{b} + \mathbf{v}_E + \mathbf{v}_D, \tag{2}
$$

$$
\mathbf{v}_E = \frac{c}{q_s B_{\parallel}^*} \mathbf{b} \times (q_s \nabla \langle \phi \rangle_{\alpha}), \tag{3}
$$

$$
\mathbf{v}_D = \frac{c}{q_s B_{\parallel}^*} \mathbf{b} \times \left(m_s v_{\parallel}^2 \mathbf{b} \cdot \nabla \mathbf{b} + \mu \nabla B \right), \tag{4}
$$

$$
\dot{\nu}_{\parallel} = -\frac{\mathbf{B}^*}{m_s B_{\parallel}^*} \cdot (q_s \nabla \langle \phi \rangle_{\alpha} + \mu \nabla B) \tag{5}
$$

where f_s denotes the guiding-center distribution function, $\mathscr{I}_s = m_s^2 B_{\parallel}^*$ is the Jacobian of the gyro-center coordinates,

 $c(f_s, f_{s'})$ is a multi-species Coulomb collision operator³⁸, $S_{src,s}$ and $S_{snk,s}$ are respectively the source and sink terms, **R** is the position of the guiding center, \bf{v} is the velocity of the guiding center, $v_{\parallel} = \mathbf{b} \cdot \mathbf{v}$ and $v_{\perp} = |\mathbf{b} \times \mathbf{v}|$ are respectively the velocities in the parallel and perpendicular directions to the mag-**21** netic field, $\mu = m_s v_\perp^2 / 2B$ is the magnetic moment, α is the gyro-phase angle, $\mathbf{B} = B\mathbf{b}$ is the magnetic field, **b** is the unit 23 vector in the parallel direction, m_s and q_s are respectively the mass and charge of the particle species s , c is the velocity of $\log \text{light, } \Omega_s = q_s B / m_s c$ is the cyclotron frequency, $B^*_{\parallel} = \mathbf{b} \cdot \mathbf{B}^*$ is a ²⁶ parallel component of $\mathbf{B}^* = \mathbf{B} + (Bv_{\parallel}/\Omega_s)\nabla \times \mathbf{b}$, $\ddot{\phi}$ is the elec-²⁷ trostatic potential of turbulent fields, and the gyro-averaging ²⁸ operator is defined as $\langle \cdot \rangle_{\alpha} \equiv \oint d\alpha/2\pi$.

²⁹ The electrostatic potential is determined using the hybrid 30 kinetic electron model³⁷, where the gyrokinetic Poisson equa-³¹ tion is modified as

$$
-\sum_{s} \nabla_{\perp} \cdot \frac{\rho_{ts}^{2}}{\lambda_{Ds}^{2}} \nabla_{\perp} \phi_{n \neq 0} + \frac{\alpha_{p}}{\lambda_{De}^{2}} \phi_{n \neq 0}
$$

= $4\pi \left[\sum_{s \neq e} q_{s} \int f_{s,n \neq 0} \delta([\mathbf{R} + \rho] - \mathbf{x}) d^{6} Z \right] + q_{e} \int f_{e,t,n \neq 0} \delta([\mathbf{R} + \rho] - \mathbf{x}) d^{6} Z \right],$ (6)

$$
-\sum_{s} \nabla_{\perp} \cdot \frac{\rho_{ts}^2}{\lambda_{Ds}^2} \nabla_{\perp} \phi_{n=0}
$$

= $4\pi \sum_{s} q_s \int f_{s,n=0} \delta([\mathbf{R}+\rho]-\mathbf{x}) d^6 Z.$ (7)

- Here, $\mathbf{R} + \rho$ is the particle position, $\rho = \mathbf{b} \times \mathbf{v}/\Omega_s$ is the Lar-
- a mor radius, $d^6Z = m_s^2 B_\parallel^* d\mathbf{R} d\nu_\parallel d\mu d\alpha$ is the phase space vol-
- ume of the gyro-center coordinates, $ρ_{ts} = v_{ts}/Ω_s$ is the Larmor a radius evaluated with the thermal velocity $v_{ts} = (T_s/m_s)^{1/2}$,
- $\lambda_{Ds} = (T_s/4\pi n_s q_s^2)^{1/2}$ is the Debye length, n_s is the density,
- *T_s* is the temperature, *n* is the toroidal mode number, $f_{e,t}$ is
- τ a trapped part of the electron distribution function, and α_p is
- the flux-surface averaged fraction of passing electrons. The
- 9 gyrokinetic Poisson equation is decomposed into $n \neq 0$ and $n = 0$ parts. The former is computed using adiabatic passing ¹¹ electrons and kinetic trapped electrons to avoid the so-called Ω_H mode³⁹. Here, a full kinetic electron distribution f_e is
- computed by Eq. (1), and in Eq. (6), its trapped part $f_{e,t}$ is ¹⁴ extracted following a trapped-passing boundary at each posi-
- ¹⁵ tion. The latter is solved using full kinetic electrons to satisfy
- 16 the ambipolar condition, while $\phi_{n=0,m\neq0}$ convective cells are
- filtered out from the solution to avoid the Ω_H mode, where *m* ¹⁸ is the poloidal mode number. In the l.h.s., a linear polariza-
- tion density with a long wavelength approximation, $k_{\perp}^2 \rho_{ts}^2 \ll 1$
- 20 is considered, which is valid for ion scale turbulence. The 40 21 gyrokinetic Poisson operators including the ion polarization⁴¹ ²² density and the adiabatic passing electron density are defined⁴² ²³ using the initial density and temperature.
- ²⁴ The above full-*f* gyrokinetic model yields the following⁴⁴ ²⁵ two balance relations. By taking the time derivative and the 26 flux-surface average of Eq. (7) and substituting Eq. (1), the 46 ²⁷ ambipolar condition is derived as

$$
-\sum_{s}\frac{\rho_{ts}^2}{\lambda_{Ds}^2}\frac{\partial E_r}{\partial t}=4\pi\sum_{s}q_s\left\langle f_s(\dot{\mathbf{R}}\cdot\nabla r)-S_{src,s}-S_{snk,s}\right\rangle_{gf},(8)_{\text{ss}}^{\text{44}}
$$

where E_r is the radial electric field and the gyro/flux-surface⁵² average operator is defined as,

$$
\langle A \rangle_{gf} = \left\langle \int A(\mathbf{Z}) \delta(\mathbf{R} + \rho - \mathbf{x}) d^6 Z \right\rangle_f, \tag{9}
$$

ao and $\langle \cdot \rangle_f$ is the flux-surface average operator. From the gyroki-s 31 netic equation and the Hamilton's equation for the canonical 59 32 toroidal angular momentum, the toroidal angular momentum 60 $_{33}$ balance³² is given as

$$
\left\langle \frac{\partial m_s v_{\parallel} b_{\varphi} f_s}{\partial t} \right\rangle_{gf} + \left\langle \frac{1}{\mathcal{J}} \frac{\partial}{\partial \mathbf{R}} \cdot (\mathcal{J} \mathbf{R} m_s v_{\parallel} b_{\varphi} f_s) \right\rangle_{gf}
$$

where ψ is the poloidal flux, φ is the toroidal angle, and b_{φ} is τ ³⁵ the covariant toroidal component of **b**. Here, the first term is 74 36 the inertial term, the second term is the stress term, the third 75 37 term is the radial current term, the fourth term is the toroidal 76 38 field stress term, the fifth term is the collision term, and the 77 sixth term is the source term. In the stress term, \bf{R} involve \bf{r}

FIG. 3. Radial profiles of the ohmic heating and the radiation loss at $t = 3.1$.

both the magnetic drift \mathbf{v}_D and the $E \times B$ drift \mathbf{v}_E , which induce the neoclassical and turbulent Reynolds stress, respectively. Although the neoclassical Reynolds stress is negligible in the axisymmetric limit, it is greatly enhanced in the presence of non-axisymmetric turbulent fluctuations. The radial current term gives the $J \times B$ torque, when summed over all species. This term becomes important in the presence of finite particle transport. The toroidal field stress term is determined ⁴⁸ by the phase shift between the perturbed density and fluctuating toroidal electric fields, and is also interpreted as the polar- $\frac{1}{2}$ ization stress⁴⁰ or the generalized Maxwell stress³¹. The code 51 has been verified through cross-code comparisons^{35,41,42}, neo- ϵ classical transport^{43,44}, convergence of E_r up to third order 53 gyrokinetics³², and multi-species plasma transport³⁸.

In the numerical experiment, we consider deuterium (D) ions, carbon (C) impurity ions, and kinetic electrons with $m_D/m_e = 3{,}672$ in a circular concentric tokamak configura- 57 tion, which is a good approximation for low β plasmas on Tore Supra. The device parameters are $B = 3.7$ T, $R_0 = 2.38$ m, *a* = 0.7m, *q* = 0.76 ∼ 4.6, and P_{ioule} ∼ 600kW. The nominal plasma parameters at $r/a = 0.5$ in the LOC phase are n_e ∼ 1.88 × 10¹⁹m⁻³, *T_e* = 1.54keV, *T_D* = 1.04keV, *Z_{eff}* ∼ **62** 3.06, $v_e^* \sim 0.022$, and $\rho^{*-1} \sim 563$. On the other hand, those 63 in the SOC phase are $n_e \sim 3.49 \times 10^{19} \text{m}^{-3}$, $T_e = 0.93 \text{keV}$, $F_{10} = 0.73$ keV, Z_{eff} ∼ 1.36, v_e^* ∼ 0.164, and ρ^{*-1} ∼ 672. **Example 15** Here, *B* is the toroidal magnetic field, R_0 and a are the major ϵ_{6} and minor radii, *r* is the radial coordinate, *q* is the safety fac- ϵ_{ref} tor, P_{joule} is the ohmic heating power, $v_e^* \equiv qR_0/(\epsilon^{3/2}v_{te}\tau_{e,D})$ is the normalized electron collisionality, $\varepsilon = r/R_0$, $\tau_{s,s'}$ is the • collision time between the species *s* and *s'*, and $\rho^* = \rho_{tD}/a$.

70 Numerical experiments are conducted for $0 \le r \le a_0$ to α_1 avoid extremely low temperature below 100 eV, where $a_0 =$ 0.9*a*. The boundary conditions of density, rotation, and temperature are given based on the experimental values at $r = a_0$, where rotation and temperature are assumed to be the same between D and C. In the initial condition, density and temperature profiles are given by the experimental data, while rotation profiles are set as rigid rotation with the edge rotation velocity, which is determined mainly by the neoclassical ¹ toroidal viscosity induced by the toroidal ripple, and is almost

2 unchanged through the LOC-SOC transition (see Fig.2(d)).

³ Therefore, the edge rotation velocity is given by an approx-

imate average value over the LOC-SOC transition. By using

⁵ the same initial rotation profiles and boundary conditions, we

⁶ compare the formation of intrinsic rotation between the LOC ⁷ and SOC phases.

