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Abstract7

Proposing efficient numerical modeling tools for high-frequency wave propagation in realistic configurations,8

such as the one appearing in ultrasonic testing experiments, is a major challenge, especially in the per-9

spective of inversion loops or parametric studies. We propose a numerical methodology addressing this10

challenge, and based upon the combination of the spectral finite element method and the mortar element11

method. From a prior decomposition of the scene of interest into “macro-elements” we show how one can12

improve the performances of the standard finite element procedures in terms of memory footprint and com-13

putational load. Additionally, using this decomposition, we are able to efficiently reconstruct important14

modeling features on-the-fly, such as orientations of anisotropic materials or splitting directions of perfectly15

matched layers formulations, altogether in a robust and efficient manner. We believe that this strategy is16

particularly suitable for parametric studies and sensitivity analysis. We illustrate our strategy by simulating17

the propagation of an ultrasonic wave into an immersed and curved anisotropic stratified 3D specimen flawed18

with an internal circular delamination of varying size, thus showing the efficiency and the robustness of our19

approach.

Keywords: finite element methods; time integration; explicit; acoustics; structures20

1. Introduction21

Throughout decades of their intensive use, Non Destructive Testing (NDT) techniques have become a22

major asset in numerous advanced industrial fields such as nuclear energy industry, petrochemical industry23

or aeronautics. Traditional Ultrasonic Testing (UT) methods [1] based upon the propagation of a high-24

frequency bulk wave within materials or manufactured products keep a major place among existing NDT25

techniques. Concurrently, the role of UT modeling [2] has been continuously increasing [3] as a support of26

the experimental data analysis and post-processing [4, 5, 6], the analysis and design of transducers [7, 8, 9],27

or the evaluation of UT processes [10, 11]. These examples of application often require exploring the output28

response of a so-called forward solver by varying the input data. This sensitivity analysis typically entails29

a large number of direct simulations that are generally embedded within an inversion algorithm. Hence,30

proposing useful modeling tools should be performed following a primary goals:31

(G1) The forward solver should be able to efficiently handle parametric variations of the configuration of32

interest.33

In the scope of this communication, the presented work is driven by a second major goal, which results34

from our wish to make the modeling tools accessible by a non-specialist end-user, e.g. through a commercial35

software such as the CIVA platform [12]:36
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(G2) No specific hardware architecture should be required from the end-user in order to support the simu-37

lation’s runs.38

In the context of high-frequency wave propagation one can consider, without being fully comprehensive, at39

least two principal families of modeling strategies. First, the class of asymptotic methods [13, 14] relying40

on an asymptotic expansion of the wave field w.r.t. the frequency is widely spread in the NDT [15, 16] and41

seismic waves [17, 18] modeling communities. This type of methods provides an efficient and meaningful way42

to represent the propagation of waves over large distances. However, due to the truncation of the asymptotic43

development, they fail to represent various – and potentially important – phenomena such as diffraction by44

small flaws, or reflections at critical angles. Second, a full-wave modeling of the propagation phenomena45

can be obtained using numerical methods, such as finite element methods [19, 20], finite difference methods46

[21] or boundary element methods [22]. Nevertheless, as they are based upon discretization steps related47

to the wavelength scale, they often require dedicated solvers based upon specific hardware architectures48

[23, 24, 25, 26] in order to achieve sufficient performances.49

In our work, we propose a UT modeling numerical tool based upon a “macro-element” strategy that50

satisfies both our primary goals (G1) and (G2). This strategy relies on the assumption that the geometry51

associated to the UT configuration can be decomposed into sub-domains. Each sub-domain is defined52

as the transformation of a reference macro-element, the unit cube in 3D, and is assigned to a unique53

formulation (e.g. acoustics, elastodynamics or absorbing layers, with potentially inhomogeneous material54

properties). In order to provide an efficient fully discrete propagator, each macro-element is sub-discretized55

– depending on the estimated wavelengths of interest – using the spectral finite element method [19, 20, 27].56

The communication between the various formulations assigned to the macro-elements is handled using the57

mortar element method [28, 29, 30]. By making the most of this decomposition we are able to increase58

the performances of standard finite element procedures and to incorporate efficiently important modeling59

features.60

The outline of the paper is as follows. In Section 2 we recall the main components of the discrete61

propagators built upon spectral finite elements for each formulation of interest. This enables us to detail62

in Section 3 the macro-element strategy and how it addresses goals (G1) and (G2). In Section 4 we show63

how the mortar element method can be used in practice to efficiently connect neighboring macro-elements64

with potentially different formulations. In Section 5, we illustrate our strategy in the context of the UT65

of curved Carbon Fiber Reinforced Polymer (CFRP) composite structures in a 3D setting. We finally give66

some conclusions and perspectives in Section 6.67

2. Discrete propagators based upon spectral finite elements68

We consider the propagators for the fluid, solid and corresponding Perfectly Matched absorbing Layers69

(PMLs). They form the minimal set of formulations that one needs to handle in order to address most70

of the UT configurations. In this section, we recall the main components of the finite element method71

employed to propose discrete propagators for every formulations, in order to clearly list the benefits brought72

by the macro-element strategy in the next section. For further details on finite elements, we invite readers73

to refer to [19, 20, 31, 32] for a comprehensive presentation in the case of acoustic and elastodynamics, and74

to [33, 34, 35] for the PML formulations.75

2.1. Fluid, solid and PML formulations76

In the following, we consider Ω ⊂ Rd, with d = 2 or d = 3, a bounded computational domain bearing one77

of the possible formulations. We represent by ∂Ω its boundary and by n the corresponding exterior normal78

vector field. We denote the coordinates in Ω by x = (x1 · · ·xd)ᵀ ∈ Rd, and by79

∇xu =
( ∂u
∂xi

)d
i=1

, ∇
x
v =

( ∂vi
∂xj

)d
i,j=1

,80
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the gradient of a scalar and vector field respectively. Accordingly, the divergence operators of vector and81

tensor fields are denoted by82

∇x · v =

d∑
i=1

∂vi
∂xi

, ∇x · w =
( d∑
j=1

∂wij
∂xj

)d
i=1

,83

so that the scalar Laplacian operator simply reads ∆xu = ∇x ·
(
∇xu

)
. In the case of a fluid domain, the84

material is characterized by its mass density ρ, assumed constant for simplicity, and its sound velocity c.85

The wave equation satisfied by the acoustic pressure p reads86

1

ρc2
∂2p

∂t2
− 1

ρ
∆xp = 0 in Ω, ∇xp · n = 0 on ∂Ω, (1)87

along with given initial conditions. The weak formulation associated to (1) consists in finding p ∈ V = H1(Ω)88

for any time t > 0, such that, for any test function p∗ ∈ V ,89

d2

dt2
m(p, p∗) + k(p, p∗) = 0, (2)90

where m(·, ·) and k(·, ·) are two bilinear forms defined by91

m(p, p∗) =

∫
Ω

1

ρc2
p p∗dΩ, k(p, p∗) =

∫
Ω

1

ρ
∇xp · ∇xp∗dΩ. (3)92

In the case of a solid domain, the displacement field y satisfies the following field equation93

ρ
∂2y

∂t2
−∇x · σ = 0 in Ω, σ · n = 0 on ∂Ω, (4)94

with ρ being the mass density, and σ the stress tensor field. We complete (4) with relevant initial conditions.95

The linearized Green-Lagrange tensor and the stress tensor are linked through a linear constitutive law96

σ = Cε(y), ε(y) =
1

2

(
∇
x
y +∇

x
yᵀ
)
.97

We assume that the fourth order tensor C can be decomposed into a constant tensor C∗ defined in a local98

orthonormal basis {ei}di=1,99

C(x) =

d∑
i,j,k,l=1

C∗ijkl ei(x)⊗ ej(x)⊗ ek(x)⊗ el(x), ∀x ∈ Ω, (5)100

and so that C satisfies the standard symmetry and positivity conditions. The corresponding weak formulation101

is similar to (2) where, for any test function y∗ ∈ V = [H1(Ω)]d, the bilinear forms are102

m(y, y∗) =

∫
Ω

ρy · y∗dΩ, k(y, y∗) =

∫
Ω

Cε(y) : ε(y∗)dΩ. (6)103

In addition to these natural formulations, we are interested in formulations addressing the challenge of104

numerically representing infinite propagation areas. Building such formations is an active field of research105

that goes beyond the scope of this paper. Hence, without going into details, we use as is a class of absorbing106

layers referred to as Perfectly Matched Layers (PMLs), and more specifically the formulation proposed in107

[35]. In the acoustic case, it is a first-order in time formulation based upon split pressure variables {pi}di=1108
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and a velocity variable v, satisfying109 

p =

d∑
i=1

pi,

1

ρc2
∂pi
∂t

+∇x ·
(
(si ⊗ si)v

)
+ τi

1

ρc2
pi = 0, i = 1, · · · , d,

ρ
∂v

∂t
+

d∑
i=1

∇x pi +

d∑
i=1

τi(si ⊗ si)v = 0.

