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Numerical modeling of wave propagation in anisotropic visco-elastic
laminated materials in transient regime. Application to modeling ultrasonic

testing of composite structures

Alexandre Imperialea,∗, Nicolas Leymariea, Edouard Demaldenta

aCEA LIST, Department of Non-Destructive Testing
91191 Gif-sur-Yvette, France

Abstract

Composite laminate structures remain an important family of materials used in cutting-edge industrial
areas. Building efficient numerical modeling tools for high-frequency wave propagation in order to represent
ultrasonic testing experiments of these materials remains a major challenge. In particular, incorporating
attenuation phenomena within anisotropic plies, and thin intermediate isotropic layers between the plies
often represent significant obstacles for standard numerical approaches. In our work, we address both
issues by proposing a systematic study of the fully discrete propagators associated to the Kelvin-Voigt,
Maxwell and Zener models, and by incorporating effective transmission conditions between plies using the
mortar element method. We illustrate the soundness of our approach by proposing intermediate 1D and
2D numerical evidence, and we apply it to a more realistic configuration of a curved laminate composite
structure in a 3D setting.

Keywords: visco-elasticity; time integration, explicit; finite element methods; acoustics;

1. Introduction

Ultrasonic Testing (UT) is one of the most popular Non-Destructive Evaluation (NDE) technique used
to control industrial components subjected to safety requirements. It has become a major asset in numer-
ous advanced industrial fields, such as nuclear energy industry, petrochemical industry or aeronautics. The
principle of traditional UT methods [1] is to use high-frequency acoustic and elastic waves to conduct exami-
nations and make measurements without affecting the structure integrity. Since the industrial materials and
structures are reaching high levels of complexity, the associated ultrasonic NDE technologies and diagnosis
methods require up-to-date modeling tools. As a consequence, simulation of UT configurations has been
identified as a task of paramount importance [2, 3], typically for experimental data analysis [4, 5] or eval-
uation of control processes [6, 7]. In most practical cases, relevant indications are extracted by performing
sensitivity analysis w.r.t. constitutive parameters, requiring a large number of direct simulations. These
direct simulations need to encompass a wide range of complex physical mechanisms involved during a UT
testing process: beam propagation, mode conversions, flaw diffraction, and attenuation. All these underly-
ing processes has to be taken into account to propose quantitative models of UT inspections. Essentially it
entails that direct solvers should address many specific physical behaviors, while providing essential results
in a reasonable time.

The development of models fitting these requirements is the subject of numerous contributions. Although
it is not the purpose to review them herein, one can at least mention the class of high-frequency asymptotic
methods [8, 9, 10], finite difference methods [11], boundary element methods [12], finite element methods in
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transient regime [13, 14] or more recent developments such as the Local Interaction Simulation Approach
(LISA) [15, 16]. In this communication, the primary focus of our attention is the class of time-domain
finite element methods. In order to achieve sufficient performances, a popular approach using finite element
methods is to consider dedicated solvers built for specific hardware architectures [17, 18, 19]. Alternatively,
authors in [20] have proposed a specific block-structured strategy based upon spectral finite elements and
a domain decomposition approach, yielding enhanced performances on standard computers. Initially used
locally around a defect to compute the diffracted field and echo response [21] within the CIVA platform [22],
this approach has been used in the context of the UT inspection of an entire laminate composite specimen
[23, 24].

In the context of time-domain wave propagation modeling within composite materials, one of the main
challenges is to incorporate efficiently the attenuation effects in the numerical scheme. These effects are
mainly due to the viscosity of the epoxy matrix and the multiple scattering of the incident wave by the
reinforcing constituents embedded in this matrix. Also, another challenge associated to the UT of laminates,
is the modeling the structural noise inherent to the stratified structure of the material. Usually, this aspect
is taken into account by considering thin intermediate layers (with thickness of the order of several microns),
much smaller than the characteristic wavelength of the source wave. A typical numerical approach, applied
e.g. in [20], is to address this issue by using finite elements with a lower order of approximation in the
stratification direction. However, as long as the intermediate layers are meshed, the stability condition on
the time step of any explicit time scheme necessarily deteriorates as their thickness decreases. This aspect
may potentially leads to substantial computational costs in practical configurations.

Our work is dedicated to proposing relevant numerical strategies in order to address both challenges. In
particular, the contributions of our work are twofold:

• We compare fully discrete propagators of standard visco-elastic models of Kelvin-Voigt, Maxwell and
Zener [25] obtained after finite element space discretization and explicit time discretization. To do
so, we propose a common calibration strategy for these models, applicable in the general case of
anisotropic constitutive laws. For each model, we use energy related arguments to derive the stability
condition of the fully discrete scheme. In the specific case of the Zener propagator, this approach is
identical to the one proposed in [26], however we use a slightly different formulation yielding a more
concise proof. From the expression of their stability conditions, we are able to analyze and compare
the computational and memory costs of the three discrete propagators. This study enables us to
address the question of choosing the relevant visco-elastic model, depending on the specifics of the
configuration at hand while considering performance issues.

• In order to efficiently account for the intermediate layers, we adapt the mortar element method [27,
28] to incorporate effective transmission conditions between visco-elastic models. We prove that the
stability conditions obtained for each discrete propagators are not modified by the effective parameters
of the interphase.

The outline of the paper is as follows. In Section 2 we derive and compare the fully discrete propagators
of the visco-elastic models. In Section 3, we study the numerical scheme obtained when using the mortar el-
ement method to incorporate effective transmission conditions between visco-elastic propagators. In Section
4 we illustrate our strategy in the context of the UT of curved Carbon Fiber Reinforced Polymer (CFRP)
composite structures in a 3D setting. Finally, we give some conclusions and perspectives in Section 5.

2. Comparing fully discrete visco-elastic propagators

In this section we compare fully discrete propagators, i.e. after time and space discretization, of the
Kelvin-Voigt, Maxwell and Zener visco-elastic models [25]. First, we start by proposing, for each model, a
simple calibration procedure. In essence, this calibration aims at identifying complex stiffness modulii at a
frequency of interest, and can be applied to general anisotropic materials. Second, we prove the stability
conditions of the explicit time schemes associated to each model using energy arguments. Finally, we derive
qualitative comparaison of the computational cost associated to the discrete propagators.
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2.1. Identified visco-elastic properties at a central frequency of interest

We are interested in the propagation of high-frequency elastic waves within a given solid material Ω, an
open subset of Rd with d ∈ {1, 2, 3}. The waves are typically generated from an input excitation source,
e.g. a piezo-electric actuator, usually represented by a boundary load. In most of practical configurations,
it is reasonable to assume that this excitation follows a relatively narrow-band signal, with a central angular
frequency denoted by ω?. From a prior theoretical analysis and/or experimental campaign, we assume that
it is possible to determine the mechanical material properties of the solid [29]. This characterization may
lead to the estimation of the phase velocity and attenuation of incident plane waves, around the frequency of
interest and for varying incident angles and polarizations, see for instance [30, 31, 32, 33]. This information
enables to identify [34, 35, 36] the elastic and viscous behavior of the material. In the frequency domain,
it amounts to obtaining the real and imaginary parts of the stiffness tensor appearing in the constitutive
law, locally in the frequency spectrum, i.e. around ω?. In addition, one may possess an estimation of
the dependency of the attenuation w.r.t. the angular frequency, the variation of the phase velocity being
sufficiently limited to be neglected in most cases. This aspect is usually leading the choice of the relevant
visco-elastic relaxation tensor [37, 25]. Throughout this paper, we will consider exclusively the standard
Kelvin-Voigt, Maxwell and Zener models, leading to quadratic, constant and locally linear attenuation laws
respectively, see [25] or Appendix A.

The mechanical properties of the material identified at ω? are: ρ? the mass density, C? and D? the real
and imaginary parts of the stiffness tensor. They are symmetric and positive definite fourth order tensors,
and we assume that they satisfy a “low-loss” assumption

Q? = D−1
? C? > I, (1)

where I is the fourth order identity tensor, and Q? is referred to as the quality factor of the material [38, 25].

2.2. Generalities on space discretization using lumped finite elements

In this section, we consider visco-elastic formulations written in terms of displacement vector field, or
displacement and symmetric stress tensor. In the scope of our work, we restrict ourselves to primal – dual
formulations [39]. The displacement variables are sought in V = [H1(Ω)]d, and the symmetric stresses tensor
variable in W = [L2(Ω)]d

′
, with d′ = 1

2 (d + 1)d. While the construction of a discrete space Wh ⊂ W is
naturally obtained using discontinuous elements, we assume that standard continuous finite elements [40]
are used in order to build a H1 – conform discrete space Vh. Assuming that a conform tessellation Th of Ω
is given, Vh is defined in the following manner

Vh =
{
uh ∈ [C0(Ω)]d

∣∣ ∀K ∈ Th, ∃! ûh ∈ V̂h, uh|K = ûh ◦ F
−1
K

}
⊂ V, (2)

where FK is the geometric transformation of a reference finite element into the element K ∈ Th, and V̂h is a
finite dimensional functional space defined on the reference element. We focus our attention on traditional
finite element procedures that consider V̂h as the space of (potentially high-order) Lagrange polynomials
defined on simplexes, e.g. triangles or tetrahedra, or on parallelotopes, e.g. quadrangles or hexahedra. In
the following, we will denote by Nh and N ′h the dimensions of Vh and Wh respectively. For any function

u∗h ∈ Vh, we denote by
−→
U ∗ ∈ RNh the vector regrouping the coefficients of the decomposition of u∗h onto the

basis of Vh, idem for any functions in Wh.
In the perspective of applying such Lagrange finite element procedure to a time-domain wave propagation

problem, we make the additional assumption that we can find a suitable quadrature formulae that enables
consistent mass lumping [41, 42, 14, 43]. Upon this assumption, denoting by α a strictly positive function
and by A a symmetric positive fourth order tensor field, the bilinear forms of the type

mV
α (u, u∗) =

∫
Ωi

u · u∗α dΩ, ∀u, u∗ ∈ V, and mW
A (σ, σ∗) =

∫
Ω

Aσ : σ∗ dΩ, ∀σ, σ∗ ∈W, (3)

are represented in the corresponding discrete spaces Vh × Vh and Wh ×Wh by strictly positive diagonal
matrices, trivially invertible.
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2.3. Explicit energy related time discretization

In our work, we focus our attention on proposing explicit time schemes, meaning that, at every time
steps, obtaining the next iterate only requires the inversion of one or several diagonal matrices. Generally,
this class of time schemes are at best conditionally stable. The stability condition is often referred to as the
CFL condition, and in practice it corresponds to an upper bound on the time step. Deriving the stability
condition for this class of time discretizations may be performed in several ways. In the scope of the present
communication, we will systematically favor the approach based upon discrete energy arguments. This
approach, extensively detailed in [14, 43], can be decomposed in the following steps: (1) identify a discrete
functional satisfying a conservation or decay property; (2) prove that the functional is an equivalent norm
on the discrete solution upon a specific condition on the time step.

As an illustrative example, let us consider the case of inviscid elastodynamics, i.e. D? = 0. Assuming
free surface boundary conditions, the field equations read

ρ?∂
2
ttu−∇ · σ = 0, in Ω,

σ = C?ε(u), in Ω,

σ · n = 0, on ∂Ω,

where ∇· is the vector divergence operator, and ε(·) is the linearized Green-Lagrange tensor. The previous
equations are completed with non-zero initial conditions. The weak form of this problem consists in finding,
for any time t > 0, the solution u ∈ V such that for any u∗ ∈ V we have

d2

dt2
mV
ρ?(u, u∗) + kC?(u, u∗) = 0. (4)

The mass bilinear form is defined as in (3) with α = ρ?, and the stiffness bilinear form reads

kC?(u, u∗) =

∫
Ω

C?ε(u) : ε(u∗) dΩ.

In this context a popular example of explicit time scheme is the so-called leap-frog scheme

MV
ρ?

−→
U n+1 − 2

−→
U n +

−→
U n−1

∆t2
+ KC?

−→
U n = 0, (5)

where the mass matrix MV
ρ? and stiffness matrix KC? are the discrete representations of mV

ρ?(·, ·) and kC?(·, ·)
on Vh × Vh. Note that, using the mass lumping technique, the mass matrix is diagonal, leading to a fully
explicit time scheme. As a first step for deriving the stability condition, we recall the following standard

conservation property, obtained by multiplying (5) by 1
2∆t (
−→
U n+1 −

−→
U n−1)ᵀ.

Lemma 1. Let {
−→
U k}k≥0 be the solution of (5), then the discrete energy functional

En+
1
2 =

1

2

(−→U n+1 −
−→
U n

∆t

)ᵀMV
ρ?

(−→U n+1 −
−→
U n

∆t

)
+

1

2

−→
U n+1

ᵀ
KC?