According to transport analysis, the radial deposition pro- files of the ohmic heating and the radiation loss are given as Fig.3, where the radiation loss makes a dominant contribution 11 to the energy loss (\sim 75% and \sim 50% in the LOC and SOC phases, respectively). In this work, the time scale of numer-13 ical experiment \sim 10ms is significantly shorter than the time scales of the current diffusion and the particle confinement. Therefore, we do not compute the inductive toroidal electric field, and the resulting ohmic heating and Ware pinch. The ohmic heating is simply modelled as an on-axis electron heat- ing without particle and momentum inputs using a fixed heat source model, $S_{src,s} = v_{src,s}A_{src,s}(r)(f_{M1} - f_{M2})$, where $A_{src,s}$ 20 is the deposition profile, f_{M1} , f_{M2} are local Maxwellian distri- butions with different temperatures, and the heating rate ν*src*,*^s* is determined to satisfy the target power input P_{in} . As the elec- tron collision time is sufficiently small $τ_{ee} \sim 10R_0/v_0$, veloc- ity space perturbations due to the source term is expected to be quickly thermalized, leading to velocity distribution functions

²⁶ relevant for ohmic heating plasmas. ²⁷ The sink model is somewhat complicated. The heat sink is 28 given by the radiation loss for $r/a > 0.7$ or $r/a₀ > 0.8$. The edge rotation velocity is fixed by the momentum sink due to ³⁰ the neoclassical toroidal viscosity induced by the toroidal rip-³¹ ple. However, the momentum and particle sink due to neutral ³² particles is uncertain, because the detailed distribution of neu-³³ tral particles was not obtained. In order to model these prop-³⁴ erties, we implement two sink models. One is a Krook type s_{s} sink operator $S_{snk1,s} = v_{snk1,s}A_{snk1,s}(r)(f_s - f_{0s})$, which gives ³⁶ an effective boundary condition by keeping plasma parame- $\frac{1}{27}$ ters at the boundary on average. Here, f_{0s} is the initial dis-38 tribution function, the sink rate is given as $v_{snk1,s} = 0.1v_0/a$, **39** the reference velocity v_0 is given by the thermal velocity of \mathfrak{so} D ions at 1keV, and the deposition profile *Asnk*1,*^s* ⁴⁰ is localized ϵ_1 for $r/a_0 > 0.95$. It is noted that the above sink rate is chosen ϵ_1 ⁴² based on the sensitivity study in Ref. 45. Another is an ax-43 isymmetric variant of the Krook type sink operator $S_{snk2,s} = \omega s$ $v_{snk2,s}A_{snk2,s}(r)(f_{s,n=0} - f_{0s})$, where $v_{snk2,s} = 0.01v_0/a$ and ω 45 $A_{snk1,s}$ is distributed over $r/a_0 > 0.8$ following the radiation ⁴⁶ loss profile in Fig.3. The latter model modifies only an ax-47 isymmetric part, and a turbulent part is not affected. In addi- $_{67}$ 48 tion, the sink parameter is chosen so that $V_{snk2,s}$ is sufficiently 49 smaller than the linear growth rates of TEM and ITG, while $\frac{1}{20}$ the sink effect is large enough to avoid deviations of density $\frac{1}{20}$ 51 and temperature profiles from the experimental ones by accu- 71 mulation of particles and energy induced by plasma transport. $_{72}$ $\frac{1}{53}$ These features are important as a sink model distributed over $\frac{1}{73}$ $_{54}$ turbulent regions. It is noted that this model also works as a_{74} particle source in the outer radii. However, ν*snk*2,*^s* ⁵⁵ is too weak 56 to fix rotation profiles to the initial condition, and rotation pro-⁵⁷ files freely evolve in this region. ⁵⁸ In the numerical experiment, in order to save the com-

FIG. 4. (a) frequency ω and (b) growth rate γ of TEM and **ITG** at each time slice in the cases with $(n, \rho^*, v_e^*) = (50, \rho_0^*, v_{e0}^*),$ $(25, 2\rho_0^*, v_{e0}^*)$, and $(25, 2\rho_0^*, v_{e0}^*/2)$. $\omega < 0$ is the direction of the electron diamagnetic rotation.

FIG. 5. Linear eigenfunctions $n = 25$ modes at (a) LOC and (b) SOC phases in the case with $\rho^* = 2\rho_0^*$ and $v_e^* = v_{e0}^*$.

putational cost, the plasma size is scaled by a half, and a $1/6$ wedge of the torus is computed using 5D grids $(N_R, N_\zeta, N_Z, N_{\nu \|}, N_{\nu \perp}) = (240, 48, 240, 96, 24)$. The 1/6 wedge torus model is chosen based on the convergence studies in Ref. 46 and in Appendix A. Here, the computational domain in the velocity space is chosen as $-4v_{ts,r=0}$ ≤ v_{\parallel} ≤ $4v_{ts,r=0}$ **65** and $0 \le \sqrt{2\mu B/m_s} \le 3v_{ts,r=0}$, where $v_{ts,r=0}$ is the thermal velocity at $r = 0$. It is noted that the contrast of temperature is $T_e(r=0)/T_e(r=a_0) \sim 10$ and $T_p(r=0)/T_p(r=a_0) \sim 5$, and the velocity space normalized by the thermal velocity at *r* = a_0 is expanded by \sim 3 times and \sim 2 times, respectively. The velocity grids are chosen to keep sufficient resolution from the core to the edge. GT5D was highly optimized on Fugaku, where a new mixed-precision communicationavoiding Krylov solver enabled efficient computation of ki- π ⁴ netic electrons with the real mass ratio⁴⁷. Even with the reduced simulation parameters and the optimization techniques, numerical experiments require costly computation, and a sin-⁷⁷ gle numerical experiment typically for ∼ 1,000*R*/*vtD* required $\sim 1.5 \times 10^5$ CPU hours on Fugaku⁴⁸.

FIG. 6. (a) time history of the stored energy W_t and temperature profiles at $t\nu_0/R = 800$ in (b) LOC and (c) SOC phases in the cases with $(\rho^*, P_{in}) = (2\rho_0^*, P_0/2)$ and $(2\rho_0^*, P_0)$, respectively. In (b) and (c), the temperature is normalized by $T_0 = 1 \text{ keV}$ and dashed and dotted black curves show the initial condition given by the experimental data.

FIG. 7. (a) time history of the stored energy W_t and temperature profiles at $t\nu_0/R = 800$ in (b) LOC and (c) SOC phases in the cases with $(\rho^*, P_{in}) = (3\rho_0^*, P_0/3)$ and $(3\rho_0^*, P_0)$, respectively. In (b) and (c), dashed and dotted black curves show the initial condition given by the experimental data.

1 III. VALIDITY OF SCALED PLASMA SIZE

2 The scaling of the plasma size affects two important non-25 ³ dimensional parameters, ρ^* and v_e^* . In this section, we discuss ⁴ their influences on numerical experiments. Figure 4 shows 27 5 the frequency and growth rate of $n = 50$ and $n = 25$ modes 28 • at each time slice in the cases with $\rho^* = \rho_0^*$ and $\rho^* = 2\rho_0^*$, ⁷ respectively, where ρ_0^* is the experimental value. As shown in 8 Ref.23, the most unstable modes in the LOC and SOC phases 31 are given by TEM and ITG, respectively. The latter work also 32 10 showed that in the LOC phase, ITG is stabilized by a dilu-33 11 tion effect due to high Z_{eff} , while in the SOC phase, TEM 34 ¹² is stabilized by high v_e^* due to the density ramp. It is noted ¹³ that in the latter work, local gyrokinetic analyses were con-14 ducted at $r/a = 0.37$. However, in Fig.5, global eigenfunc-37 ¹⁵ tions of both TEM and ITG are peaked in the outer radii. In the experimental parameters, $\rho^* = \rho_0^*$ and $v_e^* = v_{e0}^*$, the tran-17 sition from TEM to ITG due to the density ramp occurs at 40 18 *t* = 4.5 \sim 5.0s. In the experiment, the transition timing was ϵ shown to be at $t \sim 4.85^{28}$. However, in the 1/2 scale parameters, $\rho^* = 2\rho_0^*$ and $v_e^* = v_{e0}^*/2$, the transition timing is shifted 21 to $t = 5.0 \sim 5.5$ s and the growth rate of TEM is increased by 44

22 20 ~ 30%. This is attributed to the change of $v_e^* \propto R_0$, which ²³ characterizes the collisional stabilization effect on TEM. It is ²⁴ noted that the collisional stabilization affects only TEM, and ²⁵ the stability of ITG is similar in all the cases. On the other hand, by doubling the collisionality, the stability of TEM and the transition timing in the experimental parameters are recovered even with the $1/2$ scale parameters. Therefore, in this work, we use the modified $1/2$ scale parameters, in which the collisionality is adjusted to recover the linear stability in the original experimental parameters.

 p^* scaling is essentially nonlinear and rather complicated. In the experiment, the confinement scaling was shown to follow the neo-Alcator scaling and the L-mode scaling in the 35 LOC and SOC phases, respectively^{1,2}. The latter scaling has 36 Bohm-like ρ^* dependency. On the other hand, according to the derivation of non-dimensional scaling in Ref.49, the for-38 mer scaling gives gyro-Bohm like ρ^* dependency, while it does not satisfy the so-called Kadomtsev constraint. These 40 controversial ρ^* dependencies between the LOC and SOC ⁴¹ phases make the choice of input power difficult in scaled numerical experiments. In terms of the power balance, temperature profiles in a $1/N$ scale plasma become similar to the original ones by imposing the input power of $P_{in} = P_0/N$

1 and $P_{in} = P_0$, when the energy confinement follows the Bohm ϵ 2 scaling and the gyro-Bohm scaling, respectively. Here, P_0 is \mathfrak{so} ³ the input power in the experiment. In order to determine a₅₇ physically sound heating condition, we conduct power scanss 5 numerical experiments with the modified $1/N$ scale param-59 6 eters, in which the Bohm like heating condition $P_{in} = P_0/N$ 60 τ and the gyro-Bohm like heating condition $P_{in} = P_0$ are com- ϵ ¹ 8 pared. Figures 6 and 7 show the numerical experiments with 62 the modified 1/2 and 1/3 scale parameters, respectively. In ϵ 10 Fig.6(a), the stored energy in the Bohm like heating condition 64 11 is almost unchanged both in the LOC and SOC phases. In 65 12 Figs. 6(b) and 6(c), the electron temperature is higher in the ϵ 13 gyro-Bohm heating condition, while the stiff ion temperature σ ¹⁴ is similar in both heating conditions. In Fig.7, these features 15 are more pronounced in the modified $1/3$ scale parameters, 69 16 and the increases of the stored energy and the electron tem- π 17 perature in the gyro-Bohm heating condition are clearly seen. 71 18 It is noted that in Fig.6 (c), the electron temperature in the 72 19 Bohm heating condition is lower than the experiment. This is 73 ²⁰ attributed to the modified collisionality, which is increased to $\frac{1}{4}$ $v_e^* = v_0$. The SOC phase is characterized by high colli-22 sionality, and the increased collisionality leads to stronger ion- 76 23 electron coupling. The Bohm like scaling in the SOC phase is 77 24 consistent with the L-mode scaling¹ and our previous works ²⁵ on ρ^* scaling in L-mode plasmas^{33,46,50,51}. On the other hand, 26 the Bohm like scaling in the LOC phase may not be consis-80 27 tent with the neo-Alcator scaling. This may be attributed to a_1 ²⁸ the lack of Kadomtsev constraint in it. This issue will be ad-29 dressed in future work. Following the results of the above 83 30 power scan numerical experiments, in this work, we use the 84 ³¹ Bohm-like heating condition.

32 The use of scaled plasma sizes may also affect momen-86 33 tum transport. According to the higher order ballooning the- 87 $_{34}$ ory^{52,53}, the linear mode asymmetry characterized by the bal-**35** looning angle θ_0 is derived as $\theta_0 \propto \rho^{*1/3}$, and the residual ³⁶ stress C_s given by the profile shear stress theory⁴¹ becomes 37 $C_s \propto \rho^{*1/3}$, which is rather weak ρ^* dependency. However, nonlinear gyrokinetic simulations showed much stronger ρ^* 38 dependencies of the residual stress and/or the resulting intrin-40 sic rotation profiles^{29,31,33,54,55}. Therefore, the residual stress $\frac{41}{10}$ in scaled numerical experiments may be larger than that in the $\frac{1}{2}$ 42 experiment. However, ρ^* scan numerical experiments typi-⁴³ cally show similar shapes of intrinsic rotation profiles with μ 4 different flow velocities^{33,55}, and thus, at least, the sign rela-45 tion of rotation changes from the initial rigid rotation is ex-⁹⁵ ⁴⁶ pected to be preserved.