(7)110

The formulation (7) is completed with relevant initial conditions and boundary conditions. In (7), {si}di=1111

are the splitting directions, and {τi}di=1 are the absorbing coefficients. In practice, these directions can be112

the canonical basis of Rd or potentially another set of varying orthonormal directions. In the former case,113

we refer to [35] for the discussion of the “Perfectly Matched” condition of this formulation. We also refer114

to [35] for the expression of the corresponding weak formulation. For solid domains, we consider the similar115

split first order formulation. In the scope of this paper, we cast aside the issue of PML stability, and we116

assume that the material properties C∗ in (5) allow for a stable use of this formulation. Readers may refer117

to [33, 34], and references therein, for more details on this matter.118

2.2. Generalities on spectral finite elements119

In this section we propose to go through the key notions of the finite element discretization. To simplify120

the presentation we consider mainly the scalar case and systems of the form of (2). This will enable us to121

introduce the principal notations in order to detail the benefits of the macro-element strategy later on.122

2.2.1. Fully discrete scheme123

We consider a Galerkin approximation space Vh ⊂ V generated by the basis functions {ϕI}NhI=1, with124

Nh = dim(Vh). We define the matrix form of the discrete (in space) counter part of (2) as125

M
d2−→P
dt2

+ K
−→
P = 0. (8)126

In (8),
−→
P ∈ RNh is the vector regrouping the coefficients of the discrete solution in the basis of Vh. The127

matrices M and K are the so-called mass and stiffness matrices defined as128

MIJ = m(ϕI , ϕJ), KIJ = k(ϕI , ϕJ), ∀I, J = 1, · · · , Nh.129

The fully discrete scheme is obtained by employing an explicit second-order leapfrog time scheme,130

M
−→
P n+1 − 2

−→
P n +

−→
P n−1

∆t2
+ K
−→
P n = 0, (9)131

which is stable upon the following Courant-Friedrichs-Lewy (CFL) condition, see e.g. [36] or Appendix A,132

∆t ≤ 2√
r(M−1K)

, (10)133

where r(·) represents the spectral radius of a matrix. Note that this discretization procedure trivially extends134

to the elastodynamic case with relevant changes in the bilinear forms defined in (6). For PML formulations,135

we also use a time scheme consistent of order two, such as in [35].136
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2.2.2. Spectral finite elements and mass lumping137

Lagrange finite element methods [31] propose a specific construction of the approximation space Vh based138

upon a given mesh Th of the computational domain. In the following, we consider meshes of hexahedral (or139

quadrilateral) elements satisfying the standard conformity constraints. The space Vh is defined as the space140

of functions that are globally continuous, and that have a local, i.e. per element, polynomial representative141

in a reference element. More precisely, assuming that each element K ∈ Th is the result of a diffeomorphism142

FK applied onto a reference cube (or square) K̂, we have, for any vh ∈ Vh,143

∀K ∈ Th, ∃k = k(K) ∈ N∗d, ∃!v̂K ∈ Qk(K̂), vh|K = v̂K ◦ F−1
K . (11)144

In (11), Qk is the space of polynomials expressed as the tensor product of one-dimensional polynomial145

spaces, and we denote by n̂h its dimension,146

∀k = (k1 · · · kd)ᵀ ∈ N∗d, Qk(K̂) =

d∏
p=1

Pkp([0; 1]), n̂h = dim(Qk) =

d∏
p=1

(kp + 1).147

We define on the reference element a set of n̂h nodes Ξ̂ = {ξ̂
i
}n̂hi=1, and we denote by {ϕ̂i}n̂hi=1 the associated148

local Lagrange polynomial basis. From the transformation of these local nodes by every FK , we obtain the149

set of global nodes Ξ = {ξ
I
}NhI=1, from which we have discarded every redundant coordinates at element150

boundaries. The global Lagrange basis functions of Vh are linked to the local Lagrange polynomials through151

152

∀K ∈ Th s.t. ξ
I
∈ K, ∃!iK ∈ {1, · · · , n̂h}, ϕI |K = ϕ̂iK ◦ F

−1
K . (12)153

In (12), we have implicitly introduced the “local-to-global” index mapping154

`G : Th × J1; n̂hK −→ J1;NhK, s.t. I = `G(K, iK). (13)155

Note that in (11), we allow functions in Vh to be locally represented by polynomials with orders potentially156

different in every directions. This particularity will be referred to as “anisotropic” orders of approximation.157

We will see in Section 5 that anisotropic orders enables a local adaptation of the discretization, in order to158

efficiently take into account thin layers of materials.159

In the context of hexahedral (or quadrilateral) elements, a convenient way to define a proper set of160

Lagrange nodes Ξ̂ is by tensor product of d one-dimensional point distributions. The spectral finite element161

method is based upon Gauss-Lobatto points for defining these one-dimensional point distributions. Due to162

their optimal convergence as the order of approximation increases [27, 37], they have received a significant163

amount of interest in numerous fields of application. In the context of transient wave propagation modeling,164

spectral elements are particularly interesting since they allow for consistent “mass lumping” at any order of165

approximation [19, 20, 32, 38]. Broadly, this approach aims at approximating the mass matrix in (9) by a166

diagonal one, in order to obtain a fully explicit scheme. This approximation of the mass matrix is performed167

using a specific quadrature formula for computing the integrals appearing in the local mass matrices. The168

main conditions to achieve consistent mass lumping are [20, 32, 39]:169

(i) the quadrature points and the nodes must coincide to obtain diagonal local mass matrices,170

(ii) for stability reasons, the quadrature weights need to be strictly positive,171

(iii) the quadrature formula must be exact at least for polynomials of order 2k − 2, in order to be as172

consistent as the case of an exact integration.173

For hexahedral (or quadrilateral) elements, these three specific conditions are only satisfied by the Gauss-174

Lobatto quadrature formula. Spectral finite elements and mass lumping extend to elastodynamics [19, 32, 40]175

and PML formulations [33, 35].176
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2.2.3. Local stiffness operations177

In practice, the diagonal mass matrix is assembled and stored in an initializing step of the numerical178

scheme. Hence, the main computational load in (9) comes from the application, at each time step, of179

the stiffness matrix to a finite element vector. Traditionally, the application of the global bilinear form is180

decomposed into the application of element-wise forms. Upon the assumption of a constant mass density of181

the fluid, we have182

k(vh, wh) =
1

ρ

∑
K∈Th

k̂K(vh, wh), ∀vh, wh ∈ Vh.183

After a change of variable and using the local polynomial representatives of vh and wh, as in (11), the local184

stiffness operator reads185

k̂K(vh, wh) =

∫
K̂

(
∇
x̂
F−ᵀK ∇x̂v̂K

)
·
(
∇
x̂
F−ᵀK ∇x̂ŵK

)
JK dΩ̂, (14)186

where JK = |det(∇
x̂
FK)|. For conciseness, we introduce the notation187

G
K

(x̂) =
co(∇

x̂
FK)ᵀ co(∇

x̂
FK)

JK

∣∣
x̂
, ∀K ∈ Th, ∀x̂ ∈ K̂, (15)188

where co(·) is the cofactor matrix. As for the mass matrix, we use a Gauss-Lobatto quadrature formula189

to approximate the integral in (14). We denote by {ωq}
n̂q
q=1 and {x̂q}

n̂q
q=1 ⊂ K̂ the quadrature weights and190

points. The local stiffness operators (14) are approximated by191

k̂K(vh, wh) ≈ k̂QK(vh, wh) =

n̂h∑
q=1

ωq
(
∇x̂v̂

ᵀ
K GK ∇x̂ŵK

)∣∣
ξ̂
q

. (16)192

Denoting by {αK,i}n̂hi=1 the coefficients of the local functions v̂K in the Lagrange polynomial basis193

v̂K(x̂) =

n̂h∑
i=1

αK,i ϕ̂i(x̂), ∀x̂ ∈ K̂,194

the expression of the corresponding gradient at the quadrature points reads195

∇x̂v̂K(ξ̂
q
) =

n̂h∑
i=1

αK,i∇x̂ϕ̂i(ξ̂q).196

Introducing the matrix D̂ ∈ Md×nh,nh(R) such that197

∀i, j = 1, · · · , n̂h, ∇x̂ϕ̂i(ξ̂j) =
(
D̂d(i−1)+1,j · · · D̂d(i−1)+d,j

)ᵀ
∈ Rd, (17)198

the local finite element vectors representing v̂K and its gradient are given by199

−→
VK =

(
αK,1 · · ·αK,n̂h

)ᵀ
,
−−−→
∇VK =

(
∇x̂v̂K(ξ̂

1
) · · · ∇x̂v̂K(ξ̂

n̂h
)
)ᵀ

= Dϕ̂ᵀ−→VK .200

Regrouping in a matrix GK ∈Md×nh,d×nh(R) the evaluation of (15) at every local nodes times the quadra-201

ture weights, the local stiffness matrix (16) reads202

k̂QK(vh, wh) =
−→
VK

ᵀ
(
D̂ GKD̂ᵀ

)−−→
WK .203

This decomposition extends to the elastic stiffness operator (6) and, for the sake of conciseness, is left to the204

reader. Similar arguments can also be used in the context of PML formulations in order to derive factorized205

forms of the bilinear operators appearing in the weak form of (7).206
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Figure 1: Illustration of a macro-element decomposition of a domain obtained from a cylindrical deformation of simple plate
with a centered through-hole. The black lines in the geometry represent the edges of the macro-elements. The white lines
represent the internal sub-discretization of a specific macro-element prior to and after deformation.