−→
U n, (6)

satisfies the following conservation relation

En+
1
2 −En−

1
2

∆t
= 0. (7)

The second step is to find the condition ensuring that the functional (6) is an equivalent norm for the
discrete solution of (5). To this goal we recall the popular result [14, 39]:

Theorem 1. Denoting by r(·) the spectral radius of a given matrix, the scheme (5) is stable upon the
following condition

∆t ≤ ∆t
invisc

=
2√

r
(
(MV

ρ?)−1KC?

) . (8)
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Proof. Remarking that,

−→
U n+1

ᵀ
KC?

−→
U n =

(−→U n+1 +
−→
U n

2

)ᵀKC?

(−→U n+1 +
−→
U n

2

)
− ∆t2

4

(−→U n+1 −
−→
U n

∆t

)ᵀKC?

(−→U n+1 −
−→
U n

∆t

)
,

we can recast the expression of the discrete energy functional (6) in the following manner

En+
1
2 =

1

2

(−→U n+1 −
−→
U n

∆t

)ᵀ(MV
ρ? −

∆t2

4
KC?

)(−→U n+1 −
−→
U n

∆t

)
+

1

2

(−→U n+1 +
−→
U n

2

)ᵀKC?

(−→U n+1 +
−→
U n

2

)
.

Hence, upon the condition (8), this functional is positive which necessarily implies the stability of the
numerical scheme due to the conservation property (7).

In order to better interpret this stability condition, and in the perspective of the comparative study
between the various time schemes detailed in this section, we recall an estimation related to spectral radii
as appearing in (8). Using the decomposition of the bilinear forms in (4) on the elements of the tessellation
Th, and invoking arguments of change of variables from the reference finite element it is possible to prove,
see e.g. [39], that

r
(
(MV

ρ?)−1KC?

)
≤ Ĉ(C?, ρ?)

h2
. (9)

In the previous inequality Ĉ(C?, ρ?) is a constant depending exclusively on the physical parameters, the
choice of the reference finite element and the order of the local Lagrange basis functions. Note that, in
this context, h is a global upper bound on the size of the elements in Th. Using (9), a less sharp stability
condition for the numerical scheme (5) reads

∆t ≤ 2h√
Ĉ(C?, ρ?)

. (10)

and we recover the well-known result that the stability condition of explicit time schemes applied to hy-
perbolic systems depends linearly on the space step. For the numerical experiments conducted in this
communication we use the sharper condition (8), the computations of the spectral radii being performed
using a standard power iteration algorithm.

2.4. Kelvin-Voigt model

The Kelvin-Voigt model [25] consists in finding, for any time t > 0, the displacement field u ∈ V satisfying
ρ∂2
ttu−∇ · σ = 0, in Ω,

σ = Ckvε(u) + Dkv∂tε(u), in Ω,

σ · n = 0, on ∂Ω,

(11)

with given non-zero initial conditions. In (11), Ckv and Dkv are symmetric positive fourth order tensors. In
order to incorporate the mechanical properties, we propose the following calibration lemma.

Lemma 2. Let (C?,D?, ρ?) be the mechanical properties obtained at a frequency of interest ω?, we define
an appropriate calibration of the Kelvin-Voigt model (11) as

Ckv = C?, Dkv =
1

ω?
D?, ρ = ρ?. (12)

Proof. The rational behind this calibration is quite simple: it amounts to matching the real and imaginary
part of the constitutive law at the frequency of interest ω?. Even though this approach is rather straight-
forward for the Kelvin-Voigt model, it will require some additional efforts to be extended in the following
to the Maxwell and Zener models. From the constitutive law in (11), we obtain

σ̂(ω) =
(
Ckv + iωDkv

)
ε̂(ω),
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where ·̂ = F(·) is the time domain Fourrier transform. Hence, using this relation at ω? we obtain
relations (12).

For any u∗ ∈ V , the weak formulation associated to (11) reads

d2

dt2
mV
ρ (u, u∗) + kCkv(u, u∗) +

d

dt
kDkv(u, u∗) = 0, (13)

where the mass and stiffness bilinear forms are similar to (4). The presence of the dissipative term necessarily
implies that any centered time scheme requires solving a linear system at each time step, even if a mass-
lumping technique is applied. Hence, this approach seems hardly reasonable, especially in the perspective of
3D configurations. An alternate approach is to use an uncentered scheme, the most simple example being

MV
ρ

−→
U n+1 − 2

−→
U n +

−→
U n−1

∆t2
+ KCkv

−→
U n + KDkv

−→
U n −

−→
U n−1

∆t
= 0. (14)

This scheme is a first order scheme (whereas (5) is of order two), however it is fully explicit after mass
lumping. In order to derive its stability condition, we start by giving the following discrete decay property.

Lemma 3. Denoting by ‖·‖ρ the discrete norm associated to MV
ρ and by ‖·‖Dkv the (semi)-norm associated

to KDkv , we define the following functionals∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K
n+ 1

2
ρ =

1

2

∥∥∥−→U n+1 −
−→
U n

∆t

∥∥∥2

ρ
,

P
n+

1
2

Ckv =
1

2

(−→
U n+1

)ᵀKCkv

−→
U n,

P
n+ 1

2

Dkv =
∥∥∥−→U n+1 −

−→
U n

∆t

∥∥∥2

Dkv
,

Dn
Dkv =

∥∥∥−→U n+1 −
−→
U n−1

2∆t

∥∥∥2

Dkv
,

where {
−→
U k}k≥0 are solutions of (14). The energy functional defined as

E
n+

1
2

kv = K
n+ 1

2
ρ + P

n+ 1
2

Ckv −
∆t

4
P
n+ 1

2

Dkv , (15)

satisfies the following decay property

E
n+

1
2

kv −E
n− 1

2
kv

∆t
= −Dn

Dkv ≤ 0. (16)

Proof. Multiplying (14) by 1
2∆t (
−→
U n+1 −

−→
U n−1)ᵀ we obtain

K
n+

1
2

ρ −K
n− 1

2
ρ

∆t
+

P
n+

1
2

Ckv −P
n− 1

2
Ckv

∆t
+

(−→
U n+1 −

−→
U n−1

2∆t

)ᵀ

KDkv

(−→
U n −

−→
U n−1

∆t

)
= 0. (17)

Introducing an order one estimate of the discrete velocity

−→
V n+1 =

−→
U n+1 −

−→
U n

∆t
,
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we can recast the last term of (17) in the following fashion(−→
U n+1 −

−→
U n−1

2∆t

)ᵀ

KDkv

(−→
U n −

−→
U n−1

∆t

)
=

(−→
V n+1 +

−→
V n

2

)ᵀ

KDkv

−→
V n.

Remarking that(−→
V n+1 +

−→
V n

2

)ᵀ

KDkv

−→
V n =

∥∥∥−→V n+1 +
−→
V n

2

∥∥∥2

Dkv
− 1

4

∥∥−→V n+1
∥∥2

Dkv +
1

4

∥∥−→V n
∥∥2

Dkv

=
∥∥∥−→U n+1 −

−→
U n−1

2∆t

∥∥∥2

Dkv
− 1

4

∥∥∥−→U n+1 −
−→
U n

∆t

∥∥∥2

Dkv
+

1

4

∥∥∥−→U n −
−→
U n−1

∆t

∥∥∥2

Dkv

= Dn
Dkv −

∆t

4

P
n+ 1

2

Dkv −P
n− 1

2

Dkv

∆t
,

we can transform (17) in order to obtain the expression of the discrete energy defined in (15), yielding the
sought decay property.

From the decay property (16) satisfied by the discrete solution, we can derive the following stability
condition on the time step.

Theorem 2. Defining rCkv = r
(
(MV

ρ )−1KCkv

)
and rDkv = r

(
(MV

ρ )−1KDkv

)
, the time scheme (14) is stable

upon the following condition
∆t2

4
rCkv +

∆t

2
rDkv ≤ 1, (18)

which implies that the time step should satisfy

∆t ≤ ∆t
kv

=
rDkv

rCkv

(√
1 +

4rCkv

r2
Dkv

− 1

)
. (19)

Proof. We aim at finding the sufficient condition for functional (15) to be an equivalent discrete norm. Using
the following relation

P
n+ 1

2

Ckv =
1

2

∥∥∥−→U n+1 +
−→
U n

2

∥∥∥2

Ckv
− ∆t2

8

∥∥∥−→U n+1 −
−→
U n

∆t

∥∥∥2

Ckv
, (20)

where ‖ · ‖Ckv is the (semi)-norm associated to KCkv , the energy functional reads

E
n+

1
2

kv =
1

2

(−→U n+1 −
−→
U n

∆t

)ᵀ(
MV
ρ −

∆t

2
KDkv − ∆t2

4
KCkv

)(−→U n+1 −
−→
U n

∆t

)
+

1

2

∥∥∥−→U n+1 +
−→
U n

2

∥∥∥2

Ckv
,

proving that (18) is a necessary condition for its positivity. Computing this only positive root of the second
order inequality, we obtain (19).

Using the estimate (9) on the spectral radii and (18), a less sharp, albeit easier to interpret, upper bound
on the time step is

∆t
kv ≤ ĈDkv

ĈCkv

√√√√1 +
4ĈCkvh2

Ĉ2
Dkv

− 1

 −→
h→0

2h2

ĈDkv

,

where ĈCkv and ĈDkv depends only on the material constitutive law, the mass density and the choice of
the reference finite element. Hence, the time step required for the numerical scheme (14) to be stable is

7



asymptotically, i.e. for small values of h, a quadratic function of the space step. This type of stability
condition is similar to the one obtained when using explicit time scheme for parabolic systems. It is only
natural to find a stability condition of this nature, since one can derive an explicit parabolic scheme satisfied
by the velocity unknown when omitting the elastic part of (14). While the sensitivity to the space step
is important, another key point of this stability condition is that it appears to depend linearly w.r.t. the
quality factor. Indeed, using the definition (12), we have

2h2

ĈDkv

=
2h2ω?

ĈC?

CQ? ,

where CQ? is a constant depending only on the quality factor defined in (1). Note that, the current analysis
has been performed with a first-order uncentered scheme for the viscous terms, however one can expect
to obtain similar behaviors for higher order uncentered schemes. In practical configurations, these aspect
represents a major difficulty since, for a fixed simulation time window, it can lead to significantly more time
steps. However, one asset of (14) is that its implementation is very similar to the inviscid case (5) and only
requires a second application of the “stiffness-like” matrix KDkv .

2.5. Maxwell model

The Maxwell system [25] are field equations written in terms of displacement and stress. Completed
with non-zero initial conditions, it reads

ρ∂2
ttu−∇ · σ = 0, in Ω,

Smx∂tσ + Hmxσ = ∂tε(u), in Ω,

σ · n = 0, on ∂Ω.

(21)

In (21), Smx and Hmx are homogeneous to a compliance tensor and the inverse of a viscosity tensor respec-
tively. In other words, we define Cmx et Dmx two symmetric and positive tensors such that

Smx =
(
Cmx

)−1
, Hmx =

(
Dmx

)−1
. (22)

Lemma 4. Let (C?,D?, ρ?) be the mechanical properties obtained at a frequency of interest ω?, we define
an appropriate calibration of the Maxwell model (21) and (22) as

Cmx = C? + D?C
−1
? D?, Dmx =

1

ω?

(
D? + C?D

−1
? C?

)
, ρ = ρ ? . (23)

Proof. In the frequency domain, the second equation in (21) satisfied by the stress tensor field reads(
Smx − i

ω
Hmx

)
σ̂ = ε̂,

where ·̂ = F(·) is the time domain Fourrier transform. Identifying the real and imaginary parts of this
constitutive law with the target modulii at the frequency of interest amount to imposing(

C? + iD?

)(
Smx − i

ω?
Hmx

)
= I, (24)

where I is the fourth order identity tensor. Hence, we obtain

C?S
mx +

1

ω?
D?H

mx = I, D?S
mx − 1

ω?
C?H

mx = 0.

By solving this system we can derive the following expressions

Smx =
(
C? + D?C

−1
? D?

)−1
, Hmx = ω?

(
D? + C?D

−1
? C?

)−1
,

which leads to (23), using the definition (22).
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The weak primal – dual formulation associated to the Maxwell model consists in finding, for any time
t > 0, the solution (u, σ) ∈ V ×W such that ∀(u∗, σ∗) ∈ V ×W we have

d2

dt2
mV
ρ (u, u∗) + b(σ, u∗) = 0,

d

dt
mW

Smx(σ, σ∗) + mW
Hmx(σ, σ∗)− d

dt
b(σ∗, u) = 0,

where mV
ρ (·, ·), mW

Smx(·, ·) and mW
Hmx(·, ·) are defined as in (3), and

b(σ?, u∗) =

∫
Ω

σ∗ : ε(u∗) dΩ, ∀(u∗, σ∗) ∈ V ×W. (25)

The corresponding formulation, semi-discretized in space, reads
d2

dt2
MV
ρ

−→
U + Bᵀ−→Σ = 0,

d

dt
MW

Smx

−→
Σ + MW

Hmx

−→
Σ − d

dt
B
−→
U = 0.

