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Full-f gyrokinetic simulations of Ohmic L-mode plasmas in linear and saturated Ohmic confinement regimes

intrinsic rotation profiles in the DIII-D experiment were reproduced based on the balance between the diffusive momentum flux and the residual stress computed using nonlinear global δ f gyrokinetic simulations with zero rotation. Here, the momentum diffusivity is estimated using the heat diffusivity and a given Prandtl number, and the turbulent residual stress was correlated with the shear of turbulent zonal flows and the turbulent intensity gradient. In Ref. 29, intrinsic rotation profiles in the AUG experiment were analyzed using nonlinear global δ f gyrokinetic simulations, where rotation and density profiles are evolved, and it was shown that intrinsic flow gradients at experimental levels were formed mainly by the profile shear stress. Therefore, theoretical understanding of momentum transport is not converged, and further global simulations are needed. Finally, in spite of the development of gyrokinetic modeling and theory, any single model cannot capture all aspects of the above complicated physics in the LOC-SOC transition in a self-consistent manner.

To address this challenging issue, we need global full-f gyrokinetic models, which compute both plasma turbulence and plasma profiles in a self-consistent manner including multiple transport channels induced by collisional and turbulent transport. This capability enables us to study the following effects, which are important for understanding transport physics in the LOC-SOC transition. Firstly, the formation of intrinsic rotation is directly computed under the strict toroidal angular momentum conservation [30][31][32] , in which in addition to the turbulent Reynolds stress, other mechanisms such as the neoclassical Reynolds stress, the toroidal field stress, and the J × B torque make significant contributions. Also, various symmetry breaking mechanisms such as the shear of the radial electric field E r and zonal flows, the profile shear, and the turbulent intensity gradient are involved consistently, and their relative importance can be examined. Secondly, E r is determined self-consistently, and the resulting effects such as the Doppler shift of turbulent spectra, turbulence suppression by the E r shear, and the residual stress induced by E r and E r shear are analyzed in a straightforward manner. Thirdly, selfconsistent interaction of multiple transport channels gives the following effects. The collisional ion-electron coupling determine the ion heating condition in Ohmic L-mode plasmas.

Particle fluxes of electrons and multi-species ions satisfy the ambipolar condition, which is important in analyzing impurity transport at a non-tracer level. Particle and momentum transport channels are coupled through the toroidal angular momentum conservation. It is noted that in general, global δ f gyrokinetic models or gradient driven simulations involve artificial source/sink terms everywhere in a plasma to fix plasma profiles, and neoclassical physics is excluded. Therefore, important conservation properties such as the toroidal angular momentum conservation and the ambipolar condition are not guaranteed or at least modified, which make study of the above effects difficult. In addition, former works on comparisons of flux driven global full-f gyrokinetic simulations and gradient driven global δ f gyrokinetic simulations showed significantly different properties in avalanche like nonlocal transport, zonal flows, and staircase structures 33,34 . These motivate us to address the LOC-SOC transition via flux driven global FIG. 1. Evolution of stored thermal energy W th , line averaged density n, and effective charge number Z e f f in Tore Supra ohmic L-mode discharge 48102. t 1 ∼ 3.1s is in a LOC phase, and t 2 ∼ 6.1s is in a SOC phase. Reproduced with permission from Plasma Phys. Control. Fusion 59, 064010 (2017) 23 . Copyright 2017 IOP Publishing.

full-f gyrokinetic simulations.

59

In this study, we address the LOC-SOC transition on Tore Numerical experiments are conducted using GT5D, which computes electrostatic ion scale turbulence driven by ITG and TEM. In the gyro-center coordinates, Z = (t; R, v , µ, α), a conservative form of the electrostatic gyrokinetic equation is commonly used for all particle species including electron,

∂ J s f s ∂t + ∇ • (J s Ṙ f s ) + ∂ ∂ v (J s v f s ) = J s ∑ s C( f s , f s ) + J s S src,s + J s S snk,s , (1) 
Ṙ = v b + v E + v D , (2) 
v E = c q s B * b× (q s ∇ φ α ) , (3) 
v D = c q s B * b× m s v 2 b•∇b + µ∇B , (4) 
v = - B * m s B * • (q s ∇ φ α + µ∇B) (5) 
where f s denotes the guiding-center distribution function, operator is defined as

J s = m 2 s B * is
• α ≡ •dα/2π.