3. A macro-element strategy207

3.1. Primary division of the computational domain208

In the following, we consider a more complex configuration where, within the bounded domain Ω, mul-209

tiple formulations (fluid, solid or PML) can be considered. We assume that the computational domain is210

decomposed into N sub-domains,211

Ω =

N⋃
i=1

Mi,212

and that each sub-domain Mi, referred to as a Macro-Element (ME), is built from a polynomial transfor-213

mation φ
i

of a reference cube (or square) M̃ ,214

∀i = 1, · · · , N, ∃k = (k1, · · · , kd) ∈ Nd, φ
i
∈
[
Qk(M̃)

]d
.215

This division of Ω is driven by the following constraints:216

(i) The macro-mesh is a conform subdivision of Ω,217

(ii) To each interface between two different formulations corresponds an interface, or a set of interfaces,218

between two MEs or more,219

(iii) The number of macro-elements should be minimal.220

In Figure 1 we illustrate a macro-element decomposition of a curved plate having a through-hole at its221

center. In this example, the macro-mesh is made of twelve MEs, deformed from the unit cube in order to222

fit the geometry of the hole.223

In some cases, we may consider an additional set of polynomial transformations θi of the reference macro-224

element. These transformations can be used to represent the computational domain prior to some global225

deformation Ψ. Let us denote by Ω∗ the domain in this prior state such that226

Ω = Ψ(Ω∗), Ω∗ =

N⋃
i=1

M∗i =

N⋃
i=1

θi(M̃).227

7



In Figure 1, we illustrate the case where Ω∗ represents the plane geometry prior to a simple cylindrical228

deformation. In concrete applications, we might be interested in global deformations Ψ that can be a229

combination of cylindrical deformations, a spline deformation, or potentially more complex alterations of230

Ω∗. The effect of this deformation onto a macro-element M∗i can be represented by the pair of polynomial231

transformations θi and φ
i
, i.e.232

ψ
i

= Ψ|M∗
i

= φ
i
◦ θ−1

i .233

3.2. Sub-division of the macro-elements234

Due to its “minimal” nature, the division of the computational domain proposed previously is unfit for235

adequate numerical procedures at the wavelength scale. Therefore, we resort to an internal sub-division of236

each macro-element Mi. It corresponds to a grid of hexahedral (or quadrilateral) cells deformed by φ
i
. Let237

us denote by T̃h,i and Th,i the grid prior to and after its deformation so that, formally,238

Th,i = φ
i
(T̃h,i), ∀i = 1, · · · , N. (18)239

Each grid cell K̃ ∈ T̃h,i is obtained from the reference element by a simple affine transformation F K̃ . For240

instance, for d = 3, it reads241

F K̃(x̂) =

O1(K̃)

O2(K̃)

O3(K̃)

+

h1(K̃)

h2(K̃)

h3(K̃)

 x̂, ∀x̂ ∈ K̂, (19)242

where {Op(K̃)}dp=1 and {hp(K̃)}dp=1 are the origin and the lengths of the cell respectively. With these243

notations, for each element K ∈ Th,i, the transformation FK introduced in Section 2.2.2 is expressed as244

FK(x̂) = (φ
i
◦ F K̃)(x̂), ∀x̂ ∈ K̂. (20)245

To each element in Th,i, we associate a spectral finite element with anisotropic orders. We denote by Nh,i246

the number of nodes and by247

Ξi = {ξi
I
}Nh,iI=1 , ∀i = 1, · · · , N,248

the coordinates of the nodes. Note that (18) and (20) naturally extend to the polynomial transformation249

θi of the macro-element so that we can define a mesh T ∗h,i of M∗i , composed of the nodes Ξ∗i . In practice,250

the refinement of the grid depends, for precision purposes, on an a priori estimation of the wavelengths of251

interest and on the maximal deformation of the grid. Note that, in (19), the lengths may vary from one252

cell to another, as long as T̃h,i remains a conform grid. This will be of major importance when dealing with253

stratified materials in Section 5.254

3.3. Assumption of conform interfaces255

Throughout this paper, we make the assumption that the union of every macro-element sub-divisions,256

Th =

N⋃
i=1

Th,i,257

generates a conform mesh of the computational domain after discarding redundant coordinates at interfaces.258

In particular, let Mi and Mj be two macro-elements having a face in common, say Γ, then there exists a259

one-to-one mapping between the coordinates of the nodes Ξi|Γ and Ξj |Γ. Let us denote by Mh the number260

of nodes on the interface Γ, we can introduce the “interface-to-volume” index mappings ViΓ and VjΓ such261

that262

∀k ∈ {i, j} VkΓ : J1;MhK −→ J1;Nh,kK, and ∀I = 1, · · · ,Mh, ξiViΓ(I)
= ξj
VjΓ(I)

. (21)263
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Alternatively, these mappings may be represented by the rectangular matrices ViΓ and VjΓ of dimension264

Nh,i ×Mh and Nh,j ×Mh respectively, such that265

∀k ∈ {i, j} ∀I = 1, · · · , Nh,k, ∀J = 1, · · · ,Mh

(
VkΓ
)
IJ

=

{
1, if ξk

I
∈ Γ and I = VkΓ(J),

0, otherwise.
(22)266

This aspect, referred to in the following as the conform interface assumption, will have important conse-267

quences when using the mortar element method in Section 4.268

3.4. Benefits of the macro-element strategy269

In order to cope with our objective (G2), we favor low-memory strategies. In this regard, we consider270

“unassembled” operations for representing the application of the stiffness matrix to an input finite element271

vector. In essence, it corresponds to applying every local stiffness matrices, described in Section 2.2.3, to272

local input vectors. In the simplified configuration where the sub-domains bear an acoustic formulation, we273

propose the pseudo-code in Algorithm 1 for performing these operations. In this pseudo-code, {
−→
W i}Ni=1 rep-274

resent input finite element vectors, and {
−→
V i}Ni=1 are the output vectors storing the results of the application275

of the stiffness matrices. We also consider in Algorithm 1 a standard coloring of each element in Th,i so that276

no elements in a color group have nodes in common.

Input :
−→
W 1, · · · ,

−→
WN

Output:
−→
V 1, · · · ,

−→
V N

for i← 1 to N do
foreach color group in Th,i do

foreach element K in color group do

for j ← 1 to n̂h do
−−→
W i
K [j]←

−→
W i[`G(K, j)]

−→
V iK ←

(
D̂ GKD̂ᵀ

)−−→
W i
K

for j ← 1 to n̂h do
−→
V i[`G(K, j)]←

−→
V i[`G(K, j)] +

−→
V iK [j]

end

end

end
Algorithm 1: Pseudo-code for unassembled stiffness operations.

277

These unassembled operations are rather natural in the context of high-frequency wave propagation278

modeling. However, our approach enables some significant improvements, mainly due to the fact that the279

underlying sub-discretization of each macro-element is related to a reference grid in M̃ . In particular,280

while in a general case of unstructured meshes, the “local-to-global” mapping `G defined in (13) is usually281

stored, it can be recomputed at no expense within each macro-element, thus sparing important memory282

load. Additionally, the matrix GK in (15), built from the transformation of the current element, can also283

be recomputed on-the-fly. To do so, we simply apply the transformation (20) to the local nodes coordinates284

Ξ̂ and compute the gradient of the transformation using D̂ᵀ, defined in (17). Thus, most of the memory285

footprint of a macro-element comes from the three finite element vectors of the time scheme and the diagonal286

mass matrix. Note that in this context, the major part of the workload in Algorithm 1 is centered on287

computing gradients of local finite element vectors. In practice we use a specific data structure in order to288

improve this operation, readers may refer to [41] for more details. On top of improving the memory load289

one can also increase the CPU performance by applying the local stiffness operations in parallel. Indeed,290

due to the definition of the elements coloring, the third loop in Algorithm 1 is naturally fit for parallelism.291

Since the topology of the mesh of a single ME is essentially a grid, this coloring is trivial and optimal in292

the sense that: (1) each color group has the same number of elements; (2) the number of different color is293

minimal.294
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Another interesting aspect of the macro-element strategy resides in its capacity to reconstruct efficiently295

and on-the-fly specific local vector fields. An important example is when a constant unitary vector, say v∗,296

is defined on a macro-element M∗i prior to its deformation by Ψ. In this context, we can retrieve its local297

variation within the final macro-element through298

v|Mi
=

(
∇
x̃
φ
i
∇
x∗θ
−1
i

)
v∗

‖
(
∇
x̃
φ
i
∇
x∗θ
−1
i

)
v∗‖

, ∀i = 1, · · · , N. (23)299

A natural application is the case of fiber materials, where specific material properties are defined in a300

privileged direction, the fiber, while being isotropic in the orthogonal plane. One may typically define the301

constant fiber orientation in Ω∗ and compute the result of its transformation from (23). From the local302

fiber orientation we can reconstruct any two orthogonal directions and define a local isotropic transverse303

constitutive law using (5). In Section 5, we present numerical results using this computational strategy304

to model curved stratified composites. A similar configuration is when a constant unitary vector, say ṽ, is305

defined in the reference macro-element M̃ . We can retrieve, within each macro element, its local deformation306

from307

v|Mi
=
∇
x̃
φ
i
ṽ

‖∇
x̃
φ
i
ṽ‖
, ∀i = 1, · · · , N. (24)308

This can typically be used to compute splitting directions of PML systems of the form of (7). Operating309

in this fashion, we encompass in the same framework curved and straight PML domains with an automatic310

and lightweight definition of the local directions.311

Low memory footprint, parallel operations on standard CPU and automatic reconstruction of relevant312

modeling components form the main benefits of our approach that enable us to address our primary goals313