Inspired from the previous work of [26] carried out for the Zener model, we consider the following scheme
MV
ρ

−→
U n+1 − 2

−→
U n +

−→
U n−1

∆t2
+ Bᵀ−→Σn = 0,

MW
Smx

−→
Σn+1 −

−→
Σn

∆t
+ MW

Hmx

−→
Σn+1 +

−→
Σn

2
− B
−→
U n+1 −

−→
U n

∆t
= 0.

(26)

This scheme is of order two, the first equation being centered in tn, while the second in tn+
1
2 . We can derive

a stability condition for this scheme, again using energy arguments.

Lemma 5. Denoting by ‖ · ‖Smx and ‖ · ‖Hmx the discrete norms associated to the matrices MW
Smx and MW

Hmx

respectively, we define the following functionals∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K
n+ 1

2
ρ =

1

2

∥∥∥−→U n+1 −
−→
U n

∆t

∥∥∥2

ρ
,

P
n+ 1

2

Smx =
1

4

(
‖
−→
Σn+1‖2Smx + ‖

−→
Σn‖2Smx

)
,

Bn+ 1
2 =

(−→Σn+1 −
−→
Σn

∆t

)ᵀ
B
(−→U n+1 −

−→
U n

∆t

)
,

Dn
Hmx =

1

2

∥∥∥−→Σn+1 +
−→
Σn

2

∥∥∥2

Hmx
+

1

2

∥∥∥−→Σn +
−→
Σn−1

2

∥∥∥2

Hmx
,

where {
−→
U k}k≥0 and {

−→
Σ k}k≥0 are solutions of (26). The energy functional defined as

E
n+

1
2

mx = K
n+ 1

2
ρ + P

n+ 1
2

Smx −
∆t2

4
Bn+ 1

2 , (27)

satisfies the following decay property

E
n+

1
2

mx −E
n− 1

2
mx

∆t
= −Dn

Hmx ≤ 0. (28)
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Proof. Multiplying the first relation in (26) by 1
2∆t (
−→
U n+1−

−→
U n−1)ᵀ, we obtain a first conservation relation

K
n+

1
2

ρ −K
n− 1

2
ρ

∆t
+
(−→U n+1 −

−→
U n−1

2∆t

)ᵀ
Bᵀ−→Σn = 0. (29)

In order to obtain an equivalent expression of the second term, we multiply the second relation in (26) by
1
2 (
−→
Σn+1 +

−→
Σn)ᵀ, leading to

1

2∆t

(
‖
−→
Σn+1‖2Smx − ‖

−→
Σn‖2Smx

)
+
∥∥∥−→Σn+1 +

−→
Σn

2

∥∥∥2

Hmx
−
(−→Σn+1 +

−→
Σn

2

)ᵀ
B
(−→U n+1 −

−→
U n

∆t

)
= 0.

Computing the average of this last relation at times tn+1/2 and tn−1/2 yields

1

4∆t

(
‖
−→
Σn+1‖2Smx−‖

−→
Σn−1‖2Smx

)
+

1

2

∥∥∥−→Σn+1 +
−→
Σn

2

∥∥∥2

Hmx
+

1

2

∥∥∥−→Σn +
−→
Σn−1

2

∥∥∥2

Hmx

− 1

2

(−→Σn+1 +
−→
Σn

2

)ᵀ
B
(−→U n+1 −

−→
U n

∆t

)
− 1

2

(−→Σn +
−→
Σn−1

2

)ᵀ
B
(−→U n −

−→
U n−1

∆t

)
= 0.

Following the recombination given in [44], we can extract the following expression

−1

2

(−→Σn+1 +
−→
Σn

2

)ᵀ
B
(−→U n+1 −

−→
U n

∆t

)
− 1

2

(−→Σn +
−→
Σn−1

2

)ᵀ
B
(−→U n −

−→
U n−1

∆t

)
=

−
(−→Σn+1 −

−→
Σn

2

)ᵀ
B
(−→U n+1 −

−→
U n

2∆t

)
+
(−→Σn −

−→
Σn−1

2

)ᵀ
B
(−→U n −

−→
U n−1

2∆t

)

−
(−→

Σn
)ᵀB(−→U n+1 −

−→
U n−1

2∆t

)
,

(30)

which leads to(−→U n+1 −
−→
U n−1

2∆t

)ᵀ
Bᵀ−→Σn =

1

∆t

(
P
n+ 1

2

Smx −P
n− 1

2

Smx

)
+ Dn

Hmx −
∆t

4

(
Bn+ 1

2 −Bn− 1
2

)
.

Finally, we conclude by combining the previous relation with (29).

As for the previous case of the Kelvin-Voigt model, a stability condition for the numerical scheme (26)
is obtained by deriving the condition for the energy functional (27) to be a positive functional.

Theorem 3. Defining the following stiffness matrix

KCmx = Bᵀ
(
MW

Smx

)−1B ∈MNh×Nh(R), (31)

the time discrete scheme (26) is stable upon the following condition

∆t ≤ ∆t
mx

=
2√

r
(
(MV

ρ )−1KCmx

) . (32)

Proof. To start with, we use the following relation

P
n+ 1

2

Smx =
1

8

(
‖
−→
Σn+1 +

−→
Σn‖2Smx + ‖

−→
Σn+1−

−→
Σn‖2Smx

)
=

1

2

∥∥∥−→Σn+1 +
−→
Σn

2

∥∥∥2

Smx
+

∆t2

8

∥∥∥−→Σn+1 −
−→
Σn

∆t

∥∥∥2

Smx
, (33)
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in order to separate the energy functional (27) in the following manner

En+
1
2 =

1

2

∥∥∥−→Σn+1 +
−→
Σn

2

∥∥∥2

Smx
+ Ẽn+

1
2 ,

where

Ẽn+
1
2 = K

n+ 1
2

ρ +
∆t2

8

∥∥∥−→Σn+1 −
−→
Σn

∆t

∥∥∥2

Smx
− ∆t2

4
Bn+ 1

2 .

Note that the first term is a positive term and that the second term can be written in the following form

Ẽn+
1
2 = K

n+ 1
2

ρ

+
∆t2

8

(∥∥∥−→Σn+1 −
−→
Σn

∆t

∥∥∥2

Smx
− 2
(−→Σn+1 −

−→
Σn

∆t

)ᵀ
B
(−→U n+1 −

−→
U n

∆t

)
+
∥∥∥−→U n+1 −

−→
U n

∆t

∥∥∥2

Cmx

)

− ∆t2

8

∥∥∥−→U n+1 −
−→
U n

∆t

∥∥∥2

Cmx
,

where ‖ · ‖Cmx is the discrete (semi)-norm associated to the matrix KCmx . We use the definition (31) of KCmx

and the square of binomials in order to rewrite the previous expression as

Ẽn+
1
2 =

1

2

(−→U n+1 −
−→
U n

∆t

)ᵀ(
MV
ρ −

∆t2

4
KCmx

)(−→U n+1 −
−→
U n

∆t

)
+

∆t2

8

∥∥∥(MW
Smx

) 1
2
(−→Σn+1 −

−→
Σn

∆t

)
−
(
MW

Smx

)− 1
2B
(−→U n+1 −

−→
U n

∆t

)∥∥∥2

N ′h

,

where ‖ · ‖N ′h is the Euclidian norm in RN ′h . Hence, the energy function is a positive function under the
sought condition on the time step.

Using the estimate (9), we can verify that the stability condition obtained for the Maxwell model varies
linearly with the space step, as for the inviscid case (10). Additionally, using the calibration (23), one can
remark that

Cmx = C?

(
I + Q−2

?

)
.

Hence, from the estimate on the spactral radii (9), the time step related to the Maxwell discrete propagator
behaves as

∆t
mx

= O
((

I + Q−2
?

)− 1
2

)
,

so that the difference compared to the inviscid case is limited in a low-loss context. In terms of computational
cost, the major computational load in (26) consists in applying B and Bᵀ at every time steps, which is roughly
equivalent to the application of a single stiffness matrix. In this regards, the computational cost required in
order to obtain the next iterate in the Maxwell scheme is similar to the inviscid case. It requires however
the storage of the stress unknowns in addition to the displacement unknowns, thus increasing its memory
load.

2.6. Zener model

The Zener model [25, 26] is defined in terms of displacement and stress unknowns, satisfying the following
field equations 

ρ∂2
ttu−∇ · σ = 0, in Ω,

σ + τ zn∂tσ = Cznε(u) + τ znDzn∂tε(u), in Ω,

σ · n = 0, on ∂Ω,

(34)
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completed with non-zero initial conditions. In (34), Czn et Dzn are symmetric positive fourth order tensors
representing elasticity and viscosity respectively. The parameter τ zn > 0 corresponds to a relaxation time
of the Zener model [25].

Lemma 6. Let (C?,D?, ρ?) be the mechanical properties obtained at a frequency of interest ω?, we define a
suitable calibration of the Zener model (34) as

τ zn =
1

ω?
, Czn = C? −D?, Dzn = C? + D?, ρ = ρ?. (35)

Proof. Applying the Fourier transform in time domain to the second equation in (34) we obtain(
1 + iωτ zn

)
σ̂(ω) =

(
Czn + iωτ znDzn

)
ε̂(ω),

or, equivalently, (
1 + (ωτ zn)2

)
σ̂(ω) =

{(
Czn + (ωτ zn)2Dzn

)
+ iωτ zn

(
Dzn − Czn

)}
ε̂(ω).

Thus, choosing τ zn = ω−1
? yields

σ̂(ω?) =
{1

2

(
Czn + Dzn

)
+
i

2

(
Dzn − Czn

)}
ε̂(ω?).

Identifying the real and imaginary parts with the target elasticity and viscosity tensors we obtain the
following pair of relations

Czn + Dzn = 2C?, Dzn − Czn = 2D?,

leading to the calibration result (35).

Note that, upon the low-loss assumption (1), one can verify that the tensor Czn expressed in (35) is a
positive tensor. Furthermore, the tensor Dzn−Czn is also positive. This condition has been identified in [26]
as a necessary condition in order to ensure the well-posedness of the Zener model. As in [26] we introduce
an internal variable s ∈W defined as the purely viscous part of the stress tensor, namely

s = σ − Cznε(u). (36)

The Zener model written in terms of displacement and internal variable reads
ρ∂2
ttu−∇ ·

(
Cznε(u)

)
−∇ · s = 0, in Ω,

Ezn∂ts+ Ezn
τ s− ∂tε(u) = 0, in Ω,

σ · n = 0, on ∂Ω.

(37)

where Ezn and Ezn
τ are two symmetric positive tensors such that

Ezn =
(
Dzn − Czn

)−1
, Ezn

τ =
1

τ zn
Ezn. (38)

Hence, the weak primal-dual formulation associated to the Zener model consists in finding, for any time
t > 0, the solution (u, s) ∈ V ×W such that ∀(u∗, s∗) ∈ V ×W we have

d2

dt2
mV
ρ (u, u∗) + kCzn(u, u∗) + b(s, u∗) = 0,

d

dt
mW

Ezn(s, s∗) + mW
Ezn
τ

(s, s∗)− d

dt
b(s∗, u) = 0,
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where mV
ρ (·, ·), mW

Ezn(·, ·), and mW
Ezn
τ

(·, ·) are defined as in (3), kCzn(·, ·) is defined as in (4), and b(·, ·) is

defined in (25). As for the Maxwell model, and also inspired from [26], we consider the following time scheme
MV
ρ

−→
U n+1 − 2

−→
U n +

−→
U n−1

∆t2
+ KCzn

−→
U n + Bᵀ−→S n = 0,

MW
Ezn

−→
S n+1 −

−→
S n

∆t
+ MW

Ezn
τ

−→
S n+1 +

−→
S n

2
− B
−→
U n+1 −

−→
U n

∆t
= 0.

(39)

It is a second order scheme, the first and second equation being centered in tn and tn+
1
2 respectively. As

previously, we start by giving a first result of discrete energy decay in order to derive in a second step the
stability condition associated to (39).

