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Interface states at the boundary between ABC and ABA multilayer graphene structures

Maxence Grandandam,1 Sarah Pinon,1 Cristina Bena,1 and Catherine Pepin1

1Institut de Physique Théorique, Université Paris Saclay, CEA CNRS,
Orme des Merisiers, 91190 Gif-sur-Yvette Cedex, France

We study the interfaces between ABC and ABA regions in multilayer graphene, in particular we consider
regions in which the transition between the ABA and ABC structure arises due to the local compression in
one of the graphene layers for a zigzag interface, and to a local shear of the atoms for the armchair interface.
When we consider an infinite ribbon configuration we find that interface bands form in these regions, more
pronouncedly for the armchair-type interfaces. We note that these states are not topological. For fully-finite-size
structures the continuous interface bands transform into sets of quantized levels.

I. INTRODUCTION

In the recent years there has been a lot of interest in the
formation of edge states and interface states in graphene. The
recent realization of different kinds of twisted graphene stacks
also brought into focus the important differences between re-
gions with different stacking1–5. Traditionally graphene has
been shown to exhibit non-topological edge states along the
zigzag and bearded edges, for both monolayer and multilayer
configurations6–8. Moreover, topological states have been
predicted to arise at the interface between AB and BA bi-
layer graphene regions9–12, as well as in samples obtained by
twisting the two graphene layers by a certain angle13,14 or in
rhombohedral-stacked graphene films15,16. Topological edge
states have also been observed in trilayer graphene ribbons
subject to a transverse electric field17,18. However no study of
the interfaces between ABA and ABC graphene regions has
been performed.

In this work we study such interfaces, in both infinite ribbon
configuration and finite-size configuration, for both zigzag
and armchair interfaces. Inspired by the paper of Delavi-
gnette and Amelinckx19, we model the transition between the
ABA and ABC regions via a local compression in one of the
graphene layers for a zigzag interface, and via a local shear of
the atoms for the armchair interface, which generates a region
of few atom-width which constitues the interface region (see
Fig. 1). The two stacking orders are known to exhibit very
different physical properties20–25, and the impact of the geom-
etry of the edge on the properties of graphene stacks has also
been studied previously26. We use a numerical tight-binding
method to study the formation of states inside the stacking
fault, and we find that indeed, in the infinite ribbon configu-
ration, discrete bands of dispersing states localized inside in-
terface regions form both in the case of zigzag and armchair
edges. To test this result, we plot the ribbon band structure for
various system widths, the weight of the bands as a function
of position, as well as the local density of states as a function
of energy and position. We also find that, when considering
finite-size ribbons, the interface bands become quantized and
give rise to discrete edge energy levels localized on the defect.

Our paper is organized as follows: in Section II we present
a review of the band structure and the density of states (DOS)
for infinite bulk ABC and ABA graphene trilayers, in Section
III we present the formation of interface bands in infinite rib-
bons with a zigzag interface between ABA and ABC regions,
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Figure 1. (a) A local compression in the top graphene layer for a
zigzag configuration. Inside the interface region (light blue), the dis-
tance between atoms is shortened along the x direction, such that on
the right side of the interface all atom positions have been shifted by
−a0x̂ compared to those on the left side. As we can see, the stacking
of the top layer relative to the underlying layer (in gray) is different
on the two sides of the interface yielding a transition between ABA
and ABC stacking in the trilayer system. (b) A local shear of the
top graphene layer atoms for an armchair configuration. Inside the
interface region the x coordinate of the atoms is shifted, such that on
the upper side of the interface all atom positions have been shifted
by −a0x̂ compared to those on the lower side, yielding once more
a ABA/ABC interface. We will take the impurity to be 5 unit cells
wide in the remaining of the paper.

in Section IV we repeat the analysis for an armchair interface,
in Section V we consider a fully-finite-size system, and we
conclude in Section VI.
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II. BAND STRUCTURE AND LOCAL DENSITY OF
STATES FOR BULK ABA AND ABC GRAPHENE

We begin by reviewing the band structure and the local den-
sity of states for infinite ABA and ABC trilayer graphene sys-
tems. The tight-binding Hamiltonians for these honeycomb
lattices are given by:

H(k) = t0
∑

l=0,1,2

t(k)c†k,l,Ack,l,B + hinter + h.c., (1)

with

t(k) = 1 + 2e−i
3
2a0kx cos

(√
3

2
a0ky

)
, (2)

hinter = t1

(
c†k,0,Bck,1,A + c†k,1,Ack,2,B

)
(3)

for ABA stacking and

hinter = t1

(
c†k,0,Bck,1,A + c†k,1,Bck,2,A

)
(4)

for ABC stacking. The operator c†k,l,α creates an electron on
layer l and sublattice α, and a0 is the distance between two
neighboring atoms in a honeycomb lattice. In what follows,
we take the two hopping parameters to be t0 = 2.6, t1 = 0.34.
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Figure 2. Bulk energy bands for ABA (left) and ABC (right) trilayer
graphene. The lower plots are zooms around the Dirac point.

The band structures obtained by diagonalizing these Hamil-
tonians are presented in Fig. 2. We note that the band struc-
ture for the ABA trilayer graphene contains one linear band
and one quadratic band, while the ABC band structure con-
tains two quasi-quadratic bands with an energy gap of about

0.25t0 as well as a lower band which is not entirely quadratic
but flattens close to the Dirac point (energy dispersion of k3)
creating the precursor of a flat band. This plays an important
role in differentiating ABA and ABC stacking in multilayer
systems, as the general dispersion for ABC stacking is of the
order kN with N the number of layers. This leads to an en-
hanced density of states at low energy compared to the ABA
case (due to the “flat bands”); the larger the number of layers,
the larger the flat region and its importance27,28.

We define the Matsubara Green’s function (GF) as:
G(k, iωn) = [iωn −H(k)]−1, where ωn denote the Matsub-
ara frequencies. The retarded GF G(k, ω) is then obtained
by the analytical continuation of the Matsubara GF by setting
iωn → ω + iδ with δ → 0+. By integrating G(k, ω) over
the Brillouin zone, we can obtain the DOS as a function of
energy:

DOS(ω) = − 1

π

∫
dk

(2π)2
Im trG(k, ω). (5)

In Fig. 3 we plot the DOS for the ABA and ABC trilayer
graphene. Note that the DOS for the ABA graphene shows
some quasi-V feature close to zero-energy due to the presence
of the combination of the quadratic and the linear band, while
the ABC graphene shows a small peak at zero-energy due to
the incipient flat band, as well as cusps at energies correspond-
ing to the end of the two quadratic bands.
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Figure 3. Density of states for ABA (left) and ABC (right) trilayer
graphene. For the ABC case, we observe a zero-energy peak due to
the presence of the incipient flat band.

III. RIBBONS WITH ZIGZAG EDGES AND INTERFACES

We now consider a ribbon that is finite in one direction (x)
and infinite in the other (y), with zigzag edges (see Fig. 4).
Along the finite-size direction, the momentum is no longer a
good quantum number and the continuous (kx, ky) band struc-
ture is replaced by a quantized set of bands. Thus in Fig. 5
we plot the band structure of zigzag ABA and ABC ribbons.
For the ABA structure, we see two types of quantized modes
emerging from the linear and the quadratic band, while for the
ABC one we can only see the quantized modes emerging from
the lowest band.

It is also known that graphene ribbons with zigzag edges
exhibit localized edge states. In a trilayer system, these states
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Figure 4. A zigzag (left) and an armchair (right) edge.
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Figure 5. (a) and (c): Respectively, band structure and density of
states for ABA ribbons with zigzag edges. (b) and (d): Respectively,
band structure and density of states for ABC ribbons with zigzag
edges. We use ribbons with a width of 78 a0 and we consider a
numerical broadening η = 2.10−3 t0 for the density of states. In
both cases, we see the presence of flat bands at k = π corresponding
to the localized edge modes which give rise to a pronounced peak in
the DOS at ω = 0.

exist regardless of the stacking order as can be seen in Fig. 5:
for both ABA and ABC stacking we see that the band structure
contains flat bands at zero energy. For each ribbon there are
six of those bands, corresponding to the three layers and the
two edges of each layer. These states are not topological and
can for example move away from zero energy when we apply
an electric field.