(G1) and (G2). These advantages can be significant especially for 3D configurations, but they require314

a “minimal” high-order hexahedral (or quadrilateral) decomposition of Ω, which is known to be a major315

challenge in the field of computational geometry. However, since our goal is to achieve parametric studies,316

we do not intend to provide efficient numerical procedures for fully generic configurations. In most of the317

practical cases we restrict ourselves to parametric geometries that can be obtained from case-dependent318

meshing procedures. Readers may refer to [42, 43, 44, 45] for some examples in the context of UT modeling.319

4. Coupling macro-element formulations using mortar elements320

One of the challenge of our approach is to enable the communication between neighboring sub-domains.321

Upon the conform interface assumption stated in Section 3.3, the difficulty essentially lies in coupling different322

formulations within the same framework. To address this issue we rely on the mortar element method323

[46, 47, 48, 49]. This domain decomposition method has been successfully used as a mean of incorporating324

different and independent space discretizations within a global numerical scheme. A significant amount of325

research, see for instance [28, 29, 30, 50, 51], has been dedicated to the analysis and application of mortar326

elements for elastodynamics and wave propagation problems. In our work, we use this method for our327

specific objectives, and we show how one can minimize its computational cost by employing a lumping328

technique, as the one described in Section 2.2.2.329

4.1. Schur complement330

To start with, we recall the Schur complement method, which will be used to devise a global algorithm331

for coupling macro-element formulations. We consider two vector of unknowns:
−→
X ∈ RN , referred to as332

the volume unknown, and
−→
L ∈ RM , referred to as the interface unknown. We assume that they satisfy the333

following linear system334 (
D B
Cᵀ Dε

)(−→
X
−→
L

)
=

(−→
F
−→
G

)
, (25)335
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where
−→
F and

−→
G are given right-hand sides. The matrices D and Dε, of dimension N × N and M ×M336

respectively, are diagonal. The matrices B and C of dimension N ×M may be referred to as transmission337

(from interface to volume) matrices. The Schur complement method for solving this type of linear system338

reads:339

Step 1. Pre-processing. We compute an auxiliary variable
−→
X ∗ ∈ RN by (trivial) inversion of the volume340

matrix341 −→
X ∗ = D−1−→F . (26)342

Step 2. Computation. Defining the Schur complement matrix343

Sε = Dε − CᵀD−1B, (27)344

and assuming that this matrix is invertible, we solve the following linear system345

−→
L =

(
Sε
)−1
{−→
G − Cᵀ−→X ∗

}
. (28)346

Step 3. Post-processing. The volume unknown is obtained by347

−→
X =

−→
X ∗ − D−1B

−→
L .348

Note that, in these three steps, the main issues are the invertibility of the Schur complement matrix Sε in349

(27), and, if it is invertible, the efficient computation of the interface unknown solution of (28).350

4.2. Two-domain problems351

To start with, we consider the case of two sub-domains, i.e. Ω = M1 ∪ M2, connected at an interface352

Γ satisfying the conform interface assumption, detailed in Section 3.3. We denote by ν the normal vector353

field of the interface oriented from M1 to M2.354

4.2.1. The illustrative example of fluid-fluid coupling355

We assume that both M1 and M2 support a fluid formulation (1), satisfied by the corresponding pressure356

fields p1 and p2 with mass densities ρ1 and ρ2 and sound velocities c1 and c2. In this case, the mortar element357

method introduces a Lagrange multiplier λ ∈W = H−
1
2 (Γ), satisfying [52]358

∂λ

∂t
=

1

ρ1
∇p1 · ν =

1

ρ2
∇p2 · ν, (29)359

and weakly imposes the continuity condition on p1 and p2 at the interface. We define, for i = 1, 2, the space360

Vi = H1(Mi), and the product space X = V1 × V2 ×W . The weak formulation of the coupling scheme aims361

at finding the solution (p1, p2, λ) ∈ X for a time t > 0 such that, for any (p∗1, p
∗
2, λ
∗) ∈ X, we have362 

d2

dt2
m1(p1, p

∗
1) + k1(p1, p

∗
1)− d

dt

∫
Γ

λp∗1 dΓ = 0,

d2

dt2
m2(p2, p

∗
2) + k2(p2, p

∗
2) +

d

dt

∫
Γ

λp∗2 dΓ = 0,

d

dt

∫
Γ

(p1 − p2)λ∗ dΓ + ε
d2

dt2

∫
Γ

λλ∗ dΓ = 0.

(30)363

In (30), we have assumed free-surface boundary conditions on the remaining faces of the macro-elements.364

Also, mi(·, ·) and ki(·, ·) are the bilinear forms defined as in (3), with corresponding material properties ρi365

and ci. Note that, in this formulation, we have introduced in the weak continuity constraint a penalization366

term proportional to a (small) positive constant coefficient ε ≥ 0 and the second time-derivative of the367

Lagrange multiplier. This specific choice of the penalization term is justified in Appendix A, where we368

consider the fully discrete energy norm of the coupling system.369
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We define Vh,i ⊂ Vi the finite element approximation spaces, detailed in Section 2.2.2, and we denote370

by {ϕi,I}
Nh,i
I=1 the associated basis functions. The approximation space of W is defined by taking the trace371

space of Vh,1 onto the interface, namely372

Wh = Vh,1|Γ, Wh = span {µI}Mh

I=1, Mh = dim(Wh). (31)373

As a consequence there is a trivial mapping between the basis function of Wh and the basis functions of374

Vh,1. Upon the conform interface assumption, this trivial mapping extends to basis functions of Vh,2, and,375

using the “interface-to-volume” mapping (21), we have376

µI = ϕ1,V1
Γ(I)|Γ = ϕ2,V2

Γ(I)|Γ, ∀I = 1, · · · ,Mh.377

In the context of the mortar element method, our choice of discrete space for the Lagrange multipliers is378

non-standard and usually prohibited, since it may lead, in general configurations, to an unsatisfied discrete379

inf-sup condition [53, 54]. It is for this particular reason that the penalization term was introduced in (30),380

in order to retrieve the stability of the discrete coupling scheme.381

Applying a second order time-scheme, such as the one presented in (9), and a centered scheme for the382

coupling terms lead to the following fully-discrete coupling scheme383 
1

∆t2M1

{−→
P n+1

1 − 2
−→
P n

1 +
−→
P n−1

1

}
+ K1

−→
P n

1 − 1
2∆tC1

{−→
Λ n+1 −

−→
Λ n−1

}
= 0,

1
∆t2M2

{−→
P n+1

2 − 2
−→
P n

2 +
−→
P n−1

2

}
+ K2

−→
P n

2 + 1
2∆tC2

{−→
Λ n+1 −

−→
Λ n−1

}
= 0,

1
2∆tC

ᵀ
1

{−→
P n+1

1 −
−→
P n−1

1

}
− 1

2∆tC
ᵀ
2

{−→
P n+1

2 −
−→
P n−1

2

}
+ ε

∆t2MΓ

{−→
Λ n+1 − 2

−→
Λ n +

−→
Λ n−1

}
= 0.

(32)384

In (32), Mi and Ki are the mass and stiffness matrices associated to each formulation, {
−→
P k
i }k≥0 are the385

finite element unknowns expressed on each volume, and {
−→
Λ k}k≥0 are the discrete Lagrange multipliers. The386

interface mass matrix MΓ ∈MMh,Mh
(R) is defined by387 (

MΓ

)
IJ

=

∫
Γ

µIµJ dΓ, ∀I, J = 1, · · · ,Mh. (33)388

From the choice of the discrete space for the Lagrange multipliers, we have389 (
MΓ

)
IJ

=

∫
Γ

(
ϕ1,V1

Γ(I)|Γ
)(
ϕ1,V1

Γ(J)|Γ
)

dΓ,390

where V1
Γ(·) is the “interface-to-volume” index mapping defined in (21). Hence, applying the same consistent391

mass lumping technique as for the volume mass matrix, presented in Section 2.2.2, we obtain a diagonal392

interface mass matrix. The transmission matrices Ci ∈MNh,i,Mh
(R) are expressed as393 (

Ci
)
IJ

=

∫
Γ

(
ϕi,I |Γ

)
µJ dΓ, ∀I = 1, · · · , Nh,i, ∀J = 1, · · · ,Mh, (34)394

and, using the matrix representation of the “interface-to-volume” index mappings (22), can be expressed as395

396

Ci = ViΓ MΓ. (35)397

Remark 1. In Appendix A, we detail the arguments prooving that, in order for the discrete system (32) to398

be stable, the timestep must respect the CFL condition399

∆t ≤ min

 2√
r(M−1

1 K1)
,

2√
r(M−1

2 K2)

 . (36)400

In other words, the introduction of the Lagrange multipliers does not modify the stability condition on the401

timestep deriving from both sub-domains, which is a major asset of this domain decomposition method.402
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The discrete scheme (32) can be expressed as403  M1 −∆t
2 C1

M2
∆t
2 C2

∆t
2 Cᵀ

1 −∆t
2 Cᵀ

2 εMΓ



−→
P n+1

1−→
P n+1

2−→
Λ n+1

 =


−→
F n,n−1

1−→
F n,n−1

2−→
Gn,n−1

 , (37)404

where the right-hand sides are405 {−→
F n,n−1
i = −∆t2Ki

−→
P n
i + Mi

{
2
−→
P n
i −
−→
P n−1
i

}
± ∆t

2 Ci
−→
Λ n−1, ∀i = 1, 2,

−→
Gn,n−1 = ∆t

2

{
Cᵀ

1

−→
P n−1

1 − Cᵀ
2

−→
P n−1

2

}
+ ε
{

2
−→
Λ n −

−→
Λ n−1

}
.