Theorem 4. Denoting by ‖ · ‖Ezn and ‖ · ‖Ezn
τ

the discrete norms associated to the matrices MW
Ezn and MW

Ezn
τ

respectively, we define the following functionals∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K
n+ 1

2
ρ =

1

2

∥∥∥−→U n+1 −
−→
U n

∆t

∥∥∥2

ρ
,

P
n+ 1

2

Czn =
1

2

(−→
U n+1

)ᵀKCzn

−→
U n,

P
n+ 1

2

Ezn =
1

4

(
‖
−→
S n+1‖2Ezn + ‖

−→
S n‖2Ezn

)
,

Bn+ 1
2 =

(−→S n+1 −
−→
S n

∆t

)ᵀ
B
(−→U n+1 −

−→
U n

∆t

)
,

Dn
Ezn
τ

=
1

2

∥∥∥−→S n+1 +
−→
S n

2

∥∥∥2

Ezn
τ

+
1

2

∥∥∥−→S n +
−→
S n−1

2

∥∥∥2

Ezn
τ

,

(40)

where {
−→
U k}k≥0 and {

−→
S k}k≥0 are solutions of (39). The energy functional defined as

E
n+

1
2

zn = K
n+ 1

2
ρ + P

n+ 1
2

Czn + P
n+ 1

2

Ezn −
∆t2

4
Bn+ 1

2 , (41)

satisfies the following identity

E
n+

1
2

zn −E
n− 1

2
zn

∆t
= −Dn

Ezn
τ
≤ 0. (42)

Proof. Multiplying the first relation in (39) by 1
2∆t (
−→
U n+1 −

−→
U n−1)ᵀ yields

K
n+

1
2

ρ −K
n− 1

2
ρ

∆t
+

P
n+ 1

2

Czn −P
n− 1

2

Czn

∆t
+
(−→U n+1 −

−→
U n−1

2∆t

)ᵀ
Bᵀ−→S n = 0. (43)

After multiplication of the second relation of (39) by 1
2 (
−→
S n+1 +

−→
S n)ᵀ, we compute the mean values obtained

at times tn+1/2 and tn−1/2, then, using the identity (30) (with replacement of the stress unknown by the
internal variable unknown), we obtain(−→U n+1 −

−→
U n−1

2∆t

)ᵀ
Bᵀ−→S n =

1

∆t

(
P
n+ 1

2

Ezn −P
n− 1

2

Ezn

)
+ Dn

Ezn
τ
− ∆t

4

(
Bn+ 1

2 −Bn− 1
2

)
,

which, combined with (43), leads to the relation (42).
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Note that, even though its proof differs, the previous result is identical to Theorem 4.1 of [26]. Using
this energy identity we can deduce the following stability result.

Theorem 5. Defining the following stiffnes matrix

KDzn = KCzn + Bᵀ
(
MW

Ezn

)−1B ∈MNh×Nh(R), (44)

the time scheme (39) is stable upon the following condition

∆t ≤ ∆t
zn

=
2√

r
(
(MV

ρ )−1KDzn

) . (45)

Proof. Replacing stress unknowns by internal variables unknowns in relation (33) in order to re-formulate

P
n+ 1

2

Ezn , the functional (41) is decomposed into

En+
1
2 =

1

2

∥∥∥−→S n+1 +
−→
S n

2

∥∥∥2

Ezn
+ Ẽn+

1
2 ,

such that

Ẽn+
1
2 = K

n+ 1
2

ρ + P
n+ 1

2

Czn +
∆t2

8

∥∥∥−→S n+1 −
−→
S n

∆t

∥∥∥2

Ezn
− ∆t2

4
Bn+ 1

2 .

We use the square of binomials in order to recast the second term in the previous expression into

Ẽn+
1
2 =

1

2

(−→U n+1 −
−→
U n

∆t

)ᵀ(
MV
ρ −

∆t2

4
Bᵀ
(
MW

Ezn

)−1B
)(−→U n+1 −

−→
U n

∆t

)
+ P

n+ 1
2

Czn

+
∆t2

8

∥∥∥(MW
Ezn

) 1
2
(−→S n+1 −

−→
S n

∆t

)
−
(
MW

Ezn

)− 1
2B
(−→U n+1 −

−→
U n

∆t

)∥∥∥2

N ′h

.

Finally, using the relation (20) applied to P
n+ 1

2

Czn , we obtain

Ẽn+
1
2 =

1

2

(−→U n+1 −
−→
U n

∆t

)ᵀ(
MV
ρ −

∆t2

4
KDzn

)(−→U n+1 −
−→
U n

∆t

)
+

1

2

∥∥∥−→U n+1 +
−→
U n

2

∥∥∥2

KCzn

+
∆t2

8

∥∥∥(MW
Ezn

) 1
2
(−→S n+1 −

−→
S n

∆t

)
−
(
MW

Ezn

)− 1
2B
(−→U n+1 −

−→
U n

∆t

)∥∥∥2

N ′h

,

where ‖ · ‖Czn stands for the (semi)-norm associated to KCzn . Hence, the discrete energy is positive under
the condition (45).

Using the estimate (9), we can verify that the stability condition obtained for the Zener model varies
linearly with the space step, as for the Maxwell case and inviscid case. Additionally, using the calibration
(35), one can remark that

Dzn = C?

(
I + Q−1

?

)
,

so that, from (9), we have

∆t
zn

= O
((

I + Q−1
?

)− 1
2

)
.

While the effect of the viscosity on the time step is expected to be limited in a low-loss context, it is
interesting to remark that the Zener discrete propagator appears to be more sensitive to the viscosity
compared to the Maxwell case. Additionally, note that the main part of the computation load in (39) comes
from the application of KCzn , B and Bᵀ at every time steps. This corresponds roughly to the application of
two stiffness-like matrices. Hence, the computation of a next iterate in the Zener scheme is similar to the
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CFL vs. h CFL vs. Q? Nb. of stiffnesses Memory cost

Inviscid O(h) O(1) 1 3×Nh
Kelvin-Voigt O(h2) O(Q?) 2 3×Nh

Maxwell O(h) O
(
(I + Q−2

? )−
1
2
)

1 3×Nh + 2×N ′h
Zener O(h) O

(
(I + Q−1

? )−
1
2
)

2 3×Nh + 2×N ′h

Table 1: Qualitative comparison of fully discrete explicit visco-elastic propagators.

Kelvin-Voigt case, and is two times more expensive than the Maxwell and the inviscid case. However, the
memory load required for (39) is similar to the Maxwell discrete scheme.

In Table 1 we propose to summarize various characteristics of each fully discrete propagators. As a direct
consequence, for a given set of target mechanical properties, one can expect to have the following relation
between the stability conditions

∆t
kv ≤ ∆t

zn ≤ ∆t
mx ≤ ∆t

invisc
. (46)

As expected, these stability conditions are identical when D? = 0. Note that, in the specific case of Q? = I,
we should expect to have ∆t

mx
= ∆t

zn
.

2.7. Numerical illustration on a one-dimensional configuration

The goal of this section is twofold. First we provide numerical evidence of the specific behaviors, detailed
in Table 1, of the stability conditions of the numerical schemes. Second, we illustrate how the numerical
schemes can adequatly represent the various characteristics of the Kelvin-Voigt, Maxwell and Zener models
in terms of attenuation laws and phase velocities. For the latter item, we wish to rely on comparisons with
analytical results, and to do so we restrict ourselves to the one-dimensional case.

Let us consider the following domain Ω =]0 ;L[, with L = 30 mm. We set the frequency of interest
to f? = 4 MHz, with ω? = 2πf?, the mass density to ρ? = 8 g · cm−3, and the target elasticity modulus
to C? = 288 GPa. The velocity of waves in the inviscid case is set to vP = 6 mm · µs−1, which roughly
corresponds to the velocity of longitudinal bulk waves in steel materials.

Sensitivity of the stability conditions w.r.t. space discretization and quality factor. In Figure 1a, the mesh
step is set to h = 0.1 mm, and we use polynomials of order 5 within each elements. We allow the target
imaginary part of the stiffness coefficient to vary in the interval D? ∈ [10 GPa; 288 GPa]. For each values
we plot the associated CFL conditions in log scale. We clearly observe that the hierarchy (46) between the
time steps is respected. The CFL conditions in the inviscid, Maxwell and Zener cases are close to each
other, while the ones associated to the Kelvin-Voigt propagator are significantly lower and following a linear
tendency as expected. Note that, in the particular case of Q? = I, one can verify that ∆t

mx
= ∆t

zn
.

In Figure 1b, the target imaginary part is set to D? = 10 GPa, the mesh step varies in the interval
[0.015; 0.1] mm, and for each values we plot in log scale the stability conditions of each propagators. We
can clearly observe the linear behaviors in the inviscid, Maxwell and Zener cases, while the Kelvin-Voigt
CFL conditions follow a quadratic dependency.

Attenuation laws and phase velocities. In the context of one-dimensional visco-elastic propagation models,
we denote by k ∈ C a complex wave number related to a monochromatic one-dimensional plane wave. We
decompose k = κ− iα, so that α is directing the attenuation of the plane waves. The dependency of α w.r.t.
to the angular frequency ω ∈ R+ is referred to as the attenuation law of the visco-elastic model. In the
following, we propose to evaluate numerically these attenuation laws for each discrete propagators, along
with the phase velocities.

To do so, we set the target viscosity to D? = 10 GPa. We impose the solution at x = 0 to be a wide-band
signal, typically a Ricker’s wavelet, centered in the frequency domain at ω?. At x = L, we use absorbing
boundary conditions to avoid undesired reflections.
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(a) Evolution with the CFL condition w.r.t the quality factor. (b) Evolution with the CFL condition w.r.t the mesh step.

Figure 1: Comparing the evolution of the stability condition of the fully discrete propagators of the Kelvin-Voigt, Maxwell and
Zener models when varying the quality factor or the mesh step, with fixed target elastic modulus.

By performing a Fourier analysis of the numerical solution at an observation point, set to x = L/2, we
are able to evaluate the “numerical” attenuation law obtained from the various fully discrete propagators.
Using the expression of the exact attenuation law provided in (A.2), we compare in Figure 2a the expected
attenuation (in solid, dashed and dotted lines) with the numerical ones (in square markers). A first remark
is that the curves for the three visco-elastic models intersect exactly at the frequency of interest, proving
the validity of our calibration procedure. Second, we have an excellent agreement between the expected
and the numerical attenuation laws, validating the consistency of our complete numerical procedure with
respect to the continuous equations. Indeed we are able to reproduce the quadratic, constant and locally
linear attenuation law corresponding to the Kelvin-Voigt, Maxwell and Zener, as recalled in Appendix A.

In the same way, we recover the phase velocity of the discrete propagators. In Figure 2b, we compare the
dispersion curves obtained numerically with the exact dispersion curves using the expression of the exact
phase velocities for visco-elastic models provided in (A.2). We remark that the limited dispersion of the
discrete propagators is in very good agreement with the theoretical ones and coincide at the frequency of
interest. However, we should point out the specific case of the Kelvin-Voigt propagator that appears to
incorporate spurious numerical dispersion at high frequencies, most likely due to the fact that it is a first
order time scheme.

2.8. Choosing the relevant visco-elastic propagator

To the best of the authors’ knowledge, a popular choice of visco-elastic model is the Kelvin-Voigt
model (11). A possible explanation for this tendency is the rather simple form of the constitutive law,
yielding a direct link with the complex stiffness coefficients obtained from the material characterization.
Note that this direct link clearly appears in the straightforward calibration given in (12). Another potential
argument that may explain the popularity of the Kelvin-Voigt model is its simplicity of implementation.
In practice, it simply amounts to applying a second stiffness operator, usually already implemented for
performing iterations of the inviscid model (5). Nonetheless, the detailed analysis proposed in this section
has shed light to significant issues related to the computational performances of the Kelvin-Voigt fully-
discrete propagator. Hence, as a conclusion of this section, we discuss the rational for choosing the relevant
visco-elastic model for a given configuration.
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(a) Exact and numerical attenuation laws. (b) Exact and numerical phase velocity.

Figure 2: Comparing attenuation laws and phase velocities obtained from the fully discrete propagator of the Kelvin-Voigt,
Maxwell and Zener models.

An important discriminant characteristic of the visco-elastic models is their related attenuation law,
as depicted in Figure 2a. For the Zener and Kelvin-Voigt model, the attenuation grows respectively as a
(locally) linear and a quadratic function of the frequency. As a consequence, this particular aspect may
entail a shift of the ultrasonic wave field towards lower frequencies. We show a concrete example of this
effect in the Figure 10a of the final result Section 4. These shifts may become more visible as the distance
of propagation increases, or equivalently as as the quality factor decreases. Hence, if the main expected
results of the numerical modelling is related to the spectral content of the outputs, then the choice of the
visco-elastic model should be driven by its attenuation law.