28

The electrostatic potential is determined using the hybrid 29 kinetic electron model 37 , where the gyrokinetic Poisson equa-30 tion is modified as 

31 -∑ s ∇ ⊥ • ρ 2 ts λ 2 Ds ∇ ⊥ φ n =0 + α p λ 2 De φ n =0 = 4π ∑ s =e q s f s,n =0 δ ([R + ρ] -x)d 6 Z +q e f e,t,n =0 δ ([R + ρ] -x)d 6 Z , (6) 
-∑ s ∇ ⊥ • ρ 2 ts λ 2 Ds ∇ ⊥ φ n=0 = 4π ∑ s q s f s,n=0 δ ([R + ρ] -x)d 6 Z. (7 
-∑ s ρ 2 ts λ 2 Ds ∂ E r ∂t = 4π ∑ s q s f s ( Ṙ • ∇r) -S src,s -S snk,s g f ,( 8 
)
where E r is the radial electric field and the gyro/flux-surface average operator is defined as,

29 A g f = A(Z)δ (R + ρ -x)d 6 Z f , (9) 
and • f is the flux-surface average operator. From the gyrokinetic equation and the Hamilton's equation for the canonical 31 toroidal angular momentum, the toroidal angular momentum 32 balance 32 is given as

33 ∂ m s v b ϕ f s ∂t g f + 1 J ∂ ∂ R • J Ṙm s v b ϕ f s g f - q s c f s Ṙ • ∇ψ g f + f s ∂ φ α ∂ ϕ g f -m s v b ϕ ∑ s C( f s , f s ) g f -m s v b ϕ (S src,s + S snk,s ) g f = 0, ( 10 
)
where ψ is the poloidal flux, ϕ is the toroidal angle, and b ϕ is the covariant toroidal component of b. Here, the first term is 35 the inertial term, the second term is the stress term, the third 36 term is the radial current term, the fourth term is the toroidal 37 field stress term, the fifth term is the collision term, and the sixth term is the source term. In the stress term, Ṙ involve Here, B is the toroidal magnetic field, R 0 and a are the major 65 and minor radii, r is the radial coordinate, q is the safety fac-66 tor, P joule is the ohmic heating power, ν * e ≡ qR 0 /(ε 3/2 v te τ e,D ) 67 is the normalized electron collisionality, ε = r/R 0 , τ s,s is the Therefore, the edge rotation velocity is given by an approximate average value over the LOC-SOC transition. By using the same initial rotation profiles and boundary conditions, we compare the formation of intrinsic rotation between the LOC and SOC phases.

According to transport analysis, the radial deposition profiles of the ohmic heating and the radiation loss are given as 

ν snk2,s A snk2,s (r)( f s,n=0 -f 0s )
, where ν snk2,s = 0.01v 0 /a and A snk1,s is distributed over r/a 0 > 0.8 following the radiation loss profile in Fig. 3. The latter model modifies only an axisymmetric part, and a turbulent part is not affected. In addition, the sink parameter is chosen so that ν snk2,s is sufficiently smaller than the linear growth rates of TEM and ITG, while the sink effect is large enough to avoid deviations of density and temperature profiles from the experimental ones by accumulation of particles and energy induced by plasma transport.

These features are important as a sink model distributed over turbulent regions. It is noted that this model also works as a particle source in the outer radii. However, ν snk2,s is too weak to fix rotation profiles to the initial condition, and rotation profiles freely evolve in this region.

In the numerical experiment, in order to save the com- putational cost, the plasma size is scaled by a half, and 59 a 1/6 wedge of the torus is computed using 5D grids is U C a/v 0 ∼ 0.085) is in a similar range as the experiment (U C averaged over r/a = 0.3 ∼ 0.9 is U C a/v 0 ∼ 0.081). In the SOC phase, the negative rotation gradient around the mid radius (U C averaged over r/a = 0.4 ∼ 0.6 is U C a/v 0 ∼ -0.13) is still weaker than the experiment (U C averaged over r/a = 0.6 ∼ 0.7 is U C a/v 0 ∼ -0.23), and the position of negative rotation gradient is shifted from r/a ∼ 0.65 to r/a ∼ 0.5. Both in the LOC and SOC phases, the rotation gradients in the plasma core are opposite from the experiment, which may be attributed to the sawtooth activity inside the sawtooth inversion radius (r/a ∼ 0.25) 14 .