(38)406

System (37) is a specific case of system (25) with unknowns407

−→
X =

(−→
P n+1

1−→
P n+1

2

)
,
−→
L =

−→
Λ n+1,408

and matrices409

D =

(
M1

M2

)
, Dε = εMΓ, B =

∆t

2

(
−C1

C2

)
, C = −B.410

Hence, the Schur complement matrix reads411

Sε = εMΓ +
∆t2

4

∑
i=1,2

Cᵀ
iM
−1
i Ci. (39)412

Since the interface mass matrix and the volume mass matrices are diagonal, using the decomposition (35)413

of the transmission matrices, and remarking that
(
ViΓ
)ᵀ(ViΓ) is the identity matrix, one can verify that the414

Schur complement matrix is diagonal,415

(
Sε
)
II

= ε
(
MΓ

)
II

+
∆t2

4

∑
i=1,2

(
MΓ

)2
II(

Mi

)
ViΓ(I)ViΓ(I)

, ∀I = 1, · · · ,Mh. (40)416

This lumped Schur complement matrix is invertible for ε ≥ 0, and its memory footprint is very limited.417

Hence, the coupling procedures represent little computational overheads.418

4.2.2. The case of fluid-solid coupling419

We now consider the case were M1 supports a fluid formulation (1), and M2 a solid formulation (4). We420

introduce two Lagrange multipliers λv and λs, used to solve the normal velocity constraint and the normal421

stress constraint respectively,422

λv = v1 · ν =
∂y

2

∂t
· ν, λsν = −p1ν = σ

2
· ν,423

where v1 is the velocity associated to the fluid acoustic pressure in M1. The first relation can be written in424

terms of the pressure unknown since425

∂λv
∂t

=
∂v1

∂t
· ν = − 1

ρ1
∇p1 · ν.426

Defining V1 = H1(M1), V2 = [H1(M2)]d, W = H−
1
2 (Γ) and the product spaceX = V1×V2×W×W , the weak427

formulation of the coupling scheme, satisfied by the solution (p1, y2
, λv, λs) ∈ X for any (p∗1, y

∗
2
, λ∗v, λ

∗
s) ∈ X,428
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reads429 

d2

dt2
m1(p1, p

∗
1) + k1(p1, p

∗
1) +

d

dt

∫
Γ

λvp
∗
1 dΓ = 0,

d2

dt2
m2(y

2
, y∗

2
) + k2(y

2
, y∗

2
) +

∫
Γ

λs(y
∗
2
· ν) dΓ = 0,∫

Γ

(λv −
∂y

2

∂t
· ν)λ∗v dΓ = 0,∫

Γ

(λs + p1)λ∗s dΓ = 0.

(41)430

In (41), m2(·, ·) and k2(·, ·) are the bilinear forms defined in (6). Compared to (30), no penalization term is431

needed since the normal velocity and normal stress weak continuity relations directly involve coercive terms432

w.r.t. the Lagrange multipliers.433

We define the discrete space Wh as in (31). Using an order two centered time scheme for the comple-434

mentary terms appearing in (41), we obtain the following fully discrete scheme435 

1
∆t2M1

{−→
P n+1

1 − 2
−→
P n

1 +
−→
P n−1

1

}
+ K1

−→
P n

1 + 1
2∆tC1

{−→
Λ n+1
v −

−→
Λ n−1
v

}
= 0,

1
∆t2M2

{−→
Y n+1

2 − 2
−→
Y n

2 +
−→
Y n−1

2

}
+ K2

−→
Y n

2 + 1
2C2,ν

{−→
Λ n+1
s +

−→
Λ n
s

}
= 0,

1
2MΓ

{−→
Λ n+1
v +

−→
Λ n
v

}
− 1

2∆tC
ᵀ
2,ν

{−→
Y n+1

2 −
−→
Y n−1

2

}
= 0,

1
2MΓ

{−→
Λ n+1
s +

−→
Λ n
s

}
+ 1

2C
ᵀ
1

{−→
P n+1

1 +
−→
P n

1

}
= 0.

(42)436

In (42), the matrices MΓ and C1 are defined in (33) and (34) and respectively. The matrix C2,ν ∈437

MNh,2,Mh
(R) is defined as438 (

C2,ν

)
IJ

=

∫
Γ

(ϕ
2,I
· ν)µJ dΓ, ∀I = 1, · · · , Nh,2, ∀J = 1, · · · ,Mh,439

where {ϕ
2,I
}Nh,2I=1 are the (vectorial) basis functions generating Vh,2. Using similar energy arguments as in440

Appendix A, one can prove that the CFL condition on the timestep, for the discrete system (42) to be441

stable, is the lowest CFL condition of the two sub-domains computed independently. The numerical scheme442

(42) is equivalent to443 
M1

∆t
2 C1

M2
∆t2

2 C2,ν

− 1
∆tC

ᵀ
2,ν MΓ

Cᵀ
1 MΓ



−→
P n+1

1−→
Y n+1

2−→
Λ n+1
v−→

Λ n+1
s

 =


−→
F n,n−1

1−→
F n,n−1

2−→
Gn,n−1
v−→
Gn
s

 , (43)444

where the right-hand sides related to the volume unknowns are expressed as445 {−→
F n,n−1

1 = −∆t2K1
−→
P n

1 + M1

{
2
−→
P n

1 −
−→
P n−1

1

}
+ ∆t

2 C1
−→
Λ n−1
v ,

−→
F n,n−1

2 = −∆t2K2
−→
Y n

2 + M2

{
2
−→
Y n

2 −
−→
Y n−1

2

}
− ∆t2

2 C2,ν
−→
Λ n
s ,

446

while the right-hand sides associated to the discrete Lagrange multipliers are447 {−→
Gn,n−1
v = − 1

∆tC
ᵀ
2,ν

−→
Y n−1

2 −MΓ
−→
Λ n
v ,

−→
Gn
s = −Cᵀ

1

−→
P n

1 −MΓ
−→
Λ n
s .

448

System (43) is a specific case of system (25) with unknowns449

−→
X =

(−→
P n+1

1−→
Y n+1

2

)
,
−→
L =

(−→
Λ n+1
v−→

Λ n+1
s ,

)
.450
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The diagonal and extra-diagonal block matrices are451

D =

(
M1

M2

)
, Dε =

(
MΓ

MΓ

)
, B =

(∆t
2 C1

∆t2

2 C2,ν

)
, C =

(
C1

− 1
∆tC2,ν

)
.452

The Schur complement matrix Sε of dimension 2Mh × 2Mh reads453

Sε =

(
MΓ

∆t
2 Cᵀ

2,νM
−1
2 C2,ν

−∆t
2 Cᵀ

1M
−1
1 C1 MΓ

)
.454

By re-numbering the unknown vector
−→
L in the following way455

−→
L =

((−→
Λ n+1
v

)
1
,
(−→

Λ n+1
s

)
1
, · · · ,

(−→
Λ n+1
v

)
Mh
,
(−→

Λ n+1
s

)
Mh

)ᵀ
,456

and applying the same operation in the Schur complement matrix, we observe that Sε is block diagonal with457

each block defined as458 
(
MΓ

)
II

∆t

2

(
MΓ

)2
II(

M2

)
V2

Γ(I)V2
Γ(I)

−∆t

2

(
MΓ

)2
II(

M1

)
V1

Γ(I)V1
Γ(I)

(
MΓ

)
II


I=1,··· ,Mh

. (44)459

Note that, to obtain (44), we used the fact that the interface mass matrix is diagonal and the expression460

(35) of the transmission matrices. The determinant of each block is strictly positive, thus the computation461

step (28) is well-posed. In practice, we store the inverse of each 2 × 2 block in an initializing step, and we462

apply each inverse in parallel in order to solve (28) at each timestep, thus limiting the cost overhead of the463

coupling procedures.464

4.2.3. Coupling with PML formulations465

Coupling with PML formulations can be handled in the same way. To illustrate this case, we suppose466

that M1 holds an acoustic formulation and M2 an acoustic PML formulation such as the one given in (7).467

We introduce the Lagrange multiplier468

λ = v1 · ν = v2 · ν.469

The first relation can be expressed in terms of pressure variables as in (4.2.2). Assuming that470

∃k ∈ {1, · · · , d} s.t. sk = ν, (45)471

where {si}di=1 is the set of splitting directions in (7), then we can express the second relation in the equivalent472

form473

λ =
(
sk ⊗ sk

)
v2 · ν.474

Note that the assumption (45) is satisfied in most practical cases. Using the relevant Green formula in both475

systems we can introduce the Lagrange multiplier in both weak forms and retrieve the expression provided476

in [35]. After time and space discretization, we obtain the following Schur complement matrix477

Sε = εMΓ +
∆t

2
Cᵀ

1M
−1
1 C1 +

∆t

2 + τk∆t
Cᵀ

2M
−1
2 C2,478

where {τi}di=1 are the (constant) absorption coefficients in each splitting direction. Readers can refer to [35]479

for the details of the numerical scheme, not recalled here for the sake of conciseness. Note that, as for the480

previous case (40), we obtain, in the conform case, a lumped Schur complement matrix.481
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4.3. N-domain problems482

So far we have considered two-domain problems exclusively and we have shown how, by using the483

natural trace of the volume discrete space, we can obtain lumped Schur complement matrices leading to very484

efficient coupling between sub-domains. Traditionally, this specific choice of discrete space for the Lagrange485

multipliers is prohibited since it may entail ill-posed Schur complement matrices, even in the conform case.486

To circumvent this difficulty, numerous possibilities of adequate discrete spaces for the multipliers have been487

proposed, e.g. see [29, 30, 47, 48]. In our work, we rely on an alternate method based upon a penalization488

strategy, suggested in [54]. This enables us to recover the invertibility of the Schur complement matrices,489

while keeping the computational performances of lumped matrices.490

4.3.1. Canonical example of an ill-posed lumped Schur complement matrix491

Figure 2: Illustration of the canonical example including a cross-point at the intersection of four interfaces.