Otherwise, a more practical argument may be used. At this point, it is important to emphasize that,
by construction, the calibration procedure proposed in this section ensures that the three models recover
an identical attenuation at the frequency of interest. Hence, assuming that it is sufficient, one can choose
the visco-elastic model depending on the performances associated to the fully-discrete scheme. In this
regard, we refer to Table 1 to infer a strict hierarchy between propagators. With its low dependency of the
CFL condition w.r.t. the quality factor, and with only one stiffness operation per time step, the Maxwell
propagator (26) is nearly as effective as the inviscid propagator (5). The Zener propagator also exhibits
a robust CFL condition w.r.t. the quality factor. However, it costs another stiffness operation, yielding
roughly a doubled iteration cost compared to the Maxwell propagator. Similarly, the Kelvin-Voigt model
presents two stiffness operations per time step. More importantly, Figure 1a and Figure 1b illustrates the
strong sensitivity of its CFL condition w.r.t. the quality factor and the mesh step. Hence, the timestep of
the Kelvin-Voigt model can be in practice significantly smaller, leading to an increase number of iterations
to reach a fixed final time. Due to the explicit uncentered treatment of the viscous term in (14), we have
obtained a first-order time scheme. Thus, in addition to its cost, the Kelvin-Voigt propagator may lead to
less accurate results in some cases. This hierarchy, illustrated in a practical case of 3D computations in the
Tables 3, 4 and 5, clearly suggests that, if the choice if the visco-elastic propagtor is driven by computational
performances, the best choice is the Maxwell model.
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3. Fully discrete propagators of anisotropic visco-elastic laminated materials

The goal of this section is to detail a fully discrete propagator for a class of laminated materials. In each
layer (or ply) of the laminate we assume that the material follows an anisotropic visco-elastic constitutive
law. Between each pair of plies, we consider thin intermediate layers of visco-elastic materials. In practice,
these intermediate layers play an important roles in the modeling of laminated structures, since they can be
used to represent structural noise or specific bonding conditions between plies.

From a computational standpoint, addressing this type of configurations is challenging, especially in a 3D
context. Apart from the construction of the visco-elastic discrete propagators for the plies, subject treated
in the previous section, one of the main difficulty is the efficient incorporation of the thin intermediate layers
within the numerical solver. A reasonable approach, proposed for instance in [20], is to use finite elements
with anisotropic orders to limit the cost overhead.

In the scope of our work, we focus our attention on an alternate approach based upon Effective Transmis-
sion Conditions (ETCs) [45, 46, 47]. In this context, the effect of a thin intermediate layer (or interphase)
is taken into account through so-called spring-mass conditions. In practice, this approach circumvent the
difficulty of meshing the interphase medium, potentially yielding significant improvements in computational
costs. The key points of this section are:

• After recalling the standard elements of ETCs and their calibration w.r.t. the target complex stiffness
modulii, we show how they can be incorporated to visco-elastic discrete propagators using the mortar
element method [27, 28],

• We prove that the incorporation of these ETCs does not affect the stability condition computed
(independently) for each ply. In particular, this condition on the time step does not depend on the
material properties of the interphase.

To simplify the presentation of the coupling scheme obtained from the mortar element method, we con-
sider the specific case of two plies sharing one interphase, and we assume that each plies support a Zener
formulation (34). The extensions to Kelvin-Voigt or Maxwell models with multiple intermediate layers are
straightforward.

3.1. Definition of a class of laminated configurations

Plane and curved geometry of a laminate material. Let {ei}dk=1 be the canonical basis of Rd. We denote by
Ω◦ an open bounded subset of Rd representing the solid under study, and we assume that there exists a set
of strictly positive values {Li}di=1 such that

Ω◦ =

d∏
k=1

]
0 ;Lk

[
.

Let ed be the stratification direction, we consider a decomposition of Ω◦ into two plies Ω◦1 and Ω◦2, of
thicknesses `◦1 and `◦2 respectively. Between these two plies, we define an intermediate layers Ω◦,η of thickness
`◦,η. The domain Ω◦ is the non-overlapping union of the plies and the intermediate layer

Ω◦ = Ω◦1 ∪ Ω◦,η ∪ Ω◦2,

and each sub-domain geometries are defined by

Ω◦1 =

d−1∏
k=1

]
0 ;Lk

[
×
]
0 ; `◦1

[
, Ω◦,η =

d−1∏
k=1

]
0 ;Lk

[
×
]
`◦1 ; `◦1 + `◦,η

[
, Ω◦2 =

d−1∏
k=1

]
0 ;Lk

[
×
]
`◦1 + `◦,η ;Ld

[
.

In practical cases, the material at hand has a curved geometry. This geometry is usually obtained during
manufacturing processes by deformation of a plane geometry. A convenient way to model these configurations
is to consider a given mapping Φ, yielding the resulting geometries

Ω = Φ(Ω◦), Ωi = Φ|Ω◦i (Ω◦i ), ∀i ∈ {1, 2}, and Ωη = Φ|Ω◦,η (Ω◦,η).
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In order to ensure a geometry suitable for standard numerical procedures, we make some regularity assump-
tion on this transformation. In particular, we assume that Φ is a diffeomorphism, i.e. it is a differentiable
bijection and its inverse is also differentiable, and that Φ is a conformal map, i.e. it locally preserves
orientations. Upon these assumptions, we can define in Ω the local orthonormal basis {eφk}dk=1 satisfying

eφk
(
Φ(x◦)

)
=
∇◦Φ(x◦) ek
‖∇◦Φ(x◦) ek‖

, ∀x◦ ∈ Ω◦, ∀k = 1, · · · , d,

where ∇◦ is the gradient operator w.r.t. the coordinate system in Ω◦ applied to vector fields, and ‖ · ‖ is the
Euclidian norm. With these notations, let A◦i be a fourth-order tensor defined on a ply Ω◦i , the resulting
tensor Ai defined in the curved geometry is given by

∀x◦ ∈ Ω◦i , x = Φ(x◦), Ai(x) =

d∑
j,k,l,m=1

(
A◦i (x

◦)
)
jklm

eφj (x)⊗ eφk(x)⊗ eφl (x)⊗ eφm(x). (47)

Upper surface, lower surface and mid-surface of intermediate layers. We denote the boundaries of the plies
in contact with the intermediate layer by

Γ− = ∂Ωη ∩ ∂Ω1, and Γ+ = ∂Ωη ∩ ∂Ω2. (48)

ETCs aim at linking together the mechanical fields, i.e. normal stresses and traces, at the mid-surface of
the intermediate layer. In the following we denote by Γ this mid-surface, and we define

φ± : Γ −→ Γ±,

the geometrical transformations from the mid-surface to the upper and lower surfaces. Note that, from the
regularity assumptions on Φ, these transformations are diffeomorphisms, and in the particular case where Φ
is the identity transformation, they boil down to simple translations of ± 1

2`
◦,η in the stratification direction.

Material properties of the plies and intermediate layers. In the following, the mechanical properties of the
plies and the intermediate layers identified at ω? are denoted by{

(C◦?,i,D
◦
?,i, ρ?,i)

}2

i=1
and (C◦,η? ,D◦,η? , ρη?),

where ρ?,i (or ρη?) are the mass densities, the real part C◦?,i (or C
◦,η
? ) and imaginary part D◦?,i (or D

◦,η
? )

of the stiffness tensors are symmetric and positive definite fourth order tensors, satisfying the low-loss
assumption (1) and defined on the prior geometry Ω◦. We consider general anisotropic stiffness tensors for
the plies, and we denote by C?,i and D?,i the resulting tensors in (47). Concerning the intermediate layers
we make the assumption of isotropic materials. Their corresponding mechanical properties in the curved
configuration are simply defined by the Lamé coefficients λC,η? , µC,η? for the real part, and λD,η? , µD,η? for the
imaginary part.

3.2. Definition of standard spring-mass ETCs

For every sub-domains Ωi, we denote by σ
i

the corresponding stress tensor field, and we associate to
each interphase the following mechanical fluxes

τ− = (σ
1

∣∣
Γ−
◦ φ−)n, τ+ = (σ

2

∣∣
Γ+ ◦ φ+)n,

where n is the normal vector field of the mid-surface Γ oriented from Γ− to Γ+. The mean value and jump
of the mechanical fluxes at the mid-surface are denoted by

〈τ〉 =
τ− + τ+

2
, and [τ ] = τ+ − τ−.
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Introducing the functional space X = L2(Γ), we assume enough regularity on the stress tensor fields so that

〈τ〉 ∈ X, and [τ ] ∈ X.

In the same manner, considering the displacement field ui associated to each sub-domains Ωi, we associate
to the interphase between the plies the mean value and jump of the trace

〈u〉 =
(u1

∣∣
Γ−
◦ φ−) + (u2

∣∣
Γ+ ◦ φ+)

2
∈ X, and [u] = (u2

∣∣
Γ+ ◦ φ+)− (u1

∣∣
Γ−
◦ φ−) ∈ X.

As in [48, 49], we replace the propagator in the intermediate layer by spring-mass transmission conditions. To

this purpose, we introduce {Cη,k? }dk=1, {Dη,k
? }dk=1 and {Mη,k

? }dk=1 the effective stiffness, viscosity and inertial
coefficients of the interphase. Denoting by {bk}dk=1 an orthonormal basis associated to the mid-surface, we
define the following symmetric and positive second order tensors

Cη
?

=

d∑
k=1

Cη,k? bk ⊗ bk, Dη

?
=

d∑
k=1

Dη,k
? bk ⊗ bk, Mη

?
=

d∑
k=1

Mη,k
? bk ⊗ bk.

The transmission conditions between plies read, in frequency domain,

[û] = (Cη
?

+ iDη

?
)−1〈τ̂〉, [τ̂ ] = −ω2Mη

?
〈û〉, (49)

where ·̂ is the time domain Fourrier transform. A significant amount of work has been dedicated to the
construction of relevant effective coefficients. As an example, in the context of laminated composites, authors
is [50, 51] use the following definition, based upon the assumption of an isotropic material,

Cη,d? =
λC,η? + 2µC,η?

`η
, Dη,d

? =
λD,η? + 2µD,η?

`η
, and Cη,k? =

µC,η?

`η
, Dη,k

? =
µD,η?

`η
∀k 6= d, (50)

For the inertial terms authors in [49, 52] consider the following definition

Mη,k
? = `ηρη?, ∀k ∈ {1, · · · , d}. (51)

Proposing an expression of these coefficients, typically using an asymptotic expansion w.r.t. the ratio of
the thickness over the wavelength, is still an active field of research. For instance, spring-mass models can
be used to represent complex configurations such as damaged interfaces [53] or distributions of interfacial
flaws [54, 55]. It should be noted however that the ETCs given in (49) are an approximation of the rigorous
asymptotic model, derived in [56]. More precisely, they correspond to neglecting terms related to the surface
gradient of the mean and jump of the trace, which we can expect to be a reasonable approximation in the
case of small contrasts.

3.3. ETCs through mortar elements

The mortar element method [27, 28, 57, 58] is a domain decomposition approach aiming at coupling
independent space discretizations. It has been successfully applied to elastodynamics and wave propagation
problems [59, 60, 61, 62, 63]. More recently [20], this method has been used to couple different formulations,
e.g. elastodynamics, acoustics and corresponding Perfectly Matched Layers (PMLs) [64, 65, 66] formulations.
In the present work, we extend this approach to visco-elastic formulations coupled with spring-mass ETCs.
To start with, let us introduce the following Lagrange multipliers

λ = 〈τ〉 ∈ X, µ = [τ ] ∈ X. (52)

We define the ETCs (49) written in terms of Lagrange multipliers as

∂t[u] = Sη∂tλ+Hηλ, µ = Mη ∂2
tt〈u〉, (53)

where Sη, Hη and Mη are symmetric and positive second order tensors. For the specific formulation (53)
of the spring-mass conditions, we give the following calibration lemma.
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Lemma 7. We define a suitable calibration of the ETCs (53) as

Sη =
(
Cη
?

+Dη

?
(Cη

?
)−1Dη

?

)−1
, Hη = ω?

(
Dη

?
+ Cη

?
(Dη

?
)−1Cη

?

)−1
, Mη = Mη

?
. (54)

Proof. First, from the second relation in (49) and the definition of the multiplier µ we deduce the straight-
forward expression of Mη. Second, from the definition of the multiplier λ, the first equation in (53) reads
in frequency domain

[û] = (Sη − i

ω
Hη)〈τ̂〉.

Hence, remarking that the first relation in (49) is equivalent to

(Cη
?

+ iDη

?
)[û] = 〈τ̂〉,

we see that identifying the effective real and imaginary parts of the effective stiffness tensor at the frequency
of interest amounts to satisfying

(Cη
?

+ iDη

?
)(Sη − i

ω?
Hη) = I,

where I is the identity second order tensor. Interestingly enough, we remark that this system is identical,
modulo the dimension of the tensors, to the system (24) obtained for the calibration of the Maxwell model,
yielding the expressions (54) of Sη and Hη.

Within each sub-domain Ω1 and Ω2 we consider Zener field equations (37) satisfied by the displacements
u1 and u2, and the internal variables s

1
and s

2
related to the stress tensor fields σ

1
and σ

2
through (36).

Prior to propose the weak formulation of the mortar coupling scheme, we start with the following lemma
expressing the boundary terms appearing in the Green identity.