IV. NUMERICAL EXPERIMENT

⁴⁸ A. Particle transport

49 We conduct two numerical experiments in the LOC and 04 50 SOC phases up to $tv_0/R \sim 1,000$ using the modified 1/2 scales 51 parameters with $P_{in} = P_0/2$. Figure 8 shows the radial pro-106 ⁵² files of the density, the parallel flow, and the temperature at ⁵³ the end of the numerical experiments. The time scale of the ⁵⁴ numerical experiment is significantly short compared to the

particle confinement time, and thus, the electron density is almost unchanged from the initial condition. However, in the LOC phase, where the charge densities of D and C are comparable, the density profiles of D and C respectively show peaking and relaxation, suggesting ion mixing (see Fig.8(a)). As the exhaust of C begins around $t \sim 3s$ in Fig.1(a), this result is qualitatively consistent with the experiment. On the other hand, in the SOC phase, where the charge density of C is at the tracer level, this kind of ion mixing does not occur. Fig-⁶⁴ ure 9 shows the radial profiles of the radial current. Both in the LOC and SOC phases, the steady ambipolar condition, $\sum_{s} q_{s} \langle f_{s}(\mathbf{R} \cdot \nabla r) \rangle_{gf} = 0$, is approximately satisfied. However, the balance of the radial current among three species is quite different between the LOC and SOC phases. In the LOC phase, the D current and the C current greatly exceed the electron current, and they balance with each other, leading to the ion mixing and the exhaust of C. On the other hand, the SOC phase shows a typical ambipolar condition, where the D current is comparable to the electron current and the balance is established mainly by the bulk species.

In the SOC phase, the particle confinement time τ_e and the impurity confinement time τ_C estimated using the volume averaged particle numbers and the particle fluxes at $r/a \sim 0.6$ are respectively $\tau_e \sim 21.4 \tau_E$ and $\tau_C \sim 3.4 \tau_E$, where τ_E is estimated using the input power and the stored energy at $t\nu_0/R \sim$ $1,000$ (see Fig.6(a)). The impurity confinement time in the SOC phase is in a similar range as that observed in the tracer ⁸² impurity injection experiments on Tore Supra⁵⁶. In the LOC phase, the particle and impurity confinement times are estimated as $\tau_e \sim 29.4 \tau_E$ and $\tau_C \sim 1.7 \tau_E$, respectively. Although ⁸⁵ this result looks similar to the SOC phase, the impurity conso tent in the LOC phase is at a non-tracer level, $n_C q_C^2 > n_D q_D^2$, and the time scale of inward D flux is also comparable to the impurity confinement time, $\tau_D \sim 2.9 \tau_E$, where τ_D is estimated using the absolute value of D flux. This asymmetric electron and D transport with an order of magnitude different particle confinement times suggest fast mixing of ions, leading to the exhaust of C impurity ions.

B. Momentum transport

Figures 8(b) and 8(e) show rotation profiles observed in the numerical experiments. Although the initial condition is given by rigid rotation with the same velocity for both D and ⁹⁷ C ions, their rotation profiles deviate from the initial condi-⁹⁸ tion before the excitation of micro-instabilities. The rotation ⁹⁹ difference between D and C ions is determined by the neo-¹⁰⁰ classical parallel momentum balance, and is produced by the ¹⁰¹ pressure gradient, leading to the large rotation difference in ¹⁰² the outer radii characterized by steep density profiles. This ¹⁰³ neoclassical effect generates the bootstrap current as shown in the benchmark of the parallel momentum balance between ¹⁰⁵ GT5D and the neoclassical theory in Appendix B. Because of this neoclassical effect, an effective boundary condition of the C rotation is deviated from the initial value of $U_C/v_0 \sim -0.05$ to $U_C/v_0 \sim -0.08$. It is noted that the rotation difference is sustained by the collisional parallel momentum exchange be-

FIG. 8. Radial profiles of (a),(d) the density, (b),(e) the parallel flow, and (c),(f) the temperature averaged over $t\nu_0/R = 900 \sim 1000$. (a)-(c) and (d)-(f) respectively show the numerical experiments in the LOC and SOC phases. In (a) and (d), the density is normalized by $n_0 = 10^{20} \text{m}^{-3}$. In (a), (c), (d), and (f), dashed curves show the initial profiles given by the experimental data. In (b) and (e), dashed red and green curves show the initial profiles given by rigid rotation, and broken curves show rotation profiles in the neoclassical equilibrium states before the excitation of micro-instabilities $(tv_0/R = 50)$.

FIG. 9. Radial profiles of the radial current $J_s = \left\langle \frac{q_s}{c} f_s \dot{\mathbf{R}} \cdot \nabla \psi \right\rangle_{gf}$ (the third term in Eq. (10)) averaged over $tv_0/R = 0 \sim 1000$. (a) and (b) respectively show the numerical experiments in the LOC and SOC phases.

1 tween D and C ions, which is a stronger effect than the radial $\mathbf{1}$ momentum transport, and thus, the axisymmetric sink $S_{snk2,s}$ 14 2 3 with $v_{snk2,s} = 0.01v_0/a$ is too weak to compensate the rotation 15 ⁴ difference. ⁵ The intrinsic rotation shows qualitatively different profiles ¹⁷ ⁶ in the LOC and SOC phases. In the LOC phase, the change

⁷ of C rotation in the counter-current direction develops glob-19 ⁸ ally. Here, the negative direction corresponds to the counter-20

e current direction. On the other hand, in the SOC phase, the 21

¹⁰ change of C rotation in the plasma core is in the co-current

FIG. 10. Time histories of the carbon rotation at (a) $r/a = 0.3$ and (b) $r/a = 0.6$.

11 direction over significant radii $r/a < 0.5$ with respect to the 12 effective boundary condition. In Fig. 10, it is shown that in the plasma core, the intrinsic rotation in the LOC and SOC phases develop in the opposite direction after the initial changes due to the neoclassical effect. In Fig.11, the change of C rotation ¹⁶ between the LOC and SOC phases shows a similar radial profile as the experiment.

Although the rotation change is consistent with the experiment, detailed profiles are different from the experimental α observation. Figure 12 shows the time evolution of C rotation profiles and a comparison against the experiment. Here, the experimental profiles are shown by interpolated curves

FIG. 11. The change of the carbon rotation between the LOC and SOC phases.

FIG. 12. The carbon rotation profiles at $t v_0/R = 300 \sim 1000$. Black broken curves show the carbon rotation profiles in the experiment. (a) and (b) respectively show the numerical experiments in the LOC and SOC phases.

¹ for simplicity. Although the rotation profiles are still slowly ² evolving in time, qualitative features of profile shapes are un-³ changed. Both in the LOC and SOC phases, the C rotation profiles are shifted in the counter-current direction, because of ⁵ the deviation of effective boundary conditions due to the neo-⁶ classical effect. In the LOC phase, the positive C rotation gra*c* dient *U*^{*c*} in the outer radii (*U*^{*c*} averaged over $r/a = 0.5 \sim 0.8$ **a** is $U'_C a / v_0 \sim 0.085$ is in a similar range as the experiment *C*^{*l*}</sup> *c* averaged over *r*/*a* = 0.3 ∼ 0.9 is $U'_C a/v_0$ ∼ 0.081). In ¹⁰ the SOC phase, the negative rotation gradient around the mid **radius** (*U*^{*l*}_{*C*} averaged over *r*/*a* = 0.4 ∼ 0.6 is $U'_C a/v_0$ ∼ −0.13) is still weaker than the experiment (U_C' averaged over $r/a =$ $13 \quad 0.6 \sim 0.7$ is $U'_C a/v_0 \sim -0.23$), and the position of negative ro-14 tation gradient is shifted from $r/a \sim 0.65$ to $r/a \sim 0.5$. Both ¹⁵ in the LOC and SOC phases, the rotation gradients in the ¹⁶ plasma core are opposite from the experiment, which may be ¹⁷ attributed to the sawtooth activity inside the sawtooth inver-18 sion radius $(r/a \sim 0.25)^{14}$.

¹⁹ In order to understand these intrinsic rotation profiles, the 20 toroidal angular momentum balance (10) is analyzed. In 25 21 Fig.13, the toroidal angular momentum balance is dominated 26 ²² by the radial current term and the toroidal field stress term, 27 23 and the origin of the inertial term is not clearly seen. It is 28 ²⁴ noted that the balance between the radial current term and the

FIG. 13. The toroidal angular momentum balance, Eq. (10), is plotted for (a) , (c) D and (b) , (d) C. (a) , (b) and (c) , (d) respectively show the numerical experiments in the LOC and SOC phases. The radial profiles of the inertial term (trq, the first term), the stress term (str, the second term), the radial current term (cur, the third term), the toroidal field stress term (fld, the fourth term), the collision term (col, the fifth term), the source term (src, the sixth term), and the remaining error (err) are averaged over $t v_0/R = 0 \sim 1000$.

FIG. 14. The gyrokinetic equation part of the toroidal angular momentum balance, Eq. (11), is plotted for D. (a) and (b) respectively show the numerical experiments in the LOC and SOC phases. The radial profiles of the inertial term (trq, the first term), the partial stress term (str, the second term), the collision term (col, the third term), the source term (src, the fourth term), and the remaining error (err) are averaged over $t v_0/R = 0 \sim 1000$.

²⁵ toroidal field stress term indicates that the ion mixing is produced by the toroidal field stress term. In order to investigate the origin of the inertial term in detail, we remove the contri-²⁸ butions from the radial current term and the toroidal field term by decomposing the toroidal angular momentum balance (10)

FIG. 15. Comparisons of radial profiles of (a) radial electric field E_r , (b) turbulent intensity $|e\phi/T_0|^2$, and (c) poloidal angle at the maximum turbulent intensity θ_{max} between the LOC ans SOC phases. The profiles are averaged over $t v_0 / R = 0 \sim 1000$.

into the gyrokinetic equation part,

$$
\left\langle \frac{\partial m_s v_{\parallel} b_{\varphi} f_s}{\partial t} \right\rangle_{gf} + \left\langle \frac{m_s v_{\parallel} b_{\varphi}}{\mathcal{J}} \frac{\partial}{\partial \mathbf{Z}} \cdot (\mathcal{J} \mathbf{Z} f_s) \right\rangle_{gf} - \left\langle m_s v_{\parallel} b_{\varphi} \sum_{s'} C(f_s, f_{s'}) \right\rangle_{gf} - \left\langle m_s v_{\parallel} b_{\varphi} (S_{src,s} + S_{snk,s}) \right\rangle_{gf} = 0,
$$
 (11)

and the Hamilton's equation part,

$$
\left\langle \frac{f_s}{\mathscr{J}} \frac{\partial}{\partial \mathbf{Z}} \cdot (\mathscr{J} \mathbf{Z} m_s v_{\parallel} b_{\varphi}) \right\rangle_{gf} - \left\langle \frac{q_s}{c} f_s \dot{\mathbf{R}} \cdot \nabla \psi \right\rangle_{gf} + \left\langle f_s \frac{\partial \langle \phi \rangle_{\alpha}}{\partial \varphi} \right\rangle_{gf} = 0, \quad (12).
$$

³ following the derivation in Ref.32. Figure 14 shows the gy-⁴² ⁴ rokinetic equation part of the toroidal angular momentum bal-⁴³ 5 ance, in which the inertial term is determined by the par- 44 ⁶ tial stress term, the collision term, and the source term. Ex-⁴⁵ ⁷ cept for the outer radii, where the source term becomes large, ⁴⁶ the inertial term is mainly correlated with the partial stress⁴⁷ ⁹⁸ term, which is determined by plasma turbulence, while the⁴⁸ 10 collisional momentum exchange between D and C is non-49 11 negligible in the LOC phase. Therefore, we further inves-⁵⁰ 12 tigate properties of turbulent momentum transport based on⁵¹ ¹³ the mechanisms reviewed in Refs.57 and 58. It is noted that ¹⁴ the source term develops in the opposite direction in the outer ¹⁵ radii. In the numerical experiment, the momentum source is 16 given by the Krook type sink models, $S_{snk,s1}$ and $S_{snk,s2}$, in $\frac{1}{52}$ 17 which the sign of momentum source is determined in a passive ¹⁸ manner by turbulent momentum transport. Therefore, turbu-19 lent momentum transport leads to the opposite net torque input ²⁰ between the LOC and SOC phases.