To illustrate the loss of invertibility of the Schur complement matrix, we consider a canonical example492

of four sub-domains put together in a square-shape fashion, as depicted in Figure 2. In this example, the493

computational domain is composed of four macro-elements {M1,M2,M3,M4} and four conform interfaces494

{Γa,Γb,Γc,Γd}. We denote by α = {a, b, c, d} a generic interface index and by i, j ∈ {1, 2, 3, 4} two sub-495

domain indexes. To each interface Γα, we associate a normal vector field να, oriented as depicted in Figure496

2. We assume that each sub-domain bears an acoustic formulation with identical mass densities and sound497

velocities. The Lagrange multiplier associated to each interface is defined as in (29). Additionally, we assume498

that the macro-elements are of the same size and that their corresponding meshes have the same number of499

elements and the same (isotropic) order of approximation. Similarly to (37), we can write in this context a500

system of the form of (25). The volume and interfaces unknowns are501

−→
X =

(−→
P n+1

1 · · ·
−→
P n+1

4

)ᵀ
,
−→
L =

(−→
Λ n+1
a · · ·

−→
Λ n+1
d

)ᵀ
.502

The matrix D is the concatenation of four identical diagonal mass matrices M, and Dε is the concatenation503

of four identical interface penalization matrices εMΓ. We denote by Wh,α the discrete space for the Lagrange504

multipliers associated to the interface Γα, such that505

Wh,α = span{µα,I}
Mh,α

I=1 , Mh,α = dim(Wh,α).506

The transmission matrices are507

B =
∆t

2


−C1a C1d

C2a −C2b

C3b −C3c

C4c −C4d

 , C = −B, (46)508
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where ∀i = 1, · · · , 4 and ∀α ∈ {a, b, c, d}509

∀I = 1, · · · , Nh,i, ∀J = 1, · · · ,Mh,α

(
Ciα
)
IJ

=

∫
Γα

(
ϕi,I |Γ

)
µα,J dΓ.510

Note that in (46) the sign of the block matrices can be directly deduced from the chosen orientation of511

the normal at each interface. The Schur complement matrix appearing in the computation step (28) is512

symmetric and reads513

Sε = Dε +
∆t2

4


S12,a −Cᵀ

2aM
−1
2 C2b −Cᵀ

1aM
−1
1 C1d

· S23,b −Cᵀ
3bM

−1
3 C3c

· S34,c −Cᵀ
4cM

−1
4 C4d

· · S14,d

 ,514

where we denote by (·) the non-zero extra-diagonal blocks deduced from symmetry, and by Sα,ij the diagonal515

blocks such that516

Sij,α = Cᵀ
iαM

−1
i Ciα + Cᵀ

jαM
−1
j Cjα, ∀i = 1, · · · , 4, ∀α ∈ {a, b, c, d}. (47)517

For a fixed i = 1, · · · , 4 and (α, β) ∈ {a, b, c, d}2 such that α 6= β, blocks of the form Cᵀ
iαM

−1
i Ciβ represent518

the interactions between the Lagrange multipliers associated to the interfaces Γα and Γβ through the macro-519

element Mi. Hence, from the decomposition (35), one can see that these extra-diagonal blocks have only520

one non-zero value at the cross-point. Assuming an identical numbering of the interfaces going from the521

cross-point to the free extremity, we denote by522

I×α = 1, I◦α = J2;Mh,αK, ∀α ∈ {a, b, c, d},523

the index of the node concerned with the cross-point and the rest of interface indexes in Γα respectively.524

Following this notation, we propose the renumbering of the interface unknown525

−→
L =

(
{
−→
L×α }dα=a {

−→
L ◦α}dα=a

)ᵀ
, (48)526

so that the Schur complement matrix takes the form of527

Sε = Dε +
∆t2

4


S× (

S12,a

)
|I◦a (

S23,b

)
|I◦b (

S34,c

)
|I◦c (

S14,d

)
|I◦d

 ,528

where S× is the 4× 4 cross-point matrix expressed as529

S× =


(
S12,a

)
|I×a −

(
Cᵀ

2aM
−1
2 C2b

)
|I×a I×b −

(
Cᵀ

1aM
−1
1 C1d

)
|I×a I×d

·
(
S23,b

)
|I×b −

(
Cᵀ

3bM
−1
3 C3c

)
|I×b I×c

·
(
S34,c

)
|I×c −

(
Cᵀ

4cM
−1
4 C4d

)
|I×c I×d

· ·
(
S14,d

)
|I×d

 . (49)530

The expression of each extra-diagonal value of this cross-point matrix is531

(
Cᵀ
iαM

−1
i Ciβ

)
|I×α I×β =

(
MΓα

)
I×α I

×
α

(
MΓβ

)
I×β I

×
β(

Mi

)
ViΓ(I×α )ViΓ(I×α )

, ∀i = 1, · · · , 4, ∀(α, β) ∈ {a, b, c, d}2, α 6= β.532

17



In the specific case of our canonical example, the mass and interface mass matrices are identical. We denote533

by m× and m×Γ their corresponding values at the cross-point index. After factorization, the cross-point534

matrix takes the simpler form of535

S× =

(
m×Γ
)2

m×


2 −1 −1
−1 2 −1

−1 2 −1
−1 −1 2

 ,536

and has a non-empty kernel generated by the constant vectors537

Ker
(
S×
)

= span{
(
1 1 1 1

)ᵀ}. (50)538

Thus, we can see the necessity of the penalization strategy since the Schur complement matrix Sε is ill-posed539

for ε = 0. It should be noted that the simple form (50) of the kernel of the cross-point matrix is linked to540

the specific parameters of our canonical configuration. In more generic cases, we expect this kernel to vary541

depending on the discretization patterns and the material properties of the macro-elements.542

4.3.2. Schur complement matrix for N-domain problems543

We consider a specific data-structure, referred to as the “skeleton” of the macro-mesh, regrouping the544

information of the incident faces (or edges) at every cross points, and the incident macro-elements at every545

interfaces. Using this “skeleton”, we can assemble the set of cross-point matrices, denoted by {S×r }
N×
r=1, where546

N× is the number of cross-points in the macro-mesh. If d = 2, the cross-points are restricted to points with547

multiple incident edges, while, if d = 3, the cross-points are spread across edges with multiple incident faces.548

The form of the cross-point matrices is similar to (49) with dimensions equal to the number of incident faces549

(or edges). We also assemble the Schur complement matrices set on the interior nodes. Let A be the set550

of interface indexes, such that for any α ∈ A, the interface Γα is shared by two macro-elements Mi(α) and551

Mj(α). These interior Schur complement matrices are denoted by {S◦i(α)j(α),α}α∈A, with expressions deduced552

from (47). Finally, generalizing the previous renumbering (48), we can express the Schur complement matrix553

for N-domain problems in the general form of554

Sε =

(
{S×r }

N×
r=1

{S◦i(α)j(α),α}α∈A

)
.555

In practice, the interior Schur matrices are diagonal and every cross-point matrices are independent matrices556

of reasonable size so that we can compute and store their inverse in an initializing step. Applying their inverse557

at every timesteps is performed in parallel, leading to a limited cost overhead.558

Remark 2. The penalization procedure is a compromise between stability and consistency. In order to limit559

spurious consistency errors, we set ε = O(∆t3) which is below the consistency errors of the numerical time560

schemes used for the time-discretization of the various formulations. Additionally, since only the cross-point561

matrices are ill-posed, we use an “inhomogeneous” penalization parameter set to zero at the interior nodes562

of the interfaces.563

5. Numerical simulation of immersed curved CFRP in 3D564

As a numerical illustration, we propose to model the UT of a 4 mm thick immersed stratified composite565

material. The specimen is composed of 16 isotropic transverse plies of 235 µm thickness. The anisotropy566

direction of the plies, representing the fiber orientation, change from f
0

= (1 0 0)ᵀ to f
90

= (0 1 0)ᵀ567

successively from one ply to another. Between each ply and on the top face of the structure we consider thin568

intermediate epoxy layers of 15 µm represented as isotropic materials. Overall, the stratification is made of569

32 layers. Using Voigt notation to represent the constitutive law C∗ in (5), the material properties associated570
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Density (g · cm−3) Constitutive law coefficients (GPa)
C11 C22 C33 C12 C13 C23 C44 C55 C66

Ply 1.6 143.2 15.8 15.8 7.5 7.5 8.2 3.8 7 7
Epoxy 1.23 7.6 7.6 7.6 4.4 4.4 4.4 1.6 1.6 1.6

Table 1: Material properties of the ply and epoxy layers.