60 (N R , N ζ , N Z , N v , N v⊥ ) = (
In order to understand these intrinsic rotation profiles, the toroidal angular momentum balance (10) is analyzed. In Fig. 13, the toroidal angular momentum balance is dominated by the radial current term and the toroidal field stress term, and the origin of the inertial term is not clearly seen. It is noted that the balance between the radial current term and the into the gyrokinetic equation part,

∂ m s v b ϕ f s ∂t g f + m s v b ϕ J ∂ ∂ Z • J Ż f s g f -m s v b ϕ ∑ s C( f s , f s ) g f -m s v b ϕ (S src,s + S snk,s ) g f = 0, (11) 
and the Hamilton's equation part,

f s J ∂ ∂ Z • J Żm s v b ϕ g f - q s c f s Ṙ • ∇ψ g f + f s ∂ φ α ∂ ϕ g f = 0, (12) 
following the derivation in Ref.32. Figure 14 shows the gyrokinetic equation part of the toroidal angular momentum balance, in which the inertial term is determined by the partial stress term, the collision term, and the source term. Except for the outer radii, where the source term becomes large, the inertial term is mainly correlated with the partial stress term, which is determined by plasma turbulence, while the collisional momentum exchange between D and C is nonnegligible in the LOC phase. Therefore, we further investigate properties of turbulent momentum transport based on the mechanisms reviewed in Refs.57 and 58. It is noted that the source term develops in the opposite direction in the outer radii. In the numerical experiment, the momentum source is given by the Krook type sink models, S snk,s1 and S snk,s2 , in which the sign of momentum source is determined in a passive manner by turbulent momentum transport. Therefore, turbulent momentum transport leads to the opposite net torque input between the LOC and SOC phases.

In the framework of local turbulence theory, the momentum flux Π s may be decomposed as

Π s = n s m s R 0 -χ ϕ,s R 0 Ω ϕ,s +V ϕ,s R 0 Ω ϕ,s +C s , (13) 
where Ω ϕ,s is the toroidal angular frequency, Ω ϕ,s =

∂ Ω ϕ,s /∂ r, χ ϕ,s is the momentum diffusion coefficient, V ϕ,s is the pinch velocity, and C s is the residual stress including The normalized profile shear stress is given as

41 51 R 0 C ρ * ,s v ts χ ϕ,s = - ŝθ 0 2|q|k θ ρ ts R 0 L n,s + 4 - 1 ( √ 2qk θ ρ ts ) 2 , ( 14 
)
where θ 0 is the ballooning angle, ŝ is the magnetic shear, k θ 52 is the poloidal wavenumber, and L n,s = |n s /∇n s | is the den-53 sity gradient scale length. Here, the mode asymmetry θ 0 and 54 the corresponding linear growth rate γ are given by the higher 55 order ballooning theory 52,53 as,

56 θ 0 = -sign ŝω r ω r 2k θ γ 0 ŝ 1/3 , ( 15 
)
γ = γ 0 cos(θ 0 ), (16) 
where γ 0 is the linear growth rate without mode asymmetry, discussed the profile shear stress without E r , the higher order 1 ballooning theory can be naturally extended including the E r 2 shear [START_REF] Kim | Poloidal shear flow 126 effect on toroidal ion temperature gradient mode: A theory and simulation[END_REF][START_REF] Kishimoto | Toroidal mode structure in weak and reversed magnetic shear plasmas 130 and its role in the internal transport barrier[END_REF] . Therefore, the profile shear stress involves the E r 3 shear stress, when the mode asymmetry is affect also by E r . In The plasma profiles are given by the simulation data in Fig. 8. In estimating the profile shear stress, k θ ρ D = 0.35 is assumed, and θ 0 is given by θ max in Fig. 15(c).

which E r at the outer radii becomes similar but the E r shear 15 differ by two times (see Fig. 16(a)). In Fig. 16,(b and become the same sign as in the numerical experiment.