²¹ In the framework of local turbulence theory, the momentum 22 flux Π_s may be decomposed as

$$
\Pi_s = n_s m_s R_0 \left[-\chi_{\varphi,s} R_0 \Omega_{\varphi,s}' + V_{\varphi,s} R_0 \Omega_{\varphi,s} + C_s \right], \quad (13)
$$

where $\Omega_{\varphi,s}$ is the toroidal angular frequency, $\Omega'_{\varphi,s}$ = $\partial \Omega_{\varphi,s}/\partial r$, $\chi_{\varphi,s}$ is the momentum diffusion coefficient, $V_{\varphi,s}$ 57 25 is the pinch velocity, and C_s is the residual stress including 58

²⁶ various symmetry breaking effects. Here, the residual stress ϵ comes mainly from the plasma shaping effect C_{PS}^{59} , the pro- ϵ_{2s} file shear $C_{\rho^*}^{41}$, the E_r shear $C_E^{60,61}$, and the turbulence intensity gradient C_I^{62} . The symmetry breaking due to plasma ³⁰ shaping does not exist in the current circular concentric toka-³¹ mak configuration. In Fig.15(a), the radial electric field *E^r* ³² has negative shear on average, and the momentum transport 33 due to the E_r shear stress $C_E \propto -dE_r/dr$ is expected to be ³⁴ outward both in the LOC and SOC phases. In Fig.15(b), the ³⁵ turbulent intensity $I = |e\phi/T_0|^2$ shows similar profiles, which 36 have flat profiles for $r/a = 0.3 \sim 0.6$ and negative gradients $\frac{3}{27}$ for $r/a > 0.6$, and the momentum transport induced by the tur-38 bulent intensity shear stress $C_I \propto dI/dr$ seems to be similar be-³⁹ tween the LOC and SOC phases. It is noted that the turbulent 40 intensity normalized by T_0 becomes smaller in the edge, where 41 temperature becomes lower. However, $|e\phi/T_e|$ and $|\delta n_e/n_e|$ increases towards the edge. Finally, in Fig.15(c), an approximate ballooning angle θ_{max} , which is given by the poloidal angle at the maximum turbulent intensity within each magnetic surface, shows qualitative difference between the LOC and SOC phases. In the outer radii, θ_{max} in the LOC phase is slightly negative, while θ_{max} in the SOC phase is positive. The sign relation of the profile shear stress $C_{\rho*} \propto -\theta_0 \sim \theta_{max}$ is consistent with the change of intrinsic rotation between the LOC and SOC phases.

The normalized profile shear stress is given $as⁴¹$

$$
\frac{R_0 C_{\rho*,s}}{v_{ts} \chi_{\varphi,s}} = -\frac{\hat{s} \theta_0}{2|q|k_{\theta} \rho_{ts}} \left(\frac{R_0}{L_{n,s}} + 4 - \frac{1}{(\sqrt{2}q k_{\theta} \rho_{ts})^2} \right), (14)
$$

where θ_0 is the ballooning angle, \hat{s} is the magnetic shear, k_{θ} is the poloidal wavenumber, and $L_{n,s} = |n_s/\nabla n_s|$ is the density gradient scale length. Here, the mode asymmetry θ_0 and the corresponding linear growth rate γ are given by the higher ⁵⁶ order ballooning theory^{52,53} as,

$$
\theta_0 = -sign\left(\hat{s}\omega_r'\right) \left| \frac{\omega_r'}{2k_\theta\gamma_0 \hat{s}} \right|^{1/3},\tag{15}
$$

$$
\gamma = \gamma_0 \cos(\theta_0),\tag{16}
$$

where γ_0 is the linear growth rate without mode asymmetry, ω_r is the mode frequency, and $\omega'_r = \partial \omega_r / \partial r$. Although Ref.41

FIG. 16. Linear calculations of $n = 25$ modes of TEM in the LOC phase and ITG in the SOC phase with externally imposed positive and negative E_r . (a) shows the radial profiles of E_r used in case 1 and case 2. (b) shows the volume averaged quasilinear flux ratio between turbulent heat and momentum transport. The heat and momentum fluxes are respectively normalized by $q_{GB} = \chi_{GB} n_0 T_0/a$ and $\Pi_{GB} = \chi_{GB}n_0v_0/a$, where $\chi_{GB} = (v_0^3/\Omega_D^2)/a$. (c) and (d) show the frequency and the growth rate, respectively. (e) and (f) shows the ballooning angle θ_0 , which is defined at the minimum radial wavenumber k_r , and an approximate ballooning angle, which is given at the 16 maximum amplitude of ϕ , respectively.

discussed the profile shear stress without E_r , the higher order $_{21}$ 2 ballooning theory can be naturally extended including the E_r $_{22}$ s shear^{63,64}. Therefore, the profile shear stress involves the E_r shear stress, when the mode asymmetry is affect also by E_r . In $_{24}$ **5** Ref.45, the profile shear stress including E_r was analyzed for $_{25}$ \bullet ITG with adiabatic electrons using linear global calculations $_{26}$ with externally imposed E_r , and the relation between the E_r ₂₇ ⁸ shear and the profile shear stress was clarified. In this work, we apply this approach to TEM in the LOC 29

10 phase and ITG in the SOC phase to understand the change 30 11 of θ_0 between the LOC and SOC phases. Based on the ³¹ E_r profiles in Fig.15(a), model E_r profiles are chosen as z_2 13 $eE_rR_0/T_0 = sign(E_r)(c_0 + c_1r/a_0)(\tanh[(r/a_0 - 0.2)/0.1] +$ 33 14 1)/2 with $(c_0, c_1) = (0, 10)$ (case 1) and $(5, 5)$ (case 2), in 34

FIG. 17. (a) shows the weighted turbulence frequency $\bar{\omega}$ and the Doppler shift due to $E \times B$ rotation ω_E of $n = 24$ modes at each radius. (b) shows of the frequency of $n = 24$ modes corrected by subtracting the Doppler shift, $\bar{\omega} - \omega_E$. The frequency spectra are obtained from the time series data for $t v_0/R = 600 \sim 1000$.

FIG. 18. Radial profiles of (a) the normalized profile shear residual stress $R_0C_{\rho*,D}/v_{tD}\chi_{\phi,D}$ and (b) the normalized curvature pinch $R_0^2 V_{\varphi,D} \Omega_D / v_{tD} \chi_{\varphi,D}$. The plasma profiles are given by the simulation data in Fig.8. In estimating the profile shear stress, $k_{\theta} \rho_D = 0.35$ is assumed, and θ_0 is given by θ_{max} in Fig.15(c).

which E_r at the outer radii becomes similar but the E_r shear differ by two times (see Fig.16(a)). In Fig.16, (b) the vol-¹⁷ ume averaged quasi-linear flux ratio between turbulent heat ¹⁸ and momentum transport, (c) the frequency, (d) the growth 19 rate, (e) the ballooning angle θ_0 defined by the poloidal angle at the minimum radial wavenumber k_r , and (f) the approximate ballooning angle θ_{max} defined by the poloidal angle at the maximum amplitude of ϕ are shown for case 1 and case 2 with negative and positive E_r . It is noted that linear calculations with E_r show oscillatory linear growth, which is a ²⁵ typical feature of the so-called Floquet balloning mode⁶⁵, and the above results are time averaged. In Fig.16(c), the frequen-²⁷ cies of both TEM and ITG are affected by the Doppler shift, ²⁸ and become the same sign as in the numerical experiment. Here, case 1 and case 2 give almost the same frequencies, because they have similar E_r . In Fig.16(e), the changes of θ_0 are similar between case 1 and case 2, while the theory predicts $\theta_0 \propto \omega_r^{\frac{1}{3}}$. This result suggests that θ_0 is determined not only by the E_r shear but also by E_r itself. This feature was observed also in Refs.45 and 64. Accordingly, in Fig.16(d), the 1 stabilization effect due to E_r becomes similar between case 1 ² and case 2. Another important finding is that TEM in the LOC 3 phase shows much smaller change of θ_0 than ITG in the SOC phase. This may be attributed to the higher linear growth rate ⁵ and the narrower mode width of TEM in the LOC phase. In ⁶ Fig.16(f), TEM in the LOC phase and ITG in the SOC phase τ respectively show slightly negative θ_{max} and positive θ_{max} at ϵ the negative E_r , which is consistent with the numerical exper-

 \bullet iment (see Fig.15(c)). In Fig.16(b), the resulting momentum 10 transport at the negative E_r becomes outward and inward in

11 the LOC and SOC phases, respectively.

12 In Fig.17(a), the weighted turbulence frequency $\bar{\omega}(r,n) =$ $\sum_{\omega} \omega |\hat{\phi}_{n,\omega}|^2 / \sum_{\omega} |\hat{\phi}_{n,\omega}|^2$ of $n = 24$ mode at each radius is in the electron diamagnetic direction over the whole radii, where ¹⁵ $\hat{\phi}_{n,\omega}$ is the Fourier component of ϕ at $\theta = 0$ with respect to the toroidal mode number *n* and the frequency ω. How- ever, if one corrects the frequency by subtracting the Doppler 18 shift of poloidal $E \times B$ rotation due to the radial electric field $\omega_E = k_\theta v_{E\theta}$, the LOC and SOC phases show qualitatively dif- $\mathbf{F}_{\mathbf{z}}$ ferent properties, where $v_{E\theta} = \langle \mathbf{v}_E \cdot \nabla \theta / |\nabla \theta| \rangle_f$. The SOC phase is characterized by the positive frequency or ITG over the whole radii. On the other hand, the LOC phase shows ITG only in the plasma core, and the outer radii are characterized by the negative frequency or TEM. These results show that the different features of the mode asymmetry between TEM in the LOC phase and ITG in the SOC phase, which depend 27 not only on the profile shear and the E_r shear but also on E_r itself, are key physics in understanding the change of intrinsic rotation during the LOC-SOC transition.

³⁰ Finally, we compare the relative magnitude of the profile $\frac{1}{21}$ shear stress against the Coriolis pinch given as⁵⁷,

$$
\frac{R_0^2 V_{\varphi,s} \Omega_s}{\nu_{ts} \chi_{\varphi,s}} = \left(-\frac{4T_s}{T_e} - \frac{R_0}{L_n} \right) \frac{R_0 \Omega_s}{\nu_{ts}}.
$$
 (17)

 32 Figure 18 shows (a) the normalized profile shear stress and (b)⁵² ³³ the normalized Coriolis pinch, where the plasma profiles are 34 given by the simulation data in Fig.8. In estimating the profile⁵⁴ ³⁵ shear stress, $k_{\theta} \rho_{tD} = 0.35$ is assumed and the mode asymme-⁵⁵ ³⁶ try is given by θ_{max} in Fig.15(c). The Coriolis pinch is out-⁵⁶ ward both in the LOC and SOC phases, and is negligible for⁵⁷ 38 the intrinsic rotation with the low Mach number. The negligi-⁵⁸ ³⁹ ble impact of the Coriolis pinch was also shown in Ref. 20.