Lemma 8. Let us denote by n± the normal vector fields of the boundaries Γ±, outgoing from Ω1 and Ω2, and
by dΓ± the surface measures. Assuming that the intermediate layer is sufficiently thin so that the following
developments

n− = n+O(`η), n+ = −n+O(`η), dΓ± = dΓ +O(`η), (55)

can be reasonably truncated in order to keep their leading order terms exclusively, then we have∣∣∣∣∣∣∣∣
−
∫

Γ−
(σ

1
n−) · u∗1 dΓ− =

1

2

∫
Γ

µ · (u∗1 ◦ φ
−) dΓ−

∫
Γ

λ · (u∗1 ◦ φ
−) dΓ,

−
∫

Γ+

(σ
2
n+) · u∗2 dΓ+ =

1

2

∫
Γ

µ · (u∗2 ◦ φ
+) dΓ +

∫
Γ

λ · (u∗2 ◦ φ
+) dΓ,

(56)

for any u∗1 ∈ V1 and u∗2 ∈ V2.

Proof. For any u∗1 ∈ V1, discarding terms in O(`η) in (55) yields

−
∫

Γ−
(σ

1
n−) · u∗1 dΓ− = −

∫
Γ

τ− · (u∗1 ◦ φ
−) dΓ.

Remarking that the definition (52) of the Lagrange multiplier entails

−τ− =
1

2
µ− λ, and τ+ =

1

2
µ+ λ, (57)

we obtain the first relation in (56). For the second relation, by discarding the terms in O(`η) in (55), we
obtain

−
∫

Γ+

(σ
2
n+) · u∗1 dΓ+ =

∫
Γ

τ+ · (u∗2 ◦ φ
+) dΓ, ∀u∗2 ∈ V2,

and we conclude using again (57).
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After multiplication of the equations (37) by test functions, integration and application of Green identities
with the boundary terms expressed using (56), we obtain the weak formulation of the coupled system. For
the volume fields, it consists in finding (u1, s1

) ∈ V1 ×W1 , (u2, s2
) ∈ V2 ×W2 such that, for every t > 0

and for any test functions (u∗1, s
∗
1
), (u∗2, s

∗
2
) in corresponding functional spaces, we have

d2

dt2
m1(u1, u

∗
1) + kCzn

1
(u1, u

∗
1) + b1(s

1
, u∗1) + c1(

1

2
µ− λ, u∗1) = 0,

d2

dt2
m2(u2, u

∗
2) + kCzn

2
(u2, u

∗
2) + b2(s

2
, u∗2) + c2(

1

2
µ+ λ, u∗2) = 0,

d

dt
mW

Ezn
i

(si, s
∗
i
) + mW

Ezn
τ,i

(s
i
, s∗
i
)− d

dt
bi(s

∗
i
, ui) = 0, i ∈ {1, 2}.

(58)

Additionally, multiplying (53) by test functions and integrating, we derive the weak formulation satisfied by
the Lagrange multipliers (λ, µ) ∈ X ×X for any (λ∗, µ∗) ∈ X ×X,

1

2

d2

dt2
c1(µ∗, u1) +

1

2

d2

dt2
c2(µ∗, u2)− gη(µ, µ∗) = 0,

d

dt
c1(λ∗, u1)− d

dt
c2(λ∗, u2) +

d

dt
sη(λ, λ∗) + hη(λ, λ∗) = 0.

(59)

We distinguish several types of bilinear forms emanating from the imperfect transmission conditions. We
define the coupling bilinear forms between the Lagrange multiplier and the volume unknowns as∣∣∣∣∣∣∣∣

c1(λ, u∗1) =

∫
Γ

λ · (u∗1 ◦ φ
−) dΓ, ∀λ ∈ X, ∀u1 ∈ V1,

c2(λ, u∗2) =

∫
Γ

λ · (u∗2 ◦ φ
+) dΓ, ∀λ ∈ X, ∀u2 ∈ V2.

(60)

Additionally, we consider the following bilinear forms operating solely on the Lagrange multipliers∣∣∣∣∣∣∣∣∣∣∣∣

gη(µ, µ∗) =

∫
Γ

(Mη)−1 µ · µ∗ dΓ, ∀(µ, µ∗) ∈ X ×X,

sη(λ, λ∗) =

∫
Γ

Sη λ · λ∗ dΓ, ∀(λ, λ∗) ∈ X ×X,

hη(λ, λ∗) =

∫
Γ

Hη λ · λ∗ dΓ, ∀(λ, λ∗) ∈ X ×X.

(61)

Let us introduce Xh ⊂ X a discrete approximation space for the Lagrange multiplier, and we denote by Mh

its dimension. The previous bilinear forms are represented in their corresponding discrete approximation
spaces by the following finite element matrices∣∣∣∣∣∣∣

Ci ∈MMh,Ni,h(R)
(
∼ ci(·, ·)

)
, i ∈ {1, 2},

Gη, Sη, Hη ∈MMh,Mh
(R)

(
∼ gη(·, ·), sη(·, ·), hη(·, ·)

)
.

We denote by {
−→
Λ k}k≥0 ⊂ RMh and {

−→
Mk}k≥0 ⊂ RMh the set of vectors regrouping the components of

discrete Lagrange multipliers in the basis of Xh. Using these notations, we consider the following fully
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discrete scheme for (58)

Mρ1

−→
U n+1

1 − 2
−→
U n

1 +
−→
U n−1

1

∆t2
+ KCzn

1

−→
U n

1 + Bᵀ
1

−→
S n

1 +
1

2
Cᵀ

1

((
1
2

−→
Mn+ 1

2 −
−→
Λ n+ 1

2

)
+
(

1
2

−→
Mn− 1

2 −
−→
Λ n− 1

2

))
= 0,

Mρ2

−→
U n+1

2 − 2
−→
U n

2 +
−→
U n−1

2

∆t2
+ KCzn

2

−→
U n

2 + Bᵀ
2

−→
S n

2 +
1

2
Cᵀ

2

((
1
2

−→
Mn+ 1

2 +
−→
Λ n+ 1

2

)
+
(

1
2

−→
Mn− 1

2 +
−→
Λ n− 1

2

))
= 0,

MW
Ezn
i

−→
S n+1
i −

−→
S n
i

∆t
+ MW

Ezn
τ,i

−→
S n+1
i +

−→
S n
i

2
− Bi

−→
U n+1
i −

−→
U n
i

∆t
= 0, i ∈ {1, 2},

(62)

which is centered in tn and tn+
1
2 for the displacements and internal variables equations respectively. Addi-

tionally, for (58), we propose the following scheme, centered in tn,

1

2
C1

−→
U n+1

1 − 2
−→
U n

1 +
−→
U n−1

1

∆t2
+

1

2
C2

−→
U n+1

2 − 2
−→
U n

2 +
−→
U n−1

2

∆t2
−Gη

−→
Mn+

1
2 +
−→
Mn− 1

2

2
= 0,

C1

−→
U n+1

1 −
−→
U n−1

1

2∆t
− C2

−→
U n+1

2 −
−→
U n−1

2

2∆t
+ Sη

−→
Λ n+

1
2 −
−→
Λ n− 1

2

∆t
+ Hη

−→
Λ n+

1
2 +
−→
Λ n− 1

2

2
= 0.

(63)

Although we do not provide rigorous consistency analysis, we can expect the scheme (62) – (63) to be of
order two, since every fully discrete equations are centered. Remark that in (62) clearly appear the following
quantities

−
−→
T−

n+ 1
2 =

1

2

−→
Mn+ 1

2 −
−→
Λ n+ 1

2 , and
−→
T+

n+ 1
2 =

1

2

−→
Mn+ 1

2 +
−→
Λ n+ 1

2 ,

which, from (57), can be interpreted as the fully discrete representation of the fluxes.

3.4. Stability condition of the fully discrete propagator of the coupled system

Following the procedure used in the previous section, we start by giving a energy identity for the fully
discrete scheme (62) – (63).

Lemma 9. For a sub-domain index i ∈ {1, 2}, we consider the energy functionals E
n+

1
2

zn,i defined in (41),
and the dissipative functionals Dn

Ezn
τ,i

defined in (40). Furthermore, denoting by

Mη =
(
Gη
)−1 ∈MMh,Mh

(R),

and ‖ · ‖Mη , ‖ · ‖Sη and ‖ · ‖Hη the discrete norms associated to the matrices Mη, Sη and Hη respectively,
we define the functionals ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K
n+ 1

2

Mη =
1

2

∥∥∥∥∥1

2
C1

−→
U n+1

1 −
−→
U n

1

∆t
+

1

2
C2

−→
U n+1

2 −
−→
U n

2

∆t

∥∥∥∥∥
2

Mη

,

P
n+

1
2

Sη =
1

2

∥∥−→Λ n+
1
2
∥∥2

Sη
,

Dn
Hη =

∥∥∥−→Λ n+
1
2 +
−→
Λ n− 1

2

2

∥∥∥2

Hη
,

(64)
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and we consider the following energy functional

E
n+

1
2

η = K
n+ 1

2

Mη + P
n+

1
2

Sη . (65)

The solution of (62) – (63) satisfies the following energy identity

∑
i∈{1,2}

E
n+

1
2

zn,i −E
n− 1

2
zn,i

∆t
+

E
n+

1
2

η −E
n− 1

2
η

∆t
= −

∑
i∈{1,2}

Dn
Ezn
τ,i
−Dn

Hη ≤ 0. (66)

Proof. To start with, we follow the demonstration leading to the identity energy (42) for each sub-domains.

Thus, multiplying the first and second relation in (62) by 1
2∆t (
−→
U n+1

1 −
−→
U n−1

1 )ᵀ and 1
2∆t (
−→
U n+1

2 −
−→
U n−1

2 )ᵀ

respectively, and multiplying the second relation in (63) by 1
∆t (
−→
Λ n+

1
2 −
−→
Λ n− 1

2 )ᵀ, we obtain

−
∑

i∈{1,2}

Dn
Ezn
τ,i
−Dn

Hη =
∑

i∈{1,2}

E
n+

1
2

zn,i −E
n− 1

2
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∆t
+
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1
2 +
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Λ n− 1

2

2

)ᵀ
Sη
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1
2 −
−→
Λ n− 1

2

∆t

)

+
1

2

(−→U n+1
1 −

−→
U n−1

1

2∆t

)ᵀ
Cᵀ

1

(−→Mn+
1
2 +
−→
Mn− 1

2

2

)
+

1

2

(−→U n+1
2 −

−→
U n−1

2

2∆t

)ᵀ
Cᵀ

2

(−→Mn+
1
2 +
−→
Mn− 1

2

2

)
.

(67)

First, let us remark that

(−→Λ n+
1
2 +
−→
Λ n− 1

2

2

)ᵀ
Sη
(−→Λ n+

1
2 −
−→
Λ n− 1

2

∆t

)
=

P
n+

1
2

Sη −P
n− 1

2
Sη

∆t
.

Second, using the first relation in (63), we can give the following expression for the last terms in (67)

1

4

(−→U n+1
1 −

−→
U n−1

1

2∆t

)ᵀ
Cᵀ

1

{
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1 − 2
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1
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)
+ MηC2

(−→U n+1
2 − 2

−→
U n

2 +
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2

∆t2
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+
1

4
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2 −
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2

2∆t
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Cᵀ
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∆t2
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U n−1

1
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,

which is equivalent to

1

4∆t

 ∑
i∈{1,2}

1
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Cᵀ
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2

∆t

)}
,

leading to (66) using the square of binomials.

Note that the energy functional (65) representing the kinetic and potential energy associated to the
interphase is unconditionally positive w.r.t. the time step. Hence, deriving a stability condition for the
discrete coupling scheme can be simply done by insuring that energy functionals associated to each sub-
domains are positive, which is exactly the result provided in Theorem 5. More precisely we can give the
following stability result.

Theorem 6. For a sub-domain index i ∈ {1, 2}, we denote by KDzn
i

the matrices associated to the discrete
Zener propagators in Ωi, defined as in (44). The coupling scheme (62) – (63) is stable upon the following
condition

∆t ≤ min

 2√
r(M−1

ρ1 KDzn
1

)
,

2√
r(M−1

ρ2 KDzn
2

)

 . (68)
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In other words, the introduction of the ETCs using the mortar element method does not influence
the stability condition of each sub-domains, for any values of the effective mechanical parameters of the
interphase.