to each ply and epoxy layers are presented in Table 1. The surrounding fluid is water with a mass density571

of ρw = 1.0 g · cm−3 and a sound velocity of cw = 1.483 mm · µs−1.572

We assume that the structure is subject to a cylindrical deformation with respect to the y-axis with a573

curvature center positioned at 10 mm below the specimen. We consider an incident pressure field pinc as a574

plane wave with a spatial Gaussian window,575

pinc(x, t) = f
( (x− x0) · d

cw
+ t
)

exp
(
− ||x− x0||2

σG

)
, (51)576

where x0 = (0 0 3)ᵀ is the incident wave origin, d = (0 0 − 1)ᵀ is the direction of the propagation, the577

standard deviation of the Gaussian window is set to σG = 1.0, and we define the excitation signal578

f(t) = cos
(
2πF (t− t0)

)
exp
(
− π (t− t0)

σf

)
,579

with F = 3 MHz, t0 = 0.75 µs and σf = 0.2. In the following subsections, we use our numerical model to580

compute the total field, i.e. the sum of the incident field and its interactions with the stratified specimen.581

Due to the localized spatial support of the incident field, we truncate the numerical domain in the tangent582

plane of the specimen so that its lengths are reduced to 6 mm in both directions. To avoid spurious583

reflections, we surround the solid area with 1 mm solid PMLs. Above and below, we append two 1 mm584

fluid sub-domains surrounded with additional 1 mm thick fluid PMLs. To sum up, prior to its cylindrical585

deformation, the overall numerical domain has a size of 8 × 8 × 8 mm3, and the disposition of the various586

formulations are depicted in Figure 3. The incident field is evaluated at the upper interface between fluid587

and fluid PML sub-domains.588

Remark 3. In Appendix B we show how the transmission conditions are adequately taken into account589

in the mortar element method. As a result, above the entry surface in the fluid PMLs, we solve the field590

equations for the diffracted field and below for the total field. In practice, this enables us to restrict the591

surrounding fluid sub-domains to a limited size while avoiding spurious interferences between the incident592

and total fields.593

5.1. Simulation in the case of a healthy curved CFRP594

To start with we consider the case of a healthy specimen without internal flaw, as presented in Figure 3,595

for which we have a total of 45 macro-elements. Note that, due to the cylindrical transformation, the596

constitutive law varies locally and is expressed as in (5). In this case the local fiber orientation of each ply597

is computed using (24), with ṽ being either f
0

or f
90

.598

In this configuration, the smallest wavelength is the one related to the fluid material, which is about599

0.5 mm. Hence, in the tangent plane we perform a sub-discretization of each macro-element so that we can600

insure two elements of order four per wavelength. In the thickness of the solid material, since the size of each601

layer is smaller than half of the wavelength, we use a specific discretization pattern and use one element of602

order three for the each ply and one element of order two for each epoxy layer. Note here the benefits of603

the anisotropic orders in the finite element discretization, depicted in Section 2.2.604

In Table 2 we gather the various characteristics of the simulation. We differentiate the number of nodes605

in the final (sub-discretized) finite element space from the number of Degrees of Freedom (DoF). The latter is606

obtained by taking into account the dimension of the unknown at each node, which is 1 for fluid, 3 for solid,607
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Figure 3: Numerical domain for the healthy immersed curved CFRP.

Figure 4: Snapshots of the absolute value of the pressure field in the fluid and fluid PML sub-domains, and the norm of the dis-
placement in the solid and solid PML sub-domains. The snapshot times are {t1, t2, t3, t4, t5} = {1.11, 1.66, 2.22, 2.77, 3.14} µs.
For illustration purposes the pressure field is scaled up by 10%.

6 for fluid PML and 18 for solid PML sub-domains. It is important to emphasize that, even though we are608

facing a reasonably large number of DoFs within a locally varying anisotropic context, the memory footprint609
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of the overall numerical scheme is quite low (less than 1 Gbytes). Additionally, for reaching the maximal610

time corresponding to the propagation of the ultrasonic beam through the structure, the computational time611

is about ten minutes. These performances in both CPU time and memory load enable parametric variations612

of this 3D configuration on a standard PC. The simulation was carried out on a bi-processor computer Intel613

Xeon Processors E5-2687W v2, 2× 8 cores at 3.40 GHz.614

Nb. sub-domains Nb. nodes Nb. DoFs
Fluid Fluid PML Solid Solid PML Fluid Fluid PML Solid Solid PML

2 34 1 8 580 k 1665 k 1120 k 1045 k 32.7 M

Max. time (µs) Timestep (µs) Nb. steps Mem. load (bytes) CPU time (min.)

5.5 1.85 · 10−3 2973 790 M 10.53

Table 2: Characteristics of the simulation in the case of a healthy curved stratified specimen.
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(a) Fluid pressure at point P = (0, 0, 2.95).
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(b) Fluid pressure at point Q = (0, 0,−2.95).

Figure 5: Fluid pressure at two observation points above and below the immersed curved stratified material.

We present in Figure 4 the snapshots of the solution at various timesteps. In these snapshots, we615

observe the propagation of the primary ultrasonic beam influenced by the anisotropy of the structure and616

the generation of structural noise coming from the multiple reflections at the layer interfaces. Additionally,617

we consider an observation point P = (0, 0, 2.95)ᵀ located above the structure, and an observation point618

Q = (0, 0,−2.95)ᵀ located below the structure, see Figure (3). We plot the pressure field obtained at the619

observation point P in Figure 5a. We see three main contributions: (P.I) is the incident field defined in620

(51); (P.II) is the reflection of the incident field at the structure’s upper boundary; (P.III) is the backwall621

echo. The signal between (P.II) and (P.III) is the phenomena referred to as the structural noise. In Figure622

5b we plot the signal at point Q and we observe a main contribution (Q.I) which is the transmitted wave623

that traveled through the complete structure.624

21



Figure 6: Representation of the numerical domain for the immersed curved CFRP with internal circular delamination of radius
r = 0.75 mm.

5.2. Illustration of a variation of the configuration with a circular delamination flaw625

Starting from the configuration described in the previous section, we introduce a circular delamination626

flaw located at the center of the structure. We add the necessary macro-elements so that the flaw geometry627

corresponds to an interface between two macro-elements. Between these two MEs, we discard the mortar628

element coupling scheme in order to incorporate the effect of the flaw in the numerical scheme. In terms629

of boundary conditions, this strategy is equivalent to representing the flaw by homogeneous Neumann630

boundary conditions. We show this configuration in Figure 6. In this more intricate case, the local anisotropy631

orientation of each ply is computed using (23), with v∗ being either f
0

or f
90

.632

In Table 3 we regroup the characteristics of the simulations performed as a toy example of parametric633

variation on the radius of the circular flaw r ∈ {0.5, 0.75, 1.00, 1.25, 1.50, 1.75} mm. For this configuration634

we have 34 fluid, 98 fluid PML, 34 solid, and 32 solid PML sub-domains. Depending on the radius we adapt635

the geometries of the macro-elements, hence the number of nodes varies from one simulation to another. It636

should be noticed that, due to the inclusion of the flaw geometry and the conformity constraints that need637

to be satisfied, the final mesh incorporates elements of different sizes. As a consequence, the timestep has638

decreased compared to the healthy case, and the overall computation time has increased in order to reach639

an identical maximal time of 5.5 µs.640

We present in Figure 7 the snapshots of the solution at the same timesteps than in Figure 4. For this641

configuration we have fixed the radius of the circular delamination flaw to r = 0.75 mm. We observe the642

diffracted wave due to the presence of the flaw. This contribution is clearly seen in Figures 8a and 8b643

where we plot the pressure field at two observations points above and below the flawed structure. The644

contributions (P.I), (P.II) and (P.IV ) are identical to the healthy case, and the contribution of the flaw is645

clearly identified in (P.III) and (Q.II). The backwall echo amplitude (P.IV ) is lower than in the healthy646

case due to its interaction with a second transverse (and slower) flaw contribution.647

In Figures 9a and 9b we plot the pressure at the same observation points for differents values of the648

delamination radius r ∈ {0.5, 0.75, 1.00, 1.25} mm. For readability, we restrict the plotting time window to649

the flaw responses exclusively. We observe that, as the flaw size increases, the primary contribution of the650

transmitted wave (P.III) increases and the primary contribution in the reflected wave (Q.I) decreases. Due651
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r(mm) Nb. nodes Nb. DoFs
Fluid Fluid PML Solid Solid PML

0.50 873 k 2034 k 1704 k 1133 k 38.5 M
0.75 873 k 2034 k 1704 k 1133 k 38.5 M
1.00 1292 k 2439 k 2523 k 1119 k 43.6 M
1.25 1388 k 2549 k 2711 k 1133 k 45.2 M
1.50 1515 k 2662 k 2957 k 1119 k 46.5 M
1.75 1692 k 2853 k 3304 k 1133 k 49.1 M

r(mm) Timestep (µs) Nb. steps Mem. load (bytes) CPU time (min.)

0.50 4.57 · 10−4 12032 1001 M 47
0.75 4.45 · 10−4 11963 1017 M 48
1.00 4.78 · 10−4 11503 1214 M 60
1.25 6.32 · 10−4 8698 1266 M 48
1.50 4.99 · 10−4 11021 1321 M 65
1.75 6.64 · 10−4 8272 1410 M 52

Table 3: Characteristics of the simulations during the variation of the radius of the circular delamination flaw.