⁴⁰ C. Energy transport

41 In Figs.8(c) and 8(f), T_e in the plasma core is slightly lower 42 than the experiment, while T_D and T_C are slightly higher than ϵ_6 43 the experiment. As already discussed, the increased collisionality leads to stronger ion-electron coupling, and the differ-45 ence between T_e and T_p in the plasma core becomes smaller 46 than the experiment. Figure 19 shows the surface integrated $\frac{1}{70}$ energy flux $Q_s = \hat{Q}_s S$ observed in the quasi-steady phase of $\frac{1}{7}$ the numerical experiments, where $\hat{Q}_s \equiv \langle \int [m_s v_\parallel^2 + \mu B] f_s (v_D +$ $\mathbf{v}_E \cdot \nabla r d^3 v$ *f* is the energy flux density and $S = 2\pi r R_0$. In the ⁵⁰ current numerical experiments, the deposition profiles of the 74 51 ohmic heating and the radiation loss overlap with each other τ

FIG. 19. Radial profiles of the surface integrated energy flux *Qs* averaged over $tv_0/R = 900 \sim 1000$. (a) and (b) respectively show the numerical experiments in the LOC and SOC phases.

FIG. 20. Radial profiles of the heat flux density *qs* averaged over $t v_0/R = 900 \sim 1000$. (a) and (b) respectively show the numerical experiments in the LOC and SOC phases.

(see Fig.3), and a source free region does not exist. Therefore, both in the LOC and SOC phases, the total energy flux slightly exceeds the input power of $P_{in} = P_0/2 = 300$ kW, while the stored energy is in the quasi-steady state (see Fig.7(a)). In the LOC phase, the electron energy flux is dominant, while both the D and C energy fluxes make significant contributions. On the other hand, in the SOC phase, the D energy flux is dom-⁵⁹ inant, and the C energy flux is negligible. These results are ⁶⁰ qualitatively consistent with the experiment and the local gy-⁶¹ rokinetic analyses in Ref.23, while several differences are not ⁶² captured in the current numerical experiments.

Figure 20 shows the heat flux density $q_s = \hat{Q}_s - 5/2T_s\Gamma_s$, where $\Gamma_s \equiv \langle \int f_s(\mathbf{v}_D + \mathbf{v}_E) \cdot \nabla r d^3 v \rangle_f$ is the particle flux density. In Ref.23, the power balance analysis at $r/a =$ 0.37 gave the ion and electron heat fluxes of (q_i, q_e) = $(4.5 \pm 1.0 \text{kWm}^{-2}, 6.7 \pm 1.0 \text{kWm}^{-2})$ and $(q_i, q_e) = (14.0 \pm 1.0 \text{kWm}^{-2}, 6.7 \pm 1.0 \text{kWm}^{-2})$ 68 3.0kWm⁻², -1.0 \pm 3.0kWm⁻²) in the LOC and SOC phases, respectively. However, in the LOC phase shown in Fig.20(a), the ion heat fluxes $q_D + q_C$ exceeds q_e at $r/a = 0.37$. In the SOC phase shown in Fig.20(b), we do not observe the electron heat pinch over the whole radii. The detailed ratios between the ion and electron energy fluxes may be affected either by the enhanced ion-electron coupling and by the modelling of sources and sinks. On the other hand, the mechanism of the

FIG. 21. Spatio-temporal evolution of the electron energy flux in (a) LOC and (b) SOC phases.

¹ electron heat pinch is still an open issue. It is noted that in $\frac{1}{2}$

2 Ref.66, off diagonal terms in the transport matrix was de- $\frac{1}{2}$

³ rived for the curvature pinches, where an Onserger symmet-₃₃

 $\frac{4}{10}$ rical contribution to the heat flux gives heat pinch when off- $\frac{1}{34}$

⁵ diagonal particle pinch occurs.

Figures 21 and 22 show the spatio-temporal evolution of the 36 ⁷ electron energy flux and the corresponding spatio-temporal³⁷ 8 auto-correlation functions. Both the LOC and SOC phases are 38 characterized by bursts of avalanche like nonlocal transport, 39 10 while their dynamics is somewhat different. The SOC phase 40 11 is characterized by ballistic inward propagation of global⁴¹ 12 avalanches from the edge to the core. This feature is clearly 42 13 seen by the spatio-temporal autocorrelation functions in Figs. 43 $14 \quad 22(c)$ and $22(d)$. In Ref.36, it was shown that the direc- 44 ¹⁵ tion of the avalanche propagation in ITG turbulence is de-16 termined by the asymmetry induced by the E_r shear, which ⁴⁶ 17 results in the inward and outward propagation with the neg-47 18 ative and positive E_r shear, respectively. The inward propa-48 19 gation of avalanches is consistent with the negative E_r shear 20 in Fig.15(a). On the other hand in the LOC phase, the prop- 50 ²¹ agation width is limited, and avalanches show discontinuities 22 around $r/a = \sim 0.7$. In Fig. 22 (b), the spatio-temporal au- ϵ ²³ tocorrelation function at $r/a \sim 0.8$ shows that inward propa- $\frac{1}{2}$ ²⁴ gation of avalanches is limited and the correlation length be-25 comes shorter inside r/a ∼ 0.8, while in Fig. 22(a), the spatio-55 ²⁶ temporal autocorrelation function at $r/a \sim 0.6$ suggest global ⁵⁶ 27 mode structures with small time delay. This may be attributed 57 28 to the change of dominant turbulence drive from ITG to TEM, 58 29 which was shown in Fig. $17(b)$.

FIG. 22. Spatio-temporal auto-correlation functions of the electron energy flux evaluated for (a) LOC phase, $r/a = 0.6$, (b) LOC phase, $r/a = 0.8$, (c) SOC phase, $r/a = 0.6$, and (d) SOC phase, $r/a = 0.8$. ∆*t* and ∆*r* respectively show delays in time and radius. The electron energy flux data in Fig.21 is processed for $t v_0/R = 400 \sim 1000$.

³⁰ D. Quasi-coherent modes

Figures $23(a)$ and $23(c)$ show the frequency spectra of the electrostatic potential measured at $\theta = 0, \varphi = 0$, and $r/a =$ 0.7. Since the spectrum is symmetric with respect to the sign of frequency, only the negative frequency part is plotted. Here, $r/a = 0.7$ is characterized by TEM and ITG in the LOC and ³⁶ SOC phases, respectively (see Fig.17(b)). The spectrum in the LOC phase shows a few quasi-coherent peaks, which were called as the quasi-coherent modes (QCMs). On the other hand, the SOC phase is characterized by a broad-band spectrum without such coherent peaks. These spectra are quali- 41 tatively consistent with those in the experiment²⁸, while the peak positions of QCMs are different. In the experiment, the QCM peak appeared in the 50kHz range, which correspond to $\omega R/v_0$ ∼ 0.5. Although the secondary peak with *n* = 18 is in this range, the primary peak appear in the lower frequency range. This difference may be attributed to the magnetic rip- ϵ ^{*z*} ples, which can enhance E_r and the resulting Doppler shift⁶⁹.

Figures $23(b)$ and $23(d)$ show the frequency spectrum of each *n* component measured at $\theta = 0$ and $r/a = 0.7$, which is non-symmetric with respect to the sign of frequency because of the resonance condition depending on n . It is noted that $\bar{\omega}$ in Fig.17 is estimated by the weighted average using the $n = 24$ spectrum. The *n* spectra clearly show the structures of the QCMs and the broad-band fluctuations, which have the following features. Firstly, the width of each *n* spectrum is narrower in the LOC phase. The half height width of the *n* = 12 spectrum is estimated as $∼ 0.035v_0/R$ and $\sim 0.065 v_0/R$ in the LOC and SOC phases, respectively. This ⁵⁹ may be attributed to the difference of nonlinear spectral broad-

FIG. 23. Frequency spectra of (a),(c) the electrostatic potential measured at $(r, \theta, \varphi) = (0.7a, 0, 0), |\hat{\phi}_{\varphi}|$, and (b), (d) the toroidal mode number component of the electrostatic potential measured at (r, θ) = $(0.7a, 0)$, $|\hat{\phi}_{\omega,n}|$. (a),(b) and (c),(d) respectively show the numerical experiments in the LOC and SOC phases. The frequency spectra are 25 obtained from the time series data for $t v_0/R = 600 \sim 1000$.

FIG. 24. Radial profiles of *Er* observed in the numerical experiment (GT5D) and E_r estimated by the parallel momentum balance Δ based on the Hirshman-Sigmar's moment approach $(NC)^{67,68}$. The D component of the parallel momentum balance is computed using the D parallel flow U_D , the density n_s , and the temperature T_s from 41 GT5D, and terms proportional to U_D and the gradients of n_s and T_s ⁴² are also shown. Both E_r and the plasma profiles are averaged over 43 $t v_0/R = 0 \sim 1000$. (a) and (b) respectively show the numerical ex-44 periments in the LOC and SOC phases.

- ening between TEM and ITG. Secondly, the frequency gap of $\frac{48}{100}$
- ² peaks in the *n* spectra is larger in the LOC phase. The mode
- **3** frequency with the Doppler shift is given by $\omega_{shift} = \omega + \omega$
- $k_{\theta}v_{E\theta} \sim (nq/r)(v_{ph} + v_{E\theta})$, and the frequency gap between \mathbf{u}
- 5 adjacent *n* modes becomes $\Delta \omega_{shift} = (q/r)(v_{ph} + v_{E\theta})$, where 52
- $v_{ph} = \omega/k_{\theta}$ is the phase velocity. As shown in Fig.17(a), sa

14

 both in the LOC and SOC phases, the Doppler shift is in the electron diamagnetic direction, $v_{E\theta} < 0$, and the frequencies of TEM and ITG are shifted in the electron diamagnetic di- rection. On the other hand, the phase velocity of TEM and 11 ITG are in the electron diamagnetic direction, $v_{ph} < 0$, and 12 in the ion diamagnetic direction, $v_{ph} > 0$, respectively. In 13 addition, the magnitude of $v_{E\theta}$ becomes larger in the LOC phase. Therefore, the frequency gap becomes larger in the LOC phase. Because of these two features, the *n* spectra in _{σ ¹⁶ the LOC phase split to form the QCMs. It is noted that in} Ref.23, the former effect was shown, while the latter effect was not taken into account, because the simulation was conducted using a local $δf$ gyrokinetic model without E_r .

 20 In Fig. 24, E_r observed in the numerical experiment is com-²¹ pared against the neoclassical theory. By substituting the D $\n z₂\n parallel flow U_D , the density n_s , and the temperature T_s from$ ²³ GT5D for the D component of the parallel momentum balance E_r is written as

$$
E_r = -\frac{1}{A_{21} + A_{22} + A_{23}} \left[\frac{|\nabla \psi|}{F} \langle BU_D \rangle_f
$$

\n
$$
-A_{21} \frac{T_e}{q_e} \frac{\partial \ln p_e}{\partial r} - A_{22} \frac{T_D}{q_D} \frac{\partial \ln p_D}{\partial r} - A_{23} \frac{T_C}{q_C} \frac{\partial \ln p_C}{\partial r}
$$

\n
$$
+A_{24} \frac{T_e}{q_e} \frac{\partial \ln T_e}{\partial r} + A_{25} \frac{T_D}{q_D} \frac{\partial \ln T_D}{\partial r} + A_{26} \frac{T_C}{q_C} \frac{\partial \ln T_C}{\partial r} \right], (18)
$$

where *F* is the toroidal flux, $p_s = n_s T_s$ and A_{ij} is given by 26 elements of the matrix $\mathbf{A} = (\mathbf{L} - \mathbf{M})^{-1} \cdot \mathbf{M}$ (see Appendix B ²⁷ for detailed definitions). In Fig.24, the dominant contribu-²⁸ tions come from the parallel flow, the density gradient of D, ²⁹ and the temperature gradient of D. It is noted that because of ³⁰ the charge dependency, the contribution from C is negligible 31 even in the LOC phase. The contributions from the density ³² and temperature gradients are larger in the LOC phase, re-³³ flecting the higher temperature. On the other hand, the largest ³⁴ contribution comes from the counter-current rotation, and its ³⁵ magnitude is comparable between the LOC and SOC phases, ³⁶ because the boundary condition or the baseline rotation is de- $\frac{1}{25}$ termined by the toroidal ripple. The large negative E_r induced 38 by the ripple induced counter-current rotation is a unique fea- $_{39}$ ture on Tore Supra^{69,70}.