3.5. Resolution algorithm using the Schur complement method

In order to give practical solving steps for the numerical scheme (62) – (63), we start by separating the
computation of the internal variables from the displacement unknowns. This is possible since the internal
variables appear in the displacement equations in an explicit manner. The coupled system satisfied by the
displacement unknowns and the Lagrange multipliers can be expressed as

Mρ1
∆t2

4 Cᵀ
1 −∆t2

2 Cᵀ
1

Mρ2
∆t2

4 Cᵀ
2

∆t2

2 Cᵀ
2

− 1
2C1 − 1

2C2
∆t2

2 Gη
C1 −C2

(
2Sη + ∆tHη

)


−→
U n+1

1−→
U n+1

2
−→
Mn+

1
2

−→
Λ n+

1
2

 =


−→
F 1−→
F 2−→
F µ−→
F λ

 , (69)

where the various right-hand sides of this system are defined as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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We define the following matrices

A =

(
Mρ1

Mρ2

)
, B =

(
∆t2

4 C1
∆t2

4 C2

−∆t2

2 C1
∆t2

2 C2

)
, C =

(
− 1

2C1 − 1
2C2

C1 −C2

)
, D =

(
∆t2

2 Gη (
2Sη + ∆tHη

)) ,
representing the block matrices of the system (69). With these notations, the Schur complement matrix is
defined by

S = D− CA−1Bᵀ ∈M2Mh,2Mh
(R). (70)

Introducing two intermediate variables
−→
U ?

1 and
−→
U ?

2, we can obtain, from applying a Schur complement
method, the following solving steps:(−→
U ?
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2

)
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)
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U ?
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Mn+

1
2

−→
Λ n+

1
2

)
.

Note that, using mass-lumping technique the matrix A is diagonal thus trivially invertible. However, for
this strategy to be relevant, we need to verify that the Schur matrix S is invertible.

Lemma 10. The Schur matrix defined in (70) is symmetric and positive definite.

Proof. Remarking that B = −∆t2

2 C, we have

S = D +
∆t2

2
CA−1Cᵀ,
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proving that the Schur matrix is symmetric. The expression of this matrix is

S =

(
∆t2

2 Gη (
2Sη + ∆tHη

))+
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2
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1
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where · represents the block matrix deduced by symmetry. Let
−→
Λ and

−→
M be two non-zero vectors of RMh

and define
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we can verify that
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)−→
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3.6. Lumped Schur complement matrix in the conform case

In practice, we define the discrete space Xh as one of the volume trace space, i.e.

Xh = V1,h|Γ− . (72)

This approximation is similar to (55), and corresponds to neglecting the effect of the deformation φ− on the
surface mesh. Introducing the following bilinear form

mΓ(λ, λ∗) =

∫
Γ

λ · λ∗ dΓ, ∀(λ, λ∗) ∈ X ×X,

and its corresponding finite element representation MΓ ∈MMh,Mh
(R), the definition (72) of Xh entails some

simplifications of the expressions of the bilinear forms (60). In particular, denoting by T1 ∈ MMh,N1,h
(R)

the matrix selecting the values on Γ− of a finite element vector in Vh,1, we have

C1 = MΓT1.

Furthermore, upon the assumption of conform interfaces, i.e.

V2,h|Γ+ = V1,h|Γ− = Xh,

we can extend the previous expression to bilinear forms applied on elements of Vh,2. More precisely, if we
define T2 ∈MMh,N2,h

(R) the matrix selecting the values on Γ+ of a finite element vector in Vh,2, we have

C2 = MΓT2.

With this specific decomposition of the coupling bilinear forms, and assuming that a mass lumping technique
is used when assembling MΓ, we can verify, from the expression (71), that the Schur matrix is a block diagonal
matrix, each block being of size 2d × 2d. Therefore it can be efficiently inverted, each block problems in
parallel. In other words, in the conform case, the computational overhead of the introduction of imperfect
transmission conditions using the mortar element method is very limited.
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3.7. Numerical illustrations on a two-dimensional configuration

(a) Scheme of the 2D “plane” case.

(b) `η = 10 µm. (c) `η = 100 µm.

Figure 3: Representation of the configuration (top), and snapshots of the numerical solution at the time when the longitudinal
wave packet reach the lower surface of the domain. Solution obtained with α = 1

5
, with `η = 10 µm (bottom left), `η =

100 µm (bottom right) and meshed intermediate layers. The white dashed line in snapshots corresponds to the observation
line at x = 8 mm.

We consider a 2D “plane” case, i.e. Φ reduces to the identity transformation. The dimensions of the
domain are set to L1 = 20 mm and L2 = 10 mm. We consider two inviscid and identical materials in Ω1

and Ω2, i.e.
C?,1 = C?,2 = C?, ρ?,1 = ρ?,2 = ρ?,

and we set to zero the imaginary parts D?,1, and D?,2. Furthermore, we assume that the target mechanical
properties are isotropic, and correspond to a steel material. It is characterized by the following mass density
ρ? = 8 g · cm−3, and Lamé coefficients λ? = 104 GPa and µ? = 78 GPa. Concerning the intermediate layers,
we define the following mechanical parameters

ρη? = ρ?, λC,η? = α2λ? + 2(1− α2)µ?, µC,η? = α2µ?, and λD,η? = µC,η? = 0, (73)

where α ≤ 1 is a contrast coefficient. Denoting by v?,L and v?,T the velocity of longitudinal and transverse
waves in the material, and by vη?,L and vη?,T the corresponding velocities in the interphase, the previous
expression (73) of the Lamé coefficients were derived so that

vη?,L = αv?,L, and vη?,T = αv?,T .

On the upper surface of the domain, we impose a normal surface load with a centered support of 2 mm with
the following time dependency

f(t) = cos
(
2πf(t− t0)

)
exp
(
− (t− t0)2

σ2
f

)
, (74)

27



with F = 6 MHz, t0 = 0.65 µs and σf = 0.2 µs−1. In each sub-domain, we set the identical mesh steps
of hx = hy = 0.125 mm and use finite elements of order 4. For clarity purposes, we illustrate this simple
configuration in Figure 3a.

(a) First component of the displacement field. (b) Second component of the displacement field.

Figure 4: Comparing the displacement field obtained when meshing the intermediate layer with the solution obtained from
effective transmission conditions. Solution obtained with α = 1

5
and `η = 10 µm at the observation line at x = 8 mm.

(a) First component of the displacement field. (b) Second component of the displacement field.

Figure 5: Comparing the displacement field obtained when meshing the intermediate layer with the solution obtained from
effective transmission conditions. Solution obtained with α = 1

5
and `η = 100 µm at the observation line at x = 8 mm.

To start with, we consider the case of a relatively high contrast of α = 1
5 and an interphase thickness

of `η = 10 µm. We show in Figure 3b a snapshot of the solution obtained at the arrival time of the first
longitudinal wave packet. In this snapshot, the intermediate layer is meshed with one element of order 2
in the thickness direction. At the abscissa x = 8 mm we consider an observation line. In Figure 4a and
4b we compare the first and second components of the displacement field obtained either by meshing the
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Figure 6: Evolution of the relative error e(α, `η) between the numerical solution with a meshed intermediate layer and the
numerical solution obtained using ETCs, for different contrast coefficients and thicknesses.

intermediate layer or by applying effective transmission conditions. We observe a very good agreement
between the two solutions.

In a second numerical experiment, we impose the same contrast coefficient but we increase the thickness
of the intermediate layers to `η = 100 µm. We show in Figure 3c the snapshot of the solution obtained
with a meshed intermediate layer using finite elements of order 3 in the thickness direction. Compare to
the previous case we observe a significant longitudinal reflection and some contributions trapped within
the interphase. We also extract the displacement fields at an observation line at x = 8 mm and compare
the numerical solution obtained from meshed layers and effective transmission conditions. While we keep
a reasonable agreement for the second component, the first component, gathering most of the transverse
contributions of higher frequency, are not adequately captured using ETCs. In particular, the solution
obtained from ETCs does not manage to represent the spatial variation around the thin layer location,
around y = 5 mm.

To better illustrate the evolution of the error introduced by the effective transmision conditions, we
propose to consider the following quantity depending on the contrast coefficient and the thickness of the
intermediate layer

e(α, `η) = max
n

‖unh − u
η,n
h ‖L2(Ω1∪Ω2)

‖unh‖L2(Ω1∪Ω2)
,

where unh is the numerical solution obtained with meshed interphase and uη,nh is the one obtained using
ETCs. In Figure 6 we plot this relative error for `η ∈ [10−3; 10−1] and α ∈ { 1

5 ,
1
3 , 1}. We clearly observe

that, for a fixed thickness, as the contrast coefficient decreases, the relative error increases. Interestingly
enough, for every tested values of the contract coefficient, we observe a linear asymptotic behavior w.r.t. `η.
Note that authors in [56] derive an asymptotic model of O

(
(`η)3

)
. Nonetheless it requires surface gradient

terms which are more involved computationally and, in particular, it would necessarily leads to sparse Schur
matrices, even with conform interfaces.

4. Numerical illustration: application to UT of a laminated composite

In this section we illustrate our modeling strategy by considering a more realistic 3D configuration. In
this configuration, we assume that the specimen under study is composed of 20 anisotropic visco-elastic plies
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and 19 intermediate layers. The geometry of the domain, prior to its deformation, is characterized by the
following lengths

L1 = L2 = 10 mm, L3 = 4.995 mm, `◦,η = 5 · 10−3 mm,

so that the plies have a thickness of 245 · 10−3 mm in the “plane” geometry. The mass density of the plies
is set to ρ?,i = 1.6 g · cm−3. For the sub-domain with odd or even indexes, the real part of the target
constitutive law reads, using the Voigt notation,

C◦?,odd =


139 6 6
6 12.1 5.5
6 5.5 12.1

3.3
6.6

6.6

 GPa, C◦?,even =


12.1 6 5.5

6 139 6
5.5 6 12.1

6.6
3.3

6.6

 GPa,

which corresponds to transverse isotropic constitutive law. For odd indexes, it represents plies with a fiber
orientation equals to e1 direction, while, for even indexes, the fiber orientation is e2. Using the viscosity
coefficients proposed in [67], we set the imaginary part of the target constitutive law to

D◦?,odd =


11.3 0.4 0.4
0.4 0.7 0.4
0.4 0.4 0.7

0.15
0.2

0.2

 GPa, D◦?,even =


0.7 0.4 0.4
0.4 11.3 0.4
0.4 0.4 0.7

0.2
0.15

0.2

 GPa,

and we assume that these mechanical properties have been characterized at a frequency of interest of
f? = 5 MHz, with ω? = 2πf?. The intermediate layers are epoxy layers, assumed to be inviscid materials
with the following mass density and Lamé coefficients

ρη? = 1.23 g · cm−3, λη? = 4.4 GPa, µη? = 1.6 GPa.

The global transformation Φ of the geometry is a simple cylindrical transformation of radius 10 mm and
angle π

4 rad. This transformation is affecting the definition of the mechanical properties of the plies in
virtue of (47). On the upper surface of the domain, we impose a normal surface load with a centered
circular support of radius 2 mm. The time dependency of this surface load is as in (74), with F = 5 MHz,
t0 = 0.65 µs and σf = 0.25 µs−1. We consider a maximal time of 2µs, which roughly corresponds to the
time required for the principal wave packet to reach the lower surface of the domain. Concerning the space
discretization of the domain, in the (x, y)−plane we set the mesh step to 285 · 10−3 mm and we use finite
elements of order 4. Within each ply’s thickness we use two elements of order 4, and in the case of meshed
intermediate layers we use one element of order 2.

As a first step, we neglect the viscous part of the target constitutive law and we compare the inviscid
model with either meshed intermediate layers or ETCs. We show in Figure 7 a snapshot of the numerical
solution obtained in the former case, and in Figure 8a we plot the third component of both solutions over the
line x = y = 5 mm. We observe a very good agreement between the two numerical solutions. In Table (2) we
compare various characteristics of the simulations, carried out on a laptop PC Intel(R) CoreTM i7− 8850H
at 2.6 GHz. We observe that we have close to a factor three between the timesteps, leading to a factor
three in terms of computational time. In terms of memory load we observe however a factor two when using
ETCs, which is due to the storage of the inverse of the Schur matrices at each interface between plis.

NDoFs ∆t (µs) Nb. steps CPU (min) RAM
E.T.C. 10.5M 2.94 · 10−3 681 2′31′′ 900Mb
meshed inter. layers 12M 1.16 · 10−3 1711 7′32′′ 400Mb
ratio (1.14)−1 2.53 (2.51)−1 (2.99)−1 2.25

Table 2: Comparing the characteristics of the simulation with meshed intermediate layers or using ETCs in the inviscid case.
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In a second step, we compute the solution obtained with a Kelvin-Voigt, a Maxwell and a Zener model.
In the three cases we use ETCs to model the intermediate layers between plies. In Tables 3, 4 and 5
we gather the various computation costs associated to each visco-elastic propagator. We observe, on this
practical case, the hierarchy described in Section 2.8: the Maxwell propagator is as efficient as the inviscid
case; the Zener model exhibits a doubled response time, mainly due to the second application of a stiffness
operator; the Kelvin-Voigt is roughly four times more expensive than the Maxwell propagator due to two
stiffness operations, and a smaller timestep.

NDoFs ∆t (µs) nb. step CPU (min) RAM
Kelvin-Voigt (E.T.C.) 10.5M 1.51 · 10−3 1322 9′06′′ 900Mb
Inviscid (E.T.C.) 10.5M 2.94 · 10−3 681 2′31′′ 900Mb
ratio 1.0 0.51 1.94 3.62 1.0

Table 3: Comparing the characteristics of the simulation between the Kelvin-Voigt and inviscid case.