The corresponding LDOS depicted in the lower panels of
Fig. 5 show clearly the zero-energy edge-state peak, as well
as the quantized structure of the band structure. Given the ef-
fective 1D character of the ribbons, each band will give rise to

a peak in the LDOS at the energy corresponding to the bottom-
of-the-band (Van Hove singularity) inflexion. This will yield
a series of peaks in the LDOS, as visible in the bottom panel
of Fig. 5. The overall trend for the LDOS of the ABA/ABC
ribbon is consistent with the LDOS for the infinite ABA/ABC
trilayer depicted in Fig. 3, i.e. a linear dispersion for the ABA
ribbon, and a linear dispersion with a smaller slope for the
ABC ribbon, jumping abruptly at ω ≈ 0.15t0.

When we introduce a stacking fault (see Fig. 1(a)), the band
structure is perturbed, as can be seen in Fig. 6. Note that be-
cause the defect is only localized in the top-most layer, there
might be significant hybridization between the two different
stacking regions through the bottom layers. Indeed, the bulk
bands for the mixed system are no longer similar to the sepa-
rate ABC/ABA bands but are fully modified by the presence
of the defect. To separate the bands coming from the ABC
and ABA bulks and those of the interface region we study the
effect of the size of the ribbon on the band structure. The idea
is that if we change the number of atoms in the bulk, features
associated with the edges, as well as with the defect, should
remain unchanged. Looking at Fig. 6, we see that this is in-
deed the case for the flat bands around k = π. These flat bands
can easily be identified with states localized on the edges of
the ribbon. Moreover, we note that the lowest-energy bands
exhibit a dispersion which is independent of the system size
even away from the Dirac point. This size-independent band
is peculiar and we argue that it is localized at the interface
between the ABA and ABC regions.
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Figure 6. The band structure for a ribbon with a stacking fault, plot-
ted for two different ribbon widths 284a0 (dashed red) and 156a0
(full black). The flat bands and the lowest-energy bands are indepen-
dent of the width, while the bulk bands strongly depend on it.

To confirm this observation we study the spectral weight of
the different bands as a function of the position on the ribbon.
Fig. 7(a) shows the spectral weight averaged over two unit
cells in the stacking fault, while Fig. 7(b) shows the averaged
spectral weight for sites in the bulk on both the ABA and ABC
sides of the ribbon. We see that the interface spectral weight
is significantly larger for the lowest dispersing energy band,
at both positive and negative energies. In contrast, the bulk
spectral weight is rather equally distributed on the quantized
multiple bands in the Dirac cone with a marked absence of
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weight on the flat band (localized at the exterior edges) and on
the lowest energy band (localized at the interface). This pro-
vides an extra indication that the bands we identified as size-
independent are localized on the defect. It is also interesting
to note that the situation is less clear for momenta close to the
Dirac point where the spectral weight is once again evenly dis-
tributed (Fig. 7(a)) and there are no signs of localized states.

Figure 7. (a) The eigenstate spectral weight evaluated on sites in
the stacking fault. There is a significant weight in the two lowest
positive- and negative-energy bands, indicating that these states are
localized on the defect. (b) Averaged spectral weight evaluated on
sites in the bulk (average of ABA and ABC sides). The ribbon’s
width is 156 a0 and we used a numerical broadening η = 3.10−3 t0

Lastly, we look for possible signatures of these states in the
density of states as a function of position along the ribbon.
We see in Fig. 8(a) that the local density of states (LDOS)
at zero energy is dominated by the edge states. This is due
to the flat nature of the edge bands give which rise to a high
density of states close to ω = 0. This is localized both on
the edge but also exhibits significant leaks in the bulk, for the
not-too-large system size that we consider. To get a better
understanding in Fig. 8(a) we plot the LDOS as a function of
energy in the stacking fault, as well as in the ABA and ABC
regions. We thus note that the LDOS in the defect (the region
between the white dashed lines in Fig. 8(a)), as well as in the
ABA and ABC regions far from the edges, does still present
a significant peak at ω = 0 that is due to the zigzag edge
modes. This makes it hard to separate for example the effect
of the bulk ABC zero-energy flat band from that of the zigzag
edges.