V. SUMMARY

In this work, we analyzed Tore Supra ohmic L-mode dis-⁴² charge 48102 focusing on two time slices in the LOC and ⁴³ SOC phases using the global full-*f* gyrokinetic Eulerian code GT5D. Because of limited computational resources, the nu-⁴⁵ merical experiments were conducted using the modified 1/2 ⁴⁶ scale parameters, in which the plasma size is reduced by a ⁴⁷ half, while the collisionality is enhanced to keep the experi-**48** mental value of v_e^* . The modified 1/2 scale parameters keep the stability of TEM in the original experimental parameters. However, collisional ion-electron coupling becomes stronger, leading to smaller temperature difference between ions and ⁵² electrons. The heating condition was chosen based on power scans using the modified $1/2$ and $1/3$ scale parameters. The

- 1 power scan numerical experiments showed the Bohm like 53
- ² scaling both in the LOC and SOC phases, and the Bohm like
- ³ heating condition, in which the input power is scaled as pro-
- portional to the plasma size, was adopted in the numerical ex-
- ⁵ periments. The Bohm like scaling is consistent with the L-
- ⁶ mode scaling observed in the SOC phase, while its relevance
- ⁷ in the LOC phase, which is characterized by the neo-Alcator
- scaling, is still an open issue.

The numerical experiments captured qualitative features $\frac{1}{57}$ ¹⁰ of transport phenomena in the LOC-SOC transition on Tore 11 Supra. Firstly, the exhaust of C is induced by the ion mix_{59} 12 ing, which is driven by the toroidal field stress. Secondly, the ϵ_0 13 intrinsic rotation develops in the opposite directions between $\frac{1}{61}$ 14 the LOC and SOC phases, which is characterized by the dif- $_{62}$ 15 ferent features of TEM in the LOC phase and ITG in the SOC $_{63}$ 16 phase, leading to the change of the profile shear stress. Here, 64 the mode asymmetry or the ballooning angle depends not only 18 on the profile shear and the E_r shear but also on E_r itself. ¹⁹ It is noted that although the rotation change is reproduced, ²⁰ detailed intrinsic rotation profiles are still different from the ⁶⁸ 21 experiment, and further investigations on momentum source 22 and sink models are needed. Thirdly, the ratio of the stored $\frac{1}{20}$ 23 energy between two time slices and the temperature profiles $_{71}$ $_{24}$ in the experimental data are approximately recovered in the $_{72}$ $_{25}$ quasi-steady state, where the energy fluxes of electrons and D₇₃ 26 are dominant in the LOC and SOC phases, respectively. Fi- $_{74}$ $_{27}$ nally, turbulent spectra in the LOC and SOC phases are char- $_{75}$ acterized by QCMs and broad-band spectra, which are pro- $_{76}$ 29 duced by the difference of Doppler shift in the LOC and SOC $_{77}$ $\frac{1}{20}$ phases. The ripple induced counter-current rotation produce $\frac{1}{20}$ $\overline{31}$ the Doppler shift in the electron diamagnetic direction, which $\overline{79}$ $\frac{32}{10}$ enhances the frequency gap of each *n* spectrum, leading to $\frac{1}{80}$ ³³ QCMs.

34 As already discussed, further studies are required to under- $\frac{1}{2}$ δ ₃₅ stand ρ^* scaling in the LOC phase. Although Tore Supra ³⁶ showed the change of intrinsic rotation in the co-current di-37 rection during the LOC-SOC transition, many other devices 38 showed the change of intrinsic rotation in the opposite direc- 84 $\frac{1}{2}$ tion². Another important issue is the change of nonlocal trans-40 port between the LOC and SOC phases, which was experi-

- 41 mentally observed by applying edge cold pulses². In future
- 42 work, these important issues will be addressed using global $_{87}$ ⁴³ full-*f* gyrokinetic simulations.

ACKNOWLEDGMENTS

⁴⁵ This work was supported by the MEXT Japan (Program for ⁴⁶ Promoting Researches on the Supercomputer Fugaku "Exploration of Burning Plasma Confinement Physics", and Grant ⁴⁸ No.22K03584) and the NIFS Collaborative Research Program 49 (NIFS16KNST103). This research used computational re- 93 50 sources of the supercomputer Fugaku provided by the RIKEN 94 51 Center for Computational Sciences (hp210178,hp220165), 95

⁵² and the ICEX provided by the JAEA.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Appendix A: Wedge size convergence

In this appendix, we verify the convergence of the numerical experiments with respect to the wedge size. We repeat the numerical experiments with the $1/3$ wedge torus model, and compare plasma profiles and turbulent frequency spectra. In Fig.25, we compare radial profiles of the density, the parallel flow, and the temperature obtained from the numerical experiments with the $1/3$ and $1/6$ wedge torus models, which show negligible difference between these models. This indicates the corresponding particle, momentum, and energy transport transport is also converged between the $1/3$ and $1/6$ wedge torus models. Figure 26 shows the frequency spectra of the electrostatic potential measured in the numerical experiments with the 1/3 wedge torus model. Here, the definitions of plots are the same as those in Fig.23. Figures $26(a)$ and $26(c)$ respectively show the QCMs in the LOC phase and the broad-band spectrum in the SOC phase as in Fig.23. How-⁷³ ever, the structures of QCMs are slightly different from the 1/6 wedge torus model. In the 1/6 wedge torus model, the primary and secondary peaks are formed by adjacent toroidal modes, $n = 12$ and $n = 18$. In the 1/3 wedge torus model, the toroidal mode numbers of the primary and secondary peaks are unchanged, while there exists a subdominant mode with $n = 15$ in between them. Therefore, in addition to the enhancement of the frequency gap between adjacent toroidal modes due to ⁸¹ the Doppler shift, some nonlinear coupling mechanism to selectively excite $n = 12$ and $n = 18$ modes exists. This issue will be addressed in future works.

Appendix B: Parallel flows of bulk and impurity ions

In this appendix, we verify the difference of parallel flows of bulk and impurity ions based on the neoclassical parallel momentum balance equations. In the neoclassical benchmark, we consider multi-species plasmas with kinetic electrons, D ⁸⁹ ions, and C impurity ions in a circular concentric tokamak 90 configuration with *R*₀/*a* = 5, *a*/*p*_{*tD*} = 150, and *q*(*r*) = 0.85 + 91 2.18 $(r/a)^2$, $m_D/m_e = 3,672$, and $Z_{eff} = 4$. The initial density ⁹² and temperature profiles are given as

$$
n_s(r) = n_{0s} \exp\left[-\frac{\Delta_{ns}}{L_{ns}} \tanh\left(\frac{r - r_0}{\Delta_{ns}}\right)\right],\tag{B1}
$$

$$
T_s(r) = T_{0s} \exp\left[-\frac{\Delta_{ts}}{L_{ts}} \tanh\left(\frac{r - r_0}{\Delta_{ts}}\right)\right],
$$
 (B2)

where $R_0/L_{ns} = R_0/L_{ts} = 2.22$, $\Delta_{ns} = \Delta_{ts} = 0.3a$, and $r_0 =$ **94** 0.5*a*. The normalized collisionality $v_{s,s'}^* \equiv qR/(\varepsilon^{3/2}v_{ts}\tau_{s,s'})$ **95** at the mid-radius is given as $v_{e,D}^* = 0.08, v_{D,D}^* = 0.08$, and $v_{C,D}^* = 2.49$, where $\tau_{s,s'}$ is the collision time. The benchmark

FIG. 25. Radial profiles of (a),(d) the density, (b),(e) the parallel flow, and (c),(f) the temperature averaged over $t\nu_0/R = 900 \sim 1000$. (a)-(c) and (d)-(f) respectively show the numerical experiments in the LOC and SOC phases. Solid and dashed curves respectively show the results with the 1/6 and 1/3 wedge torus models, and dotted curves show the initial profiles.

calculation is performed in the axisymmetric limit on 4D grids 14

 $(N_R, N_\zeta, N_Z, N_{\nu||}, N_{\nu\perp}) = (160, 1, 160, 96, 24).$

³ Figure 27 shows a comparison of parallel currents between ¹⁶

4 GT5D and the neoclassical theory^{67,68}. Here, the neoclassical

⁵ results are computed using the Matrix Inversion code⁶⁸, which

⁶ computes the parallel components of the momentum and heat

⁷ flow balance equations

$$
[\mathbf{M} - \mathbf{L}]\vec{X} = \mathbf{M}\vec{V}.
$$
 (B3)₂₂

⁸ Here, L and M are matrices given by the parallel friction co-

[•] efficients and the viscosity coefficients, respectively. The par-₂₃ 10 allel components of flow and heat flux \vec{X} and the thermody-24

11 namic force \vec{V} are respectively given as

$$
\vec{X} = \begin{bmatrix} \langle \mathbf{B} \cdot \mathbf{U}_{e} \rangle \\ \langle \mathbf{B} \cdot \mathbf{U}_{D} \rangle \\ \langle \mathbf{B} \cdot \mathbf{U}_{C} \rangle \\ 2 \langle \mathbf{B} \cdot \mathbf{q}_{e} \rangle / (5p_{e}) \\ 2 \langle \mathbf{B} \cdot \mathbf{q}_{D} \rangle / (5p_{C}) \end{bmatrix}, \quad \vec{V} = \begin{bmatrix} V_{1e} \\ V_{1D} \\ V_{1C} \\ V_{2e} \\ V_{2D} \\ V_{2C} \end{bmatrix}, \quad (B4)^{\frac{3}{3}}_{\frac{3}{3}}
$$

where the thermodynamic force is given as

$$
V_{1s} = -\frac{F}{B\nabla\psi} \left[\frac{d\phi}{dr} + \frac{1}{q_s n_s} \frac{dp_s}{dr} \right],
$$
 (B5)

$$
V_{2s} = -\frac{F}{B\nabla\psi}\frac{dT_s}{dr}.
$$
 (B6)

By inverting Eq. $(B3)$ as

$$
\vec{X} = A\vec{V},\tag{B7}
$$

and substituting ϕ , n_s , and T_s from GT5D, one can estimate **parallel flows for each species, where** $A = [\mathbf{L} - \mathbf{M}]^{-1} \cdot \mathbf{M}$ **.** Also, the bootstrap current is estimated as $\langle \mathbf{B} \cdot \mathbf{J} \rangle = \sum_s q_s n_s \langle \mathbf{B} \cdot \mathbf{J} \rangle$ U_s). The benchmark result shows good quantitative agreements, indicating that GT5D can correctly compute the difference of ion parallel flows in multi-species plasmas. In the cur-²⁰ rent benchmark case involving a high fraction of C impurity ²¹ ions, the C rotation develops in the counter-current direction with respect to D rotation.

¹ ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database, I. P. B. Editors, and I. EDA, "Chapter 2: ²⁵ Plasma confinement and transport," Nucl. Fusion 39, 2175–2249 (1999).

 26 ²J. Rice, J. Citrin, N. Cao, P. Diamond, M. Greenwald, and B. Grierson, ²⁷ "Understanding LOC/SOC phenomenology in tokamaks," Nucl. Fusion 60, 2020 .