28

Here, case 1 and case 2 give almost the same frequencies, be-29 cause they have similar E r . In Fig. 16(e), the changes of θ 0 are 30 similar between case 1 and case 2, while the theory predicts

31 θ 0 ∝ ω 1/3 r
. This result suggests that θ 0 is determined not only 32 by the E r shear but also by E r itself. This feature was ob-33 served also in Refs.45 and 64. Accordingly, in Fig. 16(d), the 34 stabilization effect due to E r becomes similar between case 1 and case 2. Another important finding is that TEM in the LOC phase shows much smaller change of θ 0 than ITG in the SOC phase. This may be attributed to the higher linear growth rate and the narrower mode width of TEM in the LOC phase. In Fig. 16(f), TEM in the LOC phase and ITG in the SOC phase respectively show slightly negative θ max and positive θ max at the negative E r , which is consistent with the numerical experiment (see Fig. 15(c)). In Fig. 16(b), the resulting momentum transport at the negative E r becomes outward and inward in the LOC and SOC phases, respectively.

In Fig. 17 Finally, we compare the relative magnitude of the profile shear stress against the Coriolis pinch given as [START_REF] Peeters | Overview of toroidal momentum transport[END_REF] ,

R 2 0 V ϕ,s Ω s v ts χ ϕ,s = - 4T s T e - R 0 L n R 0 Ω s v ts . ( 17 
)
Figure 18 (see Fig. 3), and a source free region does not exist. Therefore, where

Γ s ≡ f s (v D + v E ) • ∇rd 3 v f is the particle flux 64 
density. In Ref.23, the power balance analysis at r/a = 65 0.37 gave the ion and electron heat fluxes of (q i , q e ) = 66 (4.5 ± 1.0kWm -2 , 6.7 ± 1.0kWm -2 ) and (q i , q e ) = (14.0 ± 67 3.0kWm -2 , -1.0 ± 3.0kWm -2 ) in the LOC and SOC phases,

68
respectively. However, in the LOC phase shown in Fig. 20(a),

69

the ion heat fluxes q D + q C exceeds q e at r/a = 0.37. In the 

E r = - 1 A 21 + A 22 + A 23 |∇ψ| F BU D f -A 21 T e q e ∂ ln p e ∂ r -A 22 T D q D ∂ ln p D ∂ r -A 23 T C q C ∂ ln p C ∂ r +A 24 T e q e ∂ ln T e ∂ r + A 25 T D q D ∂ ln T D ∂ r + A 26 T C q C ∂ ln T C ∂ r ,( 18 
)
where F is the toroidal flux, p s = n s T s and A i j is given by 

X =        B • U e B • U D B • U C 2 B • q e /(5p e ) 2 B • q D /(5p D ) 2 B • q C /(5p C )        , V =        V 1e V 1D V 1C V 2e V 2D V 2C        , ( B4 
)
where the thermodynamic force is given as 
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  FIG. 2. (a) electron density, (b) electron temperature, (c) ion temperature, and (d) toroidal rotation profiles of carbon impurity ions at five time slices in Tore Supra ohmic L-mode discharge 48102. Reproduced with permission from Plasma Phys. Control. Fusion 57, 035002 (2015) 14 . Copyright 2015 IOP Publishing.

  the Jacobian of the gyro-center coordinates, C( f s , f s ) is a multi-species Coulomb collision operator 38 , 16 S src,s and S snk,s are respectively the source and sink terms, R is 17 the position of the guiding center, v is the velocity of the guid-18 ing center, v = b • v and v ⊥ = |b × v| are respectively the ve-19 locities in the parallel and perpendicular directions to the mag-20 netic field, µ = m s v 2 ⊥ /2B is the magnetic moment, α is the 21 gyro-phase angle, B = Bb is the magnetic field, b is the unit 22 vector in the parallel direction, m s and q s are respectively the 23 mass and charge of the particle species s, c is the velocity of 24 light, Ω s = q s B/m s c is the cyclotron frequency, B * = b•B * is a 25 parallel component of B * = B + (Bv /Ω s )∇×b, φ is the elec-26 trostatic potential of turbulent fields, and the gyro-averaging 27