Figure 7: Snapshots of the solution in the presence of a circular delamination flaw with radius r = 0.75 mm. The snapshot
times are {t1, t2, t3, t4, t5} = {1.11, 1.66, 2.22, 2.77, 3.14} µs. For illustration purposes the pressure field is scaled up by 10%.

to its interaction with the backwall echo, the contribution (P.IV ) does not strictly follow this tendency and652

it appears that the secondary transmitted wave is only slightly modified by the variation of the flaw.653

Remark 4. The approach used in this section can be extended to a class of hybrid methods. The incident654

field proposed in (51) can be computed using a potentially more sophisticated model, e.g. a ray-based asymp-655

totic model. In a UT context, this strategy can be used to represent the propagation of the incident field,656
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(a) Fluid pressure at point P = (0, 0, 2.95).
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(b) Fluid pressure at point Q = (0, 0,−2.95).

Figure 8: Fluid pressure at two observation points above and below the immersed curved stratified material with internal
circular delamination of radius r = 0.75 mm.
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(a) Fluid pressure at point P = (0, 0, 2.95).

3.0 3.5 4.0 4.5 5.0

Time (µs)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

P
re

ss
u
re

 (
G
P
a
)

(Q. I)

(Q. II)

r= 0. 5 mm

r= 0. 75 mm

r= 1. 0 mm

r= 1. 25 mm

(b) Fluid pressure at point Q = (0, 0,−2.95).

Figure 9: Variation of the fluid pressure at two observation points above and below the immersed curved stratified material
depending on the radius of the internal circular delamination.

without having to incorporate the complete propagation area in the numerical domain. When modeling real-657

istic UT configurations, it is also required of the forward solver to represent the eletrical signal VR captured658

by the receiving piezo-electric transducer. In this context, the pioneer works [1, 2, 55, 56] express the received659

electrical signal as a function of the so-called reciprocity quantity S, namely660

VR(t) = H ? S(t), ∀t ∈ [0, T ],661
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where T is the maximal time, · ? · is the convolution in time domain, and H is a convolution kernel repre-662

senting the sensitivity of the transducer acquisition chain. The reciprocity quantity S reads663

S =

∫
Γ

ptot,E ?
(
∇pinc,R · n

)
− pinc,R ?

(
∇ptot,E · n

)
dΓ,664

where ptot,E is the total pressure field computed from the incident field generated by the emitting transducer,665

and pinc,R is a “virtually emitted” field from the receiving transducer. Note that Γ is a boundary surrounding666

the structure, or the flaw, and in the context of UT of composite materials we generally choose the entry667

surface. In practice, the numerical solver is used to compute the quantity ptot,E, as presented in the numerical668

examples of this section. Hence, by appending the computation of the reciprocity signal to the finite element669

computations, our approach is compatible with this type of hybrid methods. For more details and illustrations670

of numerical results obtained using the development version of the CIVA software [12], readers may refer to671

prior communications [42, 43, 45, 57]672

6. Conclusion and perspectives673

In this work we have proposed a specific numerical solver for wave propagation modeling designed for674

UT configurations, and particularly suited for stratified composite materials. Our approach is focused on675

addressing, in an efficient and robust manner, parametric variations of the configuration, a fundamental pre-676

requisite for inversion loops or sensibility studies. To reach this objective, we have detailed a macro-element677

strategy which is based upon a decomposition of the configuration of interest. Each sub-domain, or macro-678

element, in this decomposition is associated to a specific wave propagation formulation, from which we derive679

a discrete propagator using the spectral finite element method. Making the most of the a priori information680

embedded in the scene decomposition, we are able to improve the performances of the standard finite681

element operations, in terms of memory footprint and computational load. Additionally, we have shown682

how we can extract from the macro-elements’ deformations important modeling components such as the683

anisotropy orientations or the splitting directions of PMLs, altogether in a lightweight and efficient fashion.684

The transmission conditions between each sub-domain are solved using the mortar element method, which685

is sufficiently flexible to take into account, in the same formalism, the various set of formulations arising in686

numerical UT modeling. In particular, we have depicted how, using the traces of the volume finite element687

spaces and a penalization strategy, one can apply a lumping integration technique on the Schur complement688

matrices in order to significantly reduce the cost of the coupling method, in the case of conform interfaces.689

To illustrate the efficiency of this approach we have proposed a 3D configuration of a curved composite690

materials, flawed with an internal circular delamination of varying radius.691

A first and important perspective of this work would be to incorporate, within the macro-element strategy,692

the case of non-conform interfaces. Indeed, in numerous UT configurations, the wavelength ratio may vary693

strongly between different inclusions of materials. A typical example being the case of immersed specimen,694

as the one proposed in the numerical experiments of this communication. In these configurations, using695

the ability of the mortar element method to deal with independent sub-domain discretizations, we could696

significantly improve the efficiency of the global numerical scheme. However, the main issue, in this context,697

is to solve the interface linear system, which cannot be lumped, in an efficient manner. A potential lead to698

address this difficulty could be to rely on the conformity of the macro-mesh and to only consider “controled”699

non-conformities, where we have an a priori assumption on the refinement ratio between two adjacent700

discretizations. In addition to spatial non-conformities, we could also consider the class of methods that701

allows to include, within the same numerical scheme, different time-discretizations. We can mention, for702

instance, the local time-stepping method [58] or the locally implicit method [59]. Another possible way to703

improve the range of configurations efficiently handled by our approach could be to use the mortar element704

method to “implicitly” incorporate thin layers of materials, such as the epoxy layers in the presented705

numerical illustrations. We could, for instance, consider the standard spring-mass model [60] or a more706

complex asymptotic propagator associated to the thin layer, such as the one proposed in [61].707
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Appendix A. Stability of a discrete coupled system708

Appendix A.1. Discrete energy norm of second order schemes709

To start with, we recall a standard stability result, see [36] for more details. Considering the second710

order fully discrete scheme (9), One can verify that the functional711

En+
1
2 =

1

2

{−→P n+1 −
−→
P n

∆t

}ᵀM{−→P n+1 −
−→
P n

∆t

}
+

1

2

−→
P n+1K

−→
P n, (A.1)712

satisfies a specific conservation property. Indeed, multiplying (9) by 1
2∆t{
−→
P n+1 −

−→
P n−1}, we obtain713

1

∆t

{
En+

1
2 − En−

1
2
}

= 0.714

To turn this conservation property into a stability result, we need to prove that the functional is positive for715

any solution vector. While it is self-evident for the first term in (A.1), the second one needs some further716

manipulations. Remarking that717

−→
P n+1K

−→
P n =

{−→P n+1 +
−→
P n

2

}ᵀK{−→P n+1 +
−→
P n

2

}
− ∆t2

4

{−→P n+1 −
−→
P n

∆t

}ᵀK{−→P n+1 −
−→
P n

∆t

}
,718

leads to the expression719
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1
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1

2
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4
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P n

2
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−→
P n

2

}
.720

Hence, upon the CFL condition (10), the functional is positive and represents a discrete energy norm.721

Appendix A.2. Stability of the fluid-fluid coupling system722

We consider the case of the system (32). For i = 1, 2, let {E
k+

1
2

i }k≥0 be the discrete energy norm of

both sub-domains, defined as in (A.1). Multiplying each volume relation in (32) by 1
2∆t{
−→
P n+1
i −

−→
P n−1
i },

and summing both equations yields

∑
i=1,2
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2
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Using the discrete form of the continuity relation in (32), we obtain723

∑
i=1,2

1

∆t

{
E
n+

1
2

i − E
n− 1

2
i

}
+ ε
{−→Λ n+1 −
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Introducing the positive functional725

E
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1
2
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1

2
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Λ n
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,726

we finally get the following conservation property for the coupling system (32)727 ∑
i=1,2

1

∆t

{
E
n+

1
2

i − E
n− 1

2
i

}
+

ε

∆t

{
E
n+

1
2

Γ − E
n− 1

2
Γ

}
= 0. (A.2)728

Therefore, assuming that the timestep satisfies the inequality (36), we can interpret the relation (A.2) as a729

stability result, valid for any ε ≥ 0.730
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Appendix B. Diffracted field - total field coupling system731

In some cases, it is important to be able to introduce in the numerical domain an externally computed732

incident field. As detailed in Remark 4, a typical example is the case of hybrid coupling, where the global733

incident field pinc is computed using a ray-based asymptotic model, and the total field is obtained in a specific734

area using a numerical solver. In practice, the mortar element method provides us with a convenient way735

to solve this transmission problem. To give an illustration, let us consider a two-domain acoustic problem736

such as the one presented in Section 4.2.1. For simplicity, we assume that ρ1 = ρ2 = ρ and c1 = c2 = c. The737

second domain bears a total field formulation, the incident field is introduced at the interface between the738

two sub-domains, and the first domain is written in terms of diffracted field. The main step is to write the739

relations (29) in terms of total fluxes740

∂λ

∂t
=

1

ρ
∇pdiff

1 · ν + τ inc =
1

ρ2
∇ptot

2 · ν, with τ inc =
1

ρ
∇pinc · ν,741

and the weak continuity relation in (30) in terms of total traces742

d

dt

∫
Γ

(pdiff
1 − ptot

2 )λ∗dΓ + ε
d2

dt2

∫
Γ

λλ∗dΓ = − d

dt

∫
Γ

pincλ∗dΓ.743

Hence, provided that the outside model is able to compute the input data (pinc, τ inc), we can incorporate744

them adequately as right hand sides in the coupled system (30).745
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