NDoFs ∆t (µs) nb. step CPU (min) RAM
Maxwell (E.T.C.) 46.5M 2.93 · 10−3 682 3′01′′ 1200Mb
Inviscid (E.T.C.) 10.5M 2.94 · 10−3 681 2′31′′ 900Mb
ratio 4.42 1.00 1.00 1.19 1.33

Table 4: Comparing the characteristics of the simulation between the Maxwell and inviscid case.

NDoFs ∆t (µs) nb. step CPU (min) RAM
Zener (E.T.C.) 46.5M 2.83 · 10−3 705 4′55′′ 1200Mb
Inviscid (E.T.C.) 10.5M 2.94 · 10−3 681 2′31′′ 900Mb
ratio 4.42 0.96 1.03 1.91 1.33

Table 5: Comparing the characteristics of the simulation between the Zener and inviscid case.

We show in Figure 7 the snapshots obtained from the Zener model at specific times, to be compared
with the inviscid case. In Figure 8b, we plot the third component of both solutions over the observation line
x = y = 5 mm at time t = 2µs, clearly showing the effect of the attenuation.

Additionally, we consider an observation point of coordinates (x, y, z) = (5, 5, 0) situated at the bottom
of the observation line. After increasing the maximal time to 4µs, we plot over time in Figure 9a the
solutions of the inviscid and the three visco-elatic models. For visibility purposes, we plot in Figure 9b only
the signals obtained from the viscous propagators. These plots demonstrate the validity of our calibration
procedure since the visco-elastic solutions give similar results.

To better understand their differences, we analyze the frequency content of the main wave packet. To
do so, we select the numerical signals up to time t = 3 µs and apply a simple zero padding. On these
windowed signals, we apply a time-domain Fourier transform. The results of these operations are presented
in Figure 10a. We clearly see the global effect of the attenuation, which is equivalently recovered by the
three visco-elastic models. At the frequency of interest – 5 MHz for this specific case – the corresponding
three curves match. Away from the frequency of interest, we observe some frequency shifts. As detailed
in Section 2.8, these shifts are due to the frequency dependency of the attenuation law associated to each
model, namely: constant, (locally) linear and quadratic functions for the Maxwell, Zener and the Kelvin-
voigt case respectively – see Figure 2a. From the frequency content of the signals, we are able to compute
the attenuation laws associated to each model. We present them in Figure 10b. The three curves match at
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the frequency of interest, and we recover the theoretical dependencies of the attenuation laws of the three
models.

Figure 7: Comparing snapshots of the magnitude of the displacement field for the inviscid model (top row) and Zener model
(bottom row).
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(a) Meshed intermediate layers vs. ETCs (inviscid case).
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Figure 8: Comparing the third component of the displacement field at the centered observation line at x = y = 5 mm at time
t = 2 µs.
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Figure 9: Comparing the evolution in time of the third component of the displacement field at the observation point
(x, y, z) = (5, 5, 0) for the inviscid, Kelvin-Voigt, Maxwell and Zener models, with ETCs.
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(a) Frequency content of the windowed signal.
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Figure 10: Frequency spectrum (left) of the signal at the observation point (x, y, z) = (5, 5, 0), submitted to a time windowing
in the interval [0; 3µs], and the corresponding attenuation laws (right).

5. Conclusion and perspectives

In this work we have proposed a systematic approach to compare explicit fully discrete wave propagators
of standard visco-elastic models. By proposing a common and simple calibration procedure for these models,
applicable in the general context of anisotropic constitutive laws, we were able to provide qualitative analysis
of the corresponding numerical schemes. In particular, we have studied how the stability conditions may
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evolve w.r.t the quality factor or the spatial discretization. This general analysis has been illustrated with
various numerical solutions in 1D and 3D contexts.

In the second part of this communication, we have shown how one can integrate effective transmission
conditions to represent isotropic intermediate layers between curved anisotropic visco-elastic domains using
the mortar element method. Based upon the stability analysis of the visco-elastic models carried out in the
first part, we have proven that the introduction of the mortar elements does not modify the stability condition
of the coupled scheme, this for any effective parameters of the transmission conditions. Additionally, even
though this approach is valid for non-conform space discretization, in the specific case of conform interfaces
we have obtained an explicit algorithm. We have proposed 2D illustrations providing numerical evidence
of the validity of this strategy, and a numerical study on the convergence of the solution with respect to
thickness of the intermediate layer. In a 3D context, we have considered the case of wave propagation
within a curved visco-elastic laminated material. In this case, the use of effective transmission conditions
to represent the epoxy intermediate layers has yielded a significant improvement, in terms of computational
costs, compared to the standard numerical solution obtained by meshing these layers.

Several perspectives related to the presented work may be envisioned. Concerning the comparison of
the discrete propagators, we may consider the generalized Zener model, which in essence is an extension
of the model (34) with multiple relaxation mechanisms. In this context, the main difficulty would be to
propose an explicit calibration of this model applicable for the anisotropic case. In relation to this issue,
we may refer to the recent advances of [68, 69]. Concerning the incorporation of effective transmissions
conditions, it seems possible, albeit more involved, to incorporate more elaborate asymptotic models such as
the one proposed in [56]. Using this type of transmission conditions, yielding better convergence w.r.t. the
intermediate layer thickness, may be interesting in order to address a larger range of UT configurations. A
rather more direct perspective is to consider the coupling between a fluid domain (acoustic formulation) and
a solid domain (elastodynamic formulation) with standard ETCs. A typical example of application is the
simulation of UT of immersed and coated materials. Note that, in this perspective, being able to use non-
conforming space discretization thanks to the mortar element method is a major asset. Another natural
perspective is the use of these ETCs to model delamination flaws, typically appearing after impacts on
laminated composite structures. The major goal of this approach would be to incorporate flaws of arbitrary
shapes without penalizing the computational cost of the numerical solver. As a more general perspective, it
seems promising to rely on the fact that the coupling scheme does not depend on the effective parameters of
the interphase. This robustness may be put to good use within an inverse or imaging process. For example,
using specific ETCs to represent delamination flaws, we may rely on variational data-assimilation approaches
[70, 71, 72] or topological gradient imaging [73, 74, 75] in order to reconstruct specific parameters of the
flaws.
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Appendix A. Attenuation law and phase velocity of one-dimensional visco-elastic models

Let us consider the one-dimensional visco-elastic wave equation in frequency domain

ρω2û−M(ω)∂2
xxû = 0, (A.1)

where M(ω) = M1(ω) + iM2(ω) is the complex elasticity modulus.
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Theorem 7. The attenuation law and phase velocity associated to (A.1) are given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α(ω) = ω

√
ρQ2(ω)

2M1(ω)
(
1 +Q2(ω)

) {√1 +
1

Q2(ω)
− 1

} 1
2

,

vP (ω) =

√
2M1(ω)

(
1 +Q2(ω)

)
ρQ2(ω)

{√
1 +

1

Q2(ω)
+ 1

}− 1
2

,

(A.2)

where Q(ω) is the quality factor defined as

Q(ω) =
M1(ω)

M2(ω)
. (A.3)

Proof. The dispersion relation associated to (A.1) is

ρω2 −M(ω)k2 = 0,

where k = κ− iα is the complex wave number. The associated complex velocity is defined by

vc(ω) =
ω

k
=

√
M(ω)

ρ
, (A.4)

so that we can deduce the following definition of the attenuation law and phase velocity

α(ω) = −ωIm

(
1

vc(ω)

)
, vP (ω) =

ω

κ
= Re

(
1

vc(ω)

)−1

. (A.5)

By simply expressing the real and imaginary parts of vc(ω) as functions of M(ω), we can derive the results
(A.2). In the following we denote

vc(ω) = ac(ω) + ibc(ω).

Using (A.4) we have

a2
c(ω)− b2c(ω) =

M1(ω)

ρ
, ac(ω)bc(ω) =

M2(ω)

2ρ
. (A.6)

Hence, eliminating bc(ω) in the first relation of (A.6) yields

a4
c(ω)− M1(ω)

ρ
a2
c(ω)− M2

2 (ω)

4ρ2
= 0,

from which we can extract the unique positive root

a2
c(ω) =

M1(ω) + |M(ω)|
2ρ

.

Using the first relation in (A.6), we have

b2c(ω) = a2
c(ω)− M1(ω)

ρ
=
|M(ω)| −M1(ω)

2ρ
,

so that

|vc(ω)|2 = a2
c(ω) + b2c(ω) =

|M(ω)|
ρ

.
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Using (A.5), we obtain

α(ω) = ω
bc
|vc|2

= ω
ρ

|M(ω)|

{
|M(ω)| −M1(ω)

2ρ

} 1
2

.

Finally, using (A.5), the phase velocity reads

vP (ω) = Re

(
1

vc(ω)

)−1

=
|vc|2

ac
=
|M(ω)|
ρ

{
M1(ω) + |M(ω)|

2ρ

}− 1
2

,

and we conclude by remarking that |M(ω)| = M1(ω)
√

1 + 1
Q2 .

From (A.2), we can verify that the ratio between the attenuation and the (real) wavenumber is

α

κ
=
√
Q2 + 1−Q,

so that we recover the result given in the Section 2.3 of [25]. Using the expression (A.2) of the attenuation
law, we can propose the following characterization of the standard visco-elastic models.

Theorem 8. Assuming “low-loss” and high-frequency asymptotics, i.e. Q → +∞ and ω → +∞, the
Kelvin-Voigt, Maxwell and Zener models follow a quadratic, constant and locally linear attenuation law
respectively.

Proof. From (A.2), the “low-loss” limit of the attenuation law is

α(ω) −→
Q→+∞

ω

2Q(ω)

√
ρ

M1(ω)
. (A.7)

The complex modulus associated to the Kelvin-Voigt model reads

Mkv(ω) = Ckv + iωDkv,

where Ckv > 0 and Dkv > 0 are scalar values in a one-dimensional context. Using (A.7) we have

αkv(ω) −→
Q→+∞

ω2 Dkv

2Ckv

√
ρ

Ckv
,

prooving the quadratic dependence of the attenuation w.r.t. the frequency. For the Maxwell case, the
complex modulus is given by

Mmx(ω) =
iωDmx

1 + iωτmx
, τmx =

Dmx

Cmx
,

yielding the following real and imaginary parts and quality factor

Mmx
1 (ω) =

ω2τmxDmx

1 + (ωτmx)2
, Mmx

2 (ω) =
ωDmx

1 + (ωτmx)2
, Qmx(ω) = ωτmx.

The expression of the limit (A.7) reads

αmx(ω) −→
Q→+∞

Cmx

2Dmx

√
ρ
(
1 + (ωτmx)2

)
τmxDmxω2

.

Furthermore, using a high-frequency asymptotic we observe that the Maxwell model follows a constant
attenuation law

αmx(ω) −→
Q,ω→+∞

Cmx

2Dmx

√
ρ

Cmx
.
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Finally, concerning the Zener model, the complex modulus is

Mzn(ω) =
Czn + iωτ znDzn

1 + iωτ zn
,

with real and imaginary parts defined as follow

M zn
1 (ω) =

Czn + (ωτ zn)2Dzn

1 + (ωτ zn)2
, M zn

2 (ω) =
ωτ zn(Dzn − Czn)

1 + (ωτ zn)2
.

The corresponding quality factor is given by

Qzn(ω) =
Czn + (ωτ zn)2Dzn

ωτ zn(Dzn − Czn)
.

The high-frequency asymptotic of the real part of the complex modulus is constant w.r.t. the frequency,

M zn
1 (ω) −→

ω→+∞
Dzn.

Hence, assuming low-loss and high-frequency asymptotics, the attenuation law of the Zener model satisfies

αzn(ω) −→
Q,ω→+∞

ω

2Q(ω)

√
ρ

Dzn
.

The derivative of the quality factor w.r.t. the angular frequency is

dQzn

dω
(ω) =

τ zn
(
(ωτ zn)2Dzn − Czn

)
(ωτ zn)2

,

and, using the calibration (35), we remark that

dQzn

dω
(ω?) =

2D?

ω?
−→

Q,ω→+∞
0.

Hence, the attenuation law of the Zener model is linear locally, i.e. around the frequency of interest ω?.
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[56] M. Bonnet, A. Burel, M. Duruflé, P. Joly, Effective transmission conditions for thin-layer transmission problems in
elastodynamics. The case of a planar layer model, ESAIM: M2AM 50 (1) (2016) 43–75.

[57] B. I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal.
38 (3) (2000) 989–1012.

[58] C. Bernardi, Y. Maday, F. Rapetti, Basics and some applications of the mortar element method, GAMM-Mitteilungen
28 (2) (2005) 97–123.
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