  ) computed by Eq. (1), and in Eq. (6), its trapped part f e,t is 13 extracted following a trapped-passing boundary at each posi-14 tion. The latter is solved using full kinetic electrons to satisfy 15 the ambipolar condition, while φ n=0,m =0 convective cells are 16 filtered out from the solution to avoid the Ω H mode, where m 17 is the poloidal mode number. In the l.h.s., a linear polariza-18 tion density with a long wavelength approximation, k 2 ⊥ ρ 2 ts 1 19 is considered, which is valid for ion scale turbulence. The 20 gyrokinetic Poisson operators including the ion polarization 21 density and the adiabatic passing electron density are defined 22 using the initial density and temperature. 23 The above full-f gyrokinetic model yields the following 24 two balance relations. By taking the time derivative and the 25 flux-surface average of Eq. (7) and substituting Eq. (1), the 26 ambipolar condition is derived as 27

39FIG. 3 . 58 a 63 T

 35863 FIG. 3. Radial profiles of the ohmic heating and the radiation loss at t = 3.1.
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 64 
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 68 time between the species s and s , and ρ * = ρ tD /a. 69 Numerical experiments are conducted for 0 ≤ r ≤ a 0 to 70 avoid extremely low temperature below 100 eV, where a 0 = 71 0.9a. The boundary conditions of density, rotation, and tem-72 perature are given based on the experimental values at r = a 0 , 73 where rotation and temperature are assumed to be the same 74 between D and C. In the initial condition, density and tem-75 perature profiles are given by the experimental data, while 76 rotation profiles are set as rigid rotation with the edge rota-77 tion velocity, which is determined mainly by the neoclassical 78 toroidal viscosity induced by the toroidal ripple, and is almost unchanged through the LOC-SOC transition (see Fig.2(d)).

Fig. 3 ,

 3 Fig.3, where the radiation loss makes a dominant contribution to the energy loss (∼ 75% and ∼ 50% in the LOC and SOC phases, respectively). In this work, the time scale of numerical experiment ∼ 10ms is significantly shorter than the time scales of the current diffusion and the particle confinement. Therefore, we do not compute the inductive toroidal electric field, and the resulting ohmic heating and Ware pinch. The ohmic heating is simply modelled as an on-axis electron heating without particle and momentum inputs using a fixed heat source model, S src,s = ν src,s A src,s (r)( f M1f M2 ), where A src,s is the deposition profile, f M1 , f M2 are local Maxwellian distributions with different temperatures, and the heating rate ν src,s is determined to satisfy the target power input P in . As the electron collision time is sufficiently small τ ee ∼ 10R 0 /v 0 , velocity space perturbations due to the source term is expected to be quickly thermalized, leading to velocity distribution functions relevant for ohmic heating plasmas.The sink model is somewhat complicated. The heat sink is given by the radiation loss for r/a > 0.7 or r/a 0 > 0.8. The edge rotation velocity is fixed by the momentum sink due to the neoclassical toroidal viscosity induced by the toroidal ripple. However, the momentum and particle sink due to neutral particles is uncertain, because the detailed distribution of neutral particles was not obtained. In order to model these properties, we implement two sink models. One is a Krook type sink operator S snk1,s = ν snk1,s A snk1,s (r)( f sf 0s ), which gives an effective boundary condition by keeping plasma parameters at the boundary on average. Here, f 0s is the initial distribution function, the sink rate is given as ν snk1,s = 0.1v 0 /a, the reference velocity v 0 is given by the thermal velocity of D ions at 1keV, and the deposition profile A snk1,s is localized for r/a 0 > 0.95. It is noted that the above sink rate is chosen based on the sensitivity study in Ref. 45. Another is an axisymmetric variant of the Krook type sink operator S snk2,s =

FIG. 4 .

 4 FIG. 4. (a) frequency ω and (b) growth rate γ of TEM and ITG at each time slice in the cases with (n, ρ * , ν * e ) = (50, ρ * 0 , ν * e0 ), (25, 2ρ * 0 , ν * e0 ), and (25, 2ρ * 0 , ν * e0 /2). ω < 0 is the direction of the electron diamagnetic rotation.

  FIG. 6. (a) time history of the stored energy W t and temperature profiles at tv 0 /R = 800 in (b) LOC and (c) SOC phases in the cases with (ρ * , P in ) = (2ρ * 0 , P 0 /2) and (2ρ * 0 , P 0 ), respectively. In (b) and (c), the temperature is normalized by T 0 = 1keV and dashed and dotted black curves show the initial condition given by the experimental data.

FIG. 13 .