The dependence of the DOS in the defect on energy (green
curve in Fig. 8(b)) exhibits a roughly linear dependence on en-
ergy, similar to that of the bulk ABA region depicted in Fig. 3;
this is consistent with the fact that de defect spectral weight is
maximum on a pair of bands that disperse linearly away from
k = 0 (Fig. 7(a)). These bands decay in intensity close to
zero energy, consistent with the reduction in the LDOS of the
defect at small energies, as shown in Fig. 8(b). The bulk ABA
preserves also a linear dependence (orange curve in Fig. 8(b)),
modulated by the finite-size effects. The ABC bulk LDOS
(Fig. 8(b) blue curve) also preserves the average ABC uni-
form bulk dependence depicted in Fig. 3, i.e a linear depen-
dence with a lower slope for 0 < ω < 0.15 before increasing
rapidly.

Note that the LDOS on the interface has roughly the same

intensity as in the bulk, the interface does not seem to gener-
ate significant interface states localized at the position of the
defect.

Figure 8. (a) Local density of states as a function of energy and
position along the ribbon. The ABC region corresponds to x > 80
(top of the picture), while the ABA region to x < 75 (bottom of the
picture). We left out the ribbon’s edges where there is a high density
of states due to the edge states in the zigzag geometry. The white
dashed lines indicate the position of the stacking fault. (b) Density
of states at specific sites. The DOS on the ABA (x = 39) and ABC
(x = 119) sides are taken far from the defect (x = 78), in the bulk.
The ribbon’s width is 156 a0 for both figures. DOS lines are shifted
for readability. We used a numerical broadening η = 2.10−3 t0.

IV. RIBBONS WITH ARMCHAIR EDGES AND
INTERFACES

We now perform the same analysis on ribbons with arm-
chair edges. The geometry of the stacking fault is depicted in
Fig. 1(b). In the case of armchair ribbons there are no edge
states, and the band structures for the two different stackings
are shown in Fig. 9(a) and (b). Compared to the zigzag case,
there is a stronger contrast between the two band structures:
for the ABA stacking the linearly-dispersing and the lowest
quadratically-dispersing bands seem to be preserved even in
the presence of the quantization. The band structure of the
ABC-stacked ribbon seems to be affected also much less by
the quantization, preserving the k3-dispersing bands touch-
ing at ω = 0; we thus expect some reminiscence of the flat
band signatures (such as a zero-energy peak in the DOS) in
this type of geometry. Indeed, while both stackings give rise
to zero-energy peaks due to the zero-energy van Hove singu-
larities corresponding to the bottom-of-the-band inflexions in
the now effectively-1D energy bands, the one corresponding
to the ABC stacking is more robust.

The band structure of a ribbon with a stacking fault and
armchair edges is shown in Fig. 10 for two different ribbon
widths. Once again the band structure of the combined system
cannot be directly traced back to the individual band structures
for the ABA and ABC ribbons. Moreover, we can clearly
see that the combined-system band structure is not symmetric
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Figure 9. (a) and (c) Band structure and respectively density of states
for ABA ribbons with armchair edges. (b) and (d) Band structure and
respectively density of states for ABC ribbons with armchair edges.
We used ribbons with a width of 59 a0, and a numerical broadening
η = 2.10−3 t0 for the density of states. Both stacking seem to exhibit
a zero-energy peak in the LDOS, but the ABC stacking one is more
robust due to the flatter dispersion around k = 0.

with respect to ω = 0. This symmetry is usually a conse-
quence of the sublattice symmetry that exists in the honey-
comb lattice and is broken here due to the particular shape of
the impurity (see Fig. 1(b)). The stacking fault gives rise to
a distinct signature in the band structure: we can see the for-
mation of two dispersing bands (one for positive and one for
negative energies) which seem to be unaffected by the size of
the system. This feature indicates that these may indeed be
interface bands, and not bulk bands, same as in the zigzag rib-
bon case. These bands are once more the lowest in energy in
the spectrum and have a relatively flat dispersion near k = 0.