- ³X. Garbet, J. Payan, C. Laviron, P. Devynck, S. K. Saha, H. Capes, X. P. ³⁰ Chen, J. P. Coulon, C. Gil, and G. R. Harris, "Turbulence and energy con-11 finement in TORE SUPRA Ohmic discharges," Nuclear fusion 32, 2147 $32 (1992)$.
- 33 ⁴J. E. Rice, C. Gao, M. L. Reinke, P. H. Diamond, N. T. Howard, H. J. Sun, ³⁴ I. Cziegler, A. E. Hubbard, Y. A. Podpaly, and W. L. Rowan, "Non-local ³⁵ heat transport, rotation reversals and up/down impurity density asymmetries ³⁶ in Alcator C-Mod ohmic L-mode plasmas," Nuclear Fusion 53, 033004 37 (2013) .
- 38 ⁵A. Krämer-Flecken, V. Dreval, S. Soldatov, A. Rogister, and V. Vershkov, ³⁹ "Turbulence studies with means of reflectometry at TEXTOR," Nuclear fu-⁴⁰ sion 44, 1143 (2004).
- ⁶H. Arnichand, R. Sabot, S. Hacquin, A. Krämer-Flecken, X. Garbet, J. Cit-⁴² rin, C. Bourdelle, G. Hornung, J. Bernardo, C. Bottereau, F. Clairet, ⁴³ G. Falchetto, and J. Giacalone, "Quasi-coherent modes and electron-driven ⁴⁴ turbulence," Nucl. Fusion 54, 123017 (2014).
- 45 ⁷H. Arnichand, R. Sabot, S. Hacquin, A. Krämer-Flecken, C. Bourdelle, ⁴⁶ J. Citrin, X. Garbet, J. C. Giacalone, R. Guirlet, and J. C. Hillesheim, "Dis-

FIG. 26. Frequency spectra of the electrostatic potential in the numerical experiments with the 1/3 wedge torus model. The definitions of plots are the same as those in Fig.23.

FIG. 27. Radial profiles of the parallel current of electrons, deuterium ions, and carbon impurity ions. Broken lines show the initial $\frac{1}{65}$ condition given by non-shifted Maxwellian distributions. Solid and 66 dashed lines respectively show the results from GT5D and neoclas- 67 sical theory (the matrix inversion code) at $t v_{tD}/R_0 = 250$.