 13 FIG. 13. The toroidal angular momentum balance, Eq. (10), is plotted for (a), (c) D and (b), (d) C. (a), (b) and (c), (d) respectively show the numerical experiments in the LOC and SOC phases.The radial profiles of the inertial term (trq, the first term), the stress term (str, the second term), the radial current term (cur, the third term), the toroidal field stress term (fld, the fourth term), the collision term (col, the fifth term), the source term (src, the sixth term), and the remaining error (err) are averaged over tv 0 /R = 0 ∼ 1000.

  various symmetry breaking effects. Here, the residual stress 26 comes mainly from the plasma shaping effect C PS[START_REF] Camenen | Transport of Parallel Momentum Induced by 115 Current-Symmetry Breaking in Toroidal Plasmas[END_REF] , the pro-27 file shear C ρ * 41 , the E r shear C E 60,61 , and the turbulence in-28 tensity gradient C I 62 . The symmetry breaking due to plasma 29 shaping does not exist in the current circular concentric toka-30 mak configuration. In Fig.15(a), the radial electric field E r 31 has negative shear on average, and the momentum transport 32 due to the E r shear stress C E ∝ -dE r /dr is expected to be 33 outward both in the LOC and SOC phases. In Fig.15(b), the 34 turbulent intensity I = |eφ /T 0 | 2 shows similar profiles, which 35 have flat profiles for r/a = 0.3 ∼ 0.6 and negative gradients 36 for r/a > 0.6, and the momentum transport induced by the tur-37 bulent intensity shear stress C I ∝ dI/dr seems to be similar be-38 tween the LOC and SOC phases. It is noted that the turbulent 39 intensity normalized by T 0 becomes smaller in the edge, where 40 temperature becomes lower. However, |eφ /T e | and |δ n e /n e | 41 increases towards the edge. Finally, in Fig.15(c), an approx-42 imate ballooning angle θ max , which is given by the poloidal 43 angle at the maximum turbulent intensity within each mag-44 netic surface, shows qualitative difference between the LOC 45 and SOC phases. In the outer radii, θ max in the LOC phase 46 is slightly negative, while θ max in the SOC phase is positive. 47 The sign relation of the profile shear stress C ρ * ∝ -θ 0 ∼ θ max 48 is consistent with the change of intrinsic rotation between the 49 LOC and SOC phases.

  50

57 ω

 57 FIG. 16. Linear calculations of n = 25 modes of TEM in the LOC phase and ITG in the SOC phase with externally imposed positive and negative E r . (a) shows the radial profiles of E r used in case 1 and case 2. (b) shows the volume averaged quasilinear flux ratio between turbulent heat and momentum transport. The heat and momentum fluxes are respectively normalized by q GB = χ GB n 0 T 0 /a and Π GB = χ GB n 0 v 0 /a, where χ GB = (v 3 0 /Ω 2 D )/a. (c) and (d)show the frequency and the growth rate, respectively. (e) and (f) shows the ballooning angle θ 0 , which is defined at the minimum radial wavenumber k r , and an approximate ballooning angle, which is given at the maximum amplitude of φ , respectively.

48

  FIG. 17. (a) shows the weighted turbulence frequency ω and the Doppler shift due to E × B rotation ω E of n = 24 modes at each radius. (b) shows of the frequency of n = 24 modes corrected by subtracting the Doppler shift, ωω E . The frequency spectra are obtained from the time series data for tv 0 /R = 600 ∼ 1000.

  ) the vol-16 ume averaged quasi-linear flux ratio between turbulent heat 17 and momentum transport, (c) the frequency, (d) the growth 18 rate, (e) the ballooning angle θ 0 defined by the poloidal angle 19 at the minimum radial wavenumber k r , and (f) the approxi-20 mate ballooning angle θ max defined by the poloidal angle at 21 the maximum amplitude of φ are shown for case 1 and case 22 2 with negative and positive E r . It is noted that linear cal-23 culations with E r show oscillatory linear growth, which is a 24 typical feature of the so-called Floquet balloning mode 65 , and 25 the above results are time averaged. In Fig.16(c), the frequen-26 cies of both TEM and ITG are affected by the Doppler shift,