Same as in the zigzag case we also calculate the spectral
weight on sites located in the stacking fault, and we com-
pare it to the spectral weight in the bulk. This is shown in
Fig. 11: we can see that the interface spectral weight is local-
ized most strongly on the two lowest positive- and negative-
energy bands (Fig. 11a). Moreover, segments from the cen-
tral band, reminiscent of the linear ABA band, exhibit a very
strong intensity at the ABA/ABC interface. On the other hand,
the spectral weight in the bulk (Fig. 11b) seems evenly dis-
tributed, except on the lowest energy band which has very lit-
tle weight, confirming that this band is an interface band and
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Figure 10. The band structure for an armchair ribbon with a stacking
fault for two different ribbon widths. The lowest-energy dispersing
bands are the same for the two different widths, while the bulk bands
are different.

not a bulk band. We note the strong difference in the scale of
the spectral weight between the two figures, indicating that the
interface states have much more intensity than the bulk states.

Figure 11. (a) The eigenstate spectral weight evaluated on sites in
the stacking fault. There is a significant weight in the two lowest
positive- and negative-energy bands, indicating that these states are
localized on the defect. Moreover, reminiscent segments from the
linear band arising for a clean ABC structure also shows a very strong
intensity on the defect; however this band is now gapped. (b) Aver-
aged spectral weight evaluated on sites in the bulk (average of ABA
and ABC sides). Note the large difference between the scales of the
two figures indicating a strong intensity for the states localized on
the defect. The ribbon’s width is 96 a0 and we used a numerical
broadening η = 3.10−3 t0

We also perform an analysis of the LDOS as a function
of position (Fig. 12(a)). This turns out to be very different
from the case of the zigzag ribbon, as there are no zero-energy
edge states and also there is a higher spectral weight for the
states localized on the impurity. We note first that the LDOS
in the ABA and the ABC bulk becomes also asymmetric be-
tween the positive and negative energies. The ABA LDOS
(Fig. 12(b) orange line) shows only small modifications from
the previously studied situations (i.e a linear background plus
quantized peaks, see Fig. 9). The ABC bulk (Fig. 12(b) blue
line) also follows the structure in Fig. 9, exhibiting a a linear
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slope for 0 < ω < 0.15 before increasing rapidly, as well
as a strong zero-energy peak corresponding to the flat band,
but with a more pronounced asymmetry between the positive
and negative energies, and a reduction in the LDOS at small
negative energies.

The averaged DOS in the defect (Fig. 12(b) green line)
shows a reduction in the LDOS around ω = 0, and sharp
peaks for positive energies ω ≈ 0.05. This is in agreement
with the momentum space analysis (Fig. 11(a)) where we can
see that the spectral weight is maximum on a pair of gapped
bands which are reminiscent of the linear ABA bands: the
sharp peaks arise at the gap edge of these bands. We also see
that the defect DOS is not symmetric with respect to ω = 0 as
expected from the band structure in Fig. 10. Also we note the
large intensity of the LDOS in the defect which persists at all
energies.

Figure 12. (a) Local density of states as a function of energy and
position along the ribbon. The ABC region corresponds to y > 70
(top of the picture), while the ABA region to y < 60 (bottom of the
picture). The white dashed lines indicate the position of the defect.
(b) Density of states at specific sites. The DOS on the ABA (y =
31) and ABC (y = 98) sides are taken far from the defect, in the
bulk. The DOS taken on the defect (y = 65) is divided by 10 for
scaling reasons. The ribbon’s width is 96 a0 for both figures. DOS
lines are shifted for readability. We used a numerical broadening
η = 2.10−3 t0.

V. FINITE-SIZE CONFIGURATION

In this section we consider instead of an infinite ribbon a
finite-size ABA-ABC ribbon. Once again we look at systems
with zigzag or armchair terminations, but with a finite size in
both the x and y directions. We thus expect a quantization
of the continuous interface bands present in the infinite rib-
bon configurations, and the appearance of quantized interface
levels. Since there is no longer any good momentum quan-
tum number there is no band structure to analyze, but only the
LDOS as a function of energy and position.

We start by studying the case of