- 1 criminating the trapped electron modes contribution in density fluctuation $\frac{1}{72}$ spectra," Nuclear fusion 55, 093021 (2015).
- ⁸F. Romanelli, W. M. Tang, and R. B. White, "Anomalous thermal confinement in ohmically heated tokamaks," Nuclear fusion 26, 1515 (1986).
-
- 5° C. L. Rettig, T. L. Rhodes, J. N. Leboeuf, W. A. Peebles, E. J. Doyle, G. M.
- 6 Staebler, K. H. Burrell, and R. A. Moyer, "Search for the ion temperature gradient mode in a tokamak plasma and comparison with theoretical $_{78}$
- ⁸ predictions," Physics of Plasmas 8, 2232–2237 (2001).
- $10¹⁰$ J. E. Rice, M. J. Greenwald, Y. A. Podpaly, M. L. Reinke, P. H. Diamond,
- ¹⁰ J. W. Hughes, N. T. Howard, Y. Ma, I. Cziegler, B. P. Duval, P. C. Enn-
- ¹¹ ever, D. Ernst, C. L. Fiore, C. Gao, J. H. Irby, E. S. Marmar, M. Porkolab, ¹² N. Tsujii, and S. M. Wolfe, "Ohmic energy confinement saturation and core ¹³ toroidal rotation reversal in Alcator C-Mod plasmas," Physics of Plasmas ¹⁴ 19, 056106 (2012).
- 15 ¹¹C. Sung, A. White, N. Howard, C. Oi, J. Rice, C. Gao, P. Ennever, ¹⁶ M. Porkolab, F. Parra, D. Mikkelsen, D. Ernst, J. Walk, J. Hughes, J. Irby, ¹⁷ C. Kasten, A. Hubbard, M. Greenwald, and the Alcator C-Mod Team, ¹⁸ "Changes in core electron temperature fluctuations across the ohmic en-19 ergy confinement transition in Alcator C-Mod plasmas," Nucl. Fusion 53, ²⁰ 083010 (2013).
- 21 ¹²R. McDermott, C. Angioni, G. Conway, R. Dux, E. Fable, R. Fischer, $\frac{1}{2}$ T. Pütterich, F. Ryter, E. Viezzer, and the ASDEX Upgrade Team, "Core ²³ intrinsic rotation behaviour in ASDEX Upgrade ohmic L-mode plasmas," ²⁴ Nucl. Fusion 54, 043009 (2014).
- 25 ¹³C. Gao, J. Rice, H. Sun, M. Reinke, N. Howard, D. Mikkelson, A. Hub-²⁶ bard, M. Chilenski, J. Walk, J. Hughes, P. Ennever, M. Porkolab, A. White, ²⁷ C. Sung, L. Delgado-Aparicio, S. Baek, W. Rowan, M. Brookman, ²⁸ M. Greenwald, R. Granetz, S. Wolfe, E. Marmar, and The Alcator C-Mod ²⁹ Team, "Non-local heat transport in Alcator C-Mod ohmic L-mode plas-³⁰ mas," Nucl. Fusion 54, 083025 (2014).
- 31 ¹⁴ J. Bernardo, C. Fenzi, C. Bourdelle, Y. Camenen, H. Arnichand, J. P. S. ³² Bizarro, S. Cortes, X. Garbet, Z. O. Guimarães-Filho, T. Aniel, J.-F. Artaud, ³³ F. Clairet, P. Cottier, J. Gunn, P. Lotte, and the Tore Supra Team, "Density $\frac{1}{0.0}$ ³⁴ impact on toroidal rotation in Tore Supra: Experimental observations and ³⁵ theoretical investigation," Plasma Phys. Control. Fusion 57, 035002 (2015).
	- 36 ¹⁵ Y. Shi, J. Kwon, P. Diamond, W. Ko, M. Choi, S. Ko, S. Hahn, D. Na, ³⁷ J. Leem, J. Lee, S. Yang, K. Lee, M. Joung, J. Jeong, J. Yoo, W. Lee, J. Lee, ³⁸ Y. Bae, S. Lee, S. Yoon, K. Ida, and Y.-S. Na, "Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas," Nucl. Fusion 57, 066040 (2017).
	- ¹⁶ ⁴¹ D. Na, Y.-S. Na, C. Angioni, S. Yang, J. Kwon, H. Jhang, Y. Camenen, ⁴² S. Lee, Y. Shi, W. Ko, J. Lee, T. Hahm, and KSTAR Team, "A comprehen-⁴³ sive study on rotation reversal in KSTAR: Experimental observations and ⁴⁴ modelling," Nucl. Fusion 57, 126008 (2017).
	- 45 ¹⁷ J. A. Lee, W. Lee, J. M. Kwon, S. H. Ko, J. Leem, G. S. Yun, H. K. Park, ⁴⁶ Y. S. Park, K. W. Kim, and N. C. Luhmann Jr, "Observation of electron ⁴⁷ driven quasi-coherent modes and their connection with core intrinsic rota-⁴⁸ tion in KSTAR ECH and ohmic L-mode plasmas," Physics of Plasmas 25, ⁴⁹ 022513 (2018).
	- 50 ¹⁸N. Cao, J. Rice, P. Diamond, A. White, S. Baek, M. Chilenski, J. Hughes, ⁵¹ J. Irby, M. Reinke, P. Rodriguez-Fernandez, and the Alcator C-Mod Team, ⁵² "Hysteresis as a probe of turbulent bifurcation in intrinsic rotation reversals ⁵³ on Alcator C-Mod," Nucl. Fusion 59, 104001 (2019).
	- 54 ¹⁹ L. Lin, M. Porkolab, E. M. Edlund, J. C. Rost, M. Greenwald, N. Tsujii, ⁵⁵ J. Candy, R. E. Waltz, and D. R. Mikkelsen, "Studies of turbulence and ⁵⁶ transport in Alcator C-Mod ohmic plasmas with phase contrast imaging and ⁵⁷ comparisons with gyrokinetic simulations," Plasma Phys. Control. Fusion ⁵⁸ 51, 065006 (2009).
	- ²⁰ C. Angioni, R. M. McDermott, F. J. Casson, E. Fable, A. Bottino, R. Dux, ⁶⁰ R. Fischer, Y. Podoba, T. Pütterich, F. Ryter, and E. Viezzer, "Intrinsic ⁶¹ Toroidal Rotation, Density Peaking, and Turbulence Regimes in the Core ⁶² of Tokamak Plasmas," Phys. Rev. Lett. 107, 215003 (2011).
		- ²¹M. Porkolab, J. Dorris, P. Ennever, C. Fiore, M. Greenwald, A. Hubbard, Y. Ma, E. Marmar, Y. Podpaly, M. L. Reinke, J. E. Rice, J. C. Rost, N. Tsujii, D. Ernst, J. Candy, G. M. Staebler, and R. E. Waltz, "Transport and turbulence studies in the linear ohmic confinement regime in Alcator C-Mod," Plasma Phys. Control. Fusion 54, 124029 (2012).
	- 68 ²²P. Ennever, M. Porkolab, J. Candy, G. Staebler, M. L. Reinke, J. E. Rice, ⁶⁹ J. C. Rost, D. Ernst, C. Fiore, J. Hughes, J. Terry, and Alcator C-Mod ⁷⁰ Team, "The effects of dilution on turbulence and transport in C-Mod ohmic ⁷¹ plasmas and comparisons with gyrokinetic simulations," Phys. Plasmas 22, $072507(2015)$.
	- ²³ ⁷³ J. Citrin, H. Arnichand, J. Bernardo, C. Bourdelle, X. Garbet, F. Jenko, ⁷⁴ S. Hacquin, M. J. Pueschel, and R. Sabot, "Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes," ⁷⁶ Plasma Phys. Control. Fusion 59, 064010 (2017).
		- ²⁴W. X. Wang, B. A. Grierson, S. Ethier, J. Chen, E. Startsev, and P. H. Diamond, "Understanding and predicting profile structure and parametric scaling of intrinsic rotation," Physics of Plasmas 24, 092501 (2017).
- 1 ²⁵B. A. Grierson, W. X. Wang, S. Ethier, G. M. Staebler, D. J. Battaglia, 70
- 2 J. A. Boedo, J. S. DeGrassie, and W. M. Solomon, "Main-ion intrinsic 71
- 3 toroidal rotation profile driven by residual stress torque from ion tempera- 72 4 ture gradient turbulence in the DIII-D tokamak," Physical Review Letters 73 ⁵ 118, 015002 (2017).
- 6 26 B. A. Grierson, C. Chrystal, S. R. Haskey, W. X. Wang, T. L. Rhodes, G. R. 75
- ⁷ McKee, K. Barada, X. Yuan, M. F. F. Nave, A. Ashourvan, and C. Hol-
- 8 land, "Main-ion intrinsic toroidal rotation across the ITG/TEM boundary 77
- ⁹ in DIII-D discharges during ohmic and electron cyclotron heating," Physics ¹⁰ of Plasmas 26, 042304 (2019).
- ²⁷ I. Erofeev, E. Fable, C. Angioni, R. McDermott, and The ASDEX Up-80 12 grade Team, "Theory-based modeling of LOC–SOC transitions in ASDEX 81 ¹³ Upgrade," Nucl. Fusion 57, 126067 (2017).
- ²⁸ H. Arnichand, J. Citrin, S. Hacquin, R. Sabot, A. Krämer-Flecken, as ¹⁵ X. Garbet, C. Bourdelle, C. Bottereau, F. Clairet, J. C. Giacalone, Z. O.
- ¹⁶ Guimarães-Filho, R. Guirlet, G. Hornung, A. Lebschy, P. Lotte, P. Maget,
- ¹⁷ A. Medvedeva, D. Molina, V. Nikolaeva, D. Prisiazhniuk, the Tore Supra,
- 18 and the ASDEX Upgrade teams, "Identification of trapped electron modes 87
- 19 in frequency fluctuation spectra," Plasma Phys. Control. Fusion 58, 014037 88 $20 (2016)$.
- 21 ²⁹W. Hornsby, C. Angioni, Z. Lu, E. Fable, I. Erofeev, R. McDermott, 90 22 A. Medvedeva, A. Lebschy, A. Peeters, and The ASDEX Upgrade Team, 91
- ²³ "Global gyrokinetic simulations of intrinsic rotation in ASDEX Upgrade ²⁴ Ohmic L-mode plasmas," Nucl. Fusion 58, 056008 (2018).
- $30 B.$ Scott and J. Smirnov, "Energetic consistency and momentum conserva- 94
- ²⁶ tion in the gyrokinetic description of tokamak plasmas," Physics of Plasmas ²⁷ 17, 112302 (2010).
- ³¹ J. Abiteboul, X. Garbet, V. Grandgirard, S. J. Allfrey, P. Ghendrih, G. Latu, 97 29 Y. Sarazin, and A. Strugarek, "Conservation equations and calculation of 98 ³⁰ mean flows in gyrokinetics," Physics of Plasmas 18, 082503 (2011).
- 31 ³²Y. Idomura, "Accuracy of momentum transport calculations in full- f gy-too ³² rokinetic simulations," Comput. Sci. Disc. 5, 014018 (2012).
- 33 ³³M. Nakata and Y. Idomura, "Plasma size and collisionality scaling of ion-102 ³⁴ temperature-gradient-driven turbulence," Nucl. Fusion 53, 113039 (2013).
- 35 ³⁴G. Dif-Pradalier, G. Hornung, X. Garbet, P. Ghendrih, V. Grandgirard,104
- 36 G. Latu, and Y. Sarazin, "The E × B staircase of magnetised plasmas,"105 ³⁷ Nucl. Fusion 57, 066026 (2017).
- 38 ³⁵ Y. Idomura, M. Ida, T. Kano, N. Aiba, and S. Tokuda, "Conservative globahor ³⁹ gyrokinetic toroidal full-f five-dimensional Vlasov simulation," Computer ⁴⁰ Physics Communications 179, 391–403 (2008).
- ³⁶ Y. Idomura, H. Urano, N. Aiba, and S. Tokuda, "Study of ion turbulention ⁴² transport and profile formations using global gyrokinetic full- *f* Vlasov sim-
- 43 ulation," Nucl. Fusion 49 , 065029 (2009).
- ³⁷ Y. Idomura, "A new hybrid kinetic electron model for full-f gyrokinetians ⁴⁵ simulations," Journal of Computational Physics 313, 511–531 (2016).
- ³⁸ Y. Idomura, K. Obrejan, Y. Asahi, and M. Honda, "Dynamics of enhanced 15 ⁴⁷ neoclassical particle transport of tracer impurity ions in ion temperature
- 48 gradient driven turbulence," Physics of Plasmas 28, 012501 (2021).
- 49 ³⁹W. W. Lee, "Gyrokinetic particle simulation model," Journal of Computa-118 ⁵⁰ tional Physics 72, 243–269 (1987).
- 51 ⁴⁰ C. J. McDevitt, P. H. Diamond, Ö. D. Gürcan, and T. S. Hahm, "Toroidal 20 52 Rotation Driven by the Polarization Drift," Phys. Rev. Lett. 103, 205003121 ⁵³ (2009).
- 54 ⁴¹ Y. Camenen, Y. Idomura, S. Jolliet, and A. Peeters, "Consequences of pro-123 ⁵⁵ file shearing on toroidal momentum transport," Nucl. Fusion 51, 073039 56 (2011).
- 57 ⁴² Y. Asahi, V. Grandgirard, Y. Idomura, X. Garbet, G. Latu, Y. Sarazin, 26 ⁵⁸ G. Dif-Pradalier, P. Donnel, and C. Ehrlacher, "Benchmarking of flux-
- ⁵⁹ driven full-F gyrokinetic simulations," Phys. Plasmas 24, 102515 (2017). 60 ⁴³ S. Satake, Y. Idomura, H. Sugama, and T.-H. Watanabe, "Benchmark test29
- ⁶¹ of drift-kinetic and gyrokinetic codes through neoclassical transport simu-⁶² lations," Computer Physics Communications 181, 1069–1076 (2010).
- 63 ⁴⁴ S. Matsuoka, Y. Idomura, and S. Satake, "Neoclassical transport bench-132 ⁶⁴ mark of global full-f gyrokinetic simulation in stellarator configurations," ⁶⁵ Phys. Plasmas 25, 022510 (2018).
- ⁴⁵ Y. Idomura, "Full- *f* gyrokinetic simulation over a confinement time,"iss ⁶⁷ Physics of Plasmas 21, 022517 (2014).
- ⁴⁶ ⁶⁸ S. Jolliet and Y. Idomura, "Plasma size scaling of avalanche-like heat trans-
- ⁶⁹ port in tokamaks," Nucl. Fusion 52, 023026 (2012).
- ⁴⁷ Y. Idomura, T. Ina, Y. Ali, and T. Imamura, "Acceleration of Fusion Plasma ⁷¹ Turbulence Simulations using the Mixed-Precision Communication-⁷² Avoiding Krylov Method," in *SC20: International Conference for High* ⁷³ *Performance Computing, Networking, Storage and Analysis* (IEEE, Atlanta, GA, USA, 2020) pp. 1-13.
- ⁴⁸M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji, H. Yashiro, M. Aoki, N. Shida, I. Miyoshi, K. Hirai, A. Furuya, A. Asato, K. Morita, and T. Shimizu, "Co-Design for A64FX Manycore Processor ⁷⁸ and "Fugaku"," in *SC20: International Conference for High Performance* ⁷⁹ *Computing, Networking, Storage and Analysis* (IEEE, Atlanta, GA, USA, 2020) pp. 1-15.
- ⁴⁹ Y. Sarazin, J. Hillairet, J.-L. Duchateau, K. Gaudimont, R. Varennes, ⁸² X. Garbet, P. Ghendrih, R. Guirlet, B. Pégourié, and A. Torre, "Impact of scaling laws on tokamak reactor dimensioning," Nucl. Fusion 60, 016010 (2020) .
- 50 Y. Idomura and M. Nakata, "Plasma size and power scaling of ion temperature gradient driven turbulence," Physics of Plasmas 21, 020706 (2014).
- ⁵¹ Y. Idomura, "Isotope and plasma size scaling in ion temperature gradient driven turbulence," Physics of Plasmas 26, 120703 (2019).
- ⁵² J. W. Connor, J. B. Taylor, and H. R. Wilson, "Shear damping of drift waves in toroidal plasmas," Physical review letters 70, 1803 (1993).
- ⁵³ J. Y. Kim and M. Wakatani, "Radial structure of high-mode-number toroidal modes in general equilibrium profiles," Physical review letters 73, ⁹³ 2200 (1994).
	- ⁵⁴ R. E. Waltz, G. M. Staebler, and W. M. Solomon, "Gyrokinetic simulation ⁹⁵ of momentum transport with residual stress from diamagnetic level velocity shears," Physics of Plasmas 18, 042504 (2011).
- ⁵⁵ R. Buchholz, Y. Camenen, F. J. Casson, S. R. Grosshauser, W. A. Hornsby, P. Migliano, and A. G. Peeters, "Toroidal momentum transport in a toka-⁹⁹ mak due to profile shearing," Physics of Plasmas 21, 062304 (2014).
- ⁵⁶M. Mattioli, R. Giannella, R. Myrnas, C. Demichelis, B. Denne-Hinnov, ¹⁰¹ T. D. De Wit, and G. Magyar, "Laser blow-off injected impurity particle confinement times in JET and Tore Supra," Nuclear Fusion 35, 1115 (1995).
- 57 A. Peeters, C. Angioni, A. Bortolon, Y. Camenen, F. Casson, B. Duval, L. Fiederspiel, W. Hornsby, Y. Idomura, T. Hein, N. Kluy, P. Mantica, ¹⁰⁵ F. Parra, A. Snodin, G. Szepesi, D. Strintzi, T. Tala, G. Tardini, P. de Vries, ¹⁰⁶ and J. Weiland, "Overview of toroidal momentum transport," Nucl. Fusion 51, 094027 (2011).
- ⁵⁸ P. Diamond, Y. Kosuga, Ö. Gürcan, C. McDevitt, T. Hahm, N. Fedorczak, ¹⁰⁹ J. Rice, W. Wang, S. Ku, J. Kwon, G. Dif-Pradalier, J. Abiteboul, L. Wang, W. Ko, Y. Shi, K. Ida, W. Solomon, H. Jhang, S. Kim, S. Yi, S. Ko, Y. Sarazin, R. Singh, and C. Chang, "An overview of intrinsic torque and 112 momentum transport bifurcations in toroidal plasmas," Nucl. Fusion 53, 104019 (2013).
- ⁵⁹ Y. Camenen, A. G. Peeters, C. Angioni, F. J. Casson, W. A. Hornsby, A. P. Snodin, and D. Strintzi, "Transport of Parallel Momentum Induced by Current-Symmetry Breaking in Toroidal Plasmas," Phys. Rev. Lett. 102, ¹¹⁷ 125001 (2009).
- $60R$. R. Dominguez and G. M. Staebler, "Anomalous momentum transport ¹¹⁹ from drift wave turbulence," Physics of Fluids B: Plasma Physics 5, 3876– 3886 (1993).
- 61 Ö. Gürcan, P. H. Diamond, and T. S. Hahm, "Spatial and spectral evolution ¹²² of turbulence," Physics of plasmas 14, 055902 (2007).
- 62 Ö. D. Gürcan, P. H. Diamond, P. Hennequin, C. J. McDevitt, X. Garbet, and C. Bourdelle, "Residual parallel Reynolds stress due to turbulence intensity ¹²⁵ gradient in tokamak plasmas," Physics of Plasmas 17, 112309 (2010).
	- 63 J. Y. Kim, Y. Kishimoto, M. Wakatani, and T. Tajima, "Poloidal shear flow effect on toroidal ion temperature gradient mode: A theory and simulation," Physics of Plasmas 3, 3689–3695 (1996).
- ⁶⁴ Y. Kishimoto, J.-Y. Kim, W. Horton, T. Tajima, M. J. LeBrun, and H. Shirai, "Toroidal mode structure in weak and reversed magnetic shear plasmas ¹³¹ and its role in the internal transport barrier," Plasma Phys. Control. Fusion 41, A663-A678 (1999).
- ⁶⁵ R. E. Waltz, R. L. Dewar, and X. Garbet, "Theory and simulation of rota-¹³⁴ tional shear stabilization of turbulence," Physics of Plasmas 5, 1784–1792 (1998) .
- 136 ⁶⁶X. Garbet, N. Dubuit, E. Asp, Y. Sarazin, C. Bourdelle, P. Ghendrih, and G. T. Hoang, "Turbulent fluxes and entropy production rate," Physics of ¹³⁸ Plasmas 12, 082511 (2005).
- 10^{-67} S. Hirshman and D. Sigmar, "Neoclassical transport of impurities in toka-² mak plasmas," Nucl. Fusion 21, 1079–1201 (1981).
- 3 68M. Kikuchi, M. Azumi, S. Tsuji, K. Tani, and H. Kubo, "Bootstrap current 10
-
- 4 during perpendicular neutral injection in JT-60," Nucl. Fusion $30, 343-355$ 11
5 (1990). $(1990).$
- 6⁶⁹ R. Varennes, X. Garbet, L. Vermare, Y. Sarazin, G. Dif-Pradalier, V. Grand-13
7 girard, P. Ghendrih, P. Donnel, M. Peret, K. Obrejan, and E. Bourne, "Syn
	- girard, P. Ghendrih, P. Donnel, M. Peret, K. Obrejan, and E. Bourne, "Syn-

ergy of Turbulent Momentum Drive and Magnetic Braking," Phys. Rev. ⁹ Lett. 128, 255002 (2022).

⁷⁰ C. Fenzi, X. Garbet, E. Trier, P. Hennequin, C. Bourdelle, T. Aniel, ¹¹ G. Colledani, P. Devynck, C. Gil, and Ö. Gürcan, "On plasma rotation ¹² with toroidal magnetic field ripple and no external momentum input," Nuclear Fusion 51, 103038 (2011).