  27

  (a), the weighted turbulence frequency ω(r, n) = ∑ ω ω| φn,ω | 2 / ∑ ω | φn,ω | 2 of n = 24 mode at each radius is in the electron diamagnetic direction over the whole radii, where φn,ω is the Fourier component of φ at θ = 0 with respect to the toroidal mode number n and the frequency ω. However, if one corrects the frequency by subtracting the Doppler shift of poloidal E × B rotation due to the radial electric field ω E = k θ v Eθ , the LOC and SOC phases show qualitatively different properties, where v Eθ = v E • ∇θ /|∇θ | f . The SOC phase is characterized by the positive frequency or ITG over the whole radii. On the other hand, the LOC phase shows ITG only in the plasma core, and the outer radii are characterized by the negative frequency or TEM. These results show that the different features of the mode asymmetry between TEM in the LOC phase and ITG in the SOC phase, which depend not only on the profile shear and the E r shear but also on E r itself, are key physics in understanding the change of intrinsic rotation during the LOC-SOC transition.

  Figure 18 shows (a) the normalized profile shear stress and (b) the normalized Coriolis pinch, where the plasma profiles are given by the simulation data in Fig.8. In estimating the profile shear stress, k θ ρ tD = 0.35 is assumed and the mode asymmetry is given by θ max in Fig.15(c). The Coriolis pinch is outward both in the LOC and SOC phases, and is negligible for the intrinsic rotation with the low Mach number. The negligible impact of the Coriolis pinch was also shown in Ref. 20.

52 61 captured in the current numerical experiments. 62 Figure

 6162 Figure20shows the heat flux density q s = Qs -5/2T s Γ s ,
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  FIG. 21. Spatio-temporal evolution of the electron energy flux in (a) LOC and (b) SOC phases.

  (a), 6 both in the LOC and SOC phases, the Doppler shift is in the 7 electron diamagnetic direction, v Eθ < 0, and the frequencies 8 of TEM and ITG are shifted in the electron diamagnetic di-9 rection. On the other hand, the phase velocity of TEM and 10 ITG are in the electron diamagnetic direction, v ph < 0, and 11 in the ion diamagnetic direction, v ph > 0, respectively. In 12 addition, the magnitude of v Eθ becomes larger in the LOC 13 phase. Therefore, the frequency gap becomes larger in the 14 LOC phase. Because of these two features, the n spectra in 15 the LOC phase split to form the QCMs. It is noted that in 16 Ref.23, the former effect was shown, while the latter effect 17 was not taken into account, because the simulation was con-18 ducted using a local δ f gyrokinetic model without E r . 19 In Fig.24, E r observed in the numerical experiment is com-20 pared against the neoclassical theory. By substituting the D 21 parallel flow U D , the density n s , and the temperature T s from 22 GT5D for the D component of the parallel momentum balance 23 (B7), E r is written as 24
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  FIG. 25. Radial profiles of (a),(d) the density, (b),(e) the parallel flow, and (c),(f) the temperature averaged over tv 0 /R = 900 ∼ 1000. (a)-(c) and (d)-(f) respectively show the numerical experiments in the LOC and SOC phases. Solid and dashed curves respectively show the results with the 1/6 and 1/3 wedge torus models, and dotted curves show the initial profiles.
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 27 Figure27shows a comparison of parallel currents between

  inverting Eq.(B3) as 13 X = A V , (B7) and substituting φ , n s , and T s from GT5D, one can estimate 14 parallel flows for each species, where A = [L -M] -1 • M.
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  Also, the bootstrap current is estimated as B • J = ∑ s q s n s B • 16 U s . The benchmark result shows good quantitative agree-17 ments, indicating that GT5D can correctly compute the differ-18 ence of ion parallel flows in multi-species plasmas. In the cur-19 rent benchmark case involving a high fraction of C impurity 20 ions, the C rotation develops in the counter-current direction 21 with respect to D rotation. 22 1 ITER Physics Expert Groups on Confinement and Transport and Confine-23 ment Modelling and Database, I. P. B. Editors, and I. EDA, "Chapter 2: 24 Plasma confinement and transport," Nucl. Fusion 39, 2175-2249 (1999). 25 2 J. Rice, J. Citrin, N. Cao, P. Diamond, M. Greenwald, and B. Grierson, 26 "Understanding LOC/SOC phenomenology in tokamaks," Nucl. Fusion 60, 27 105001 (2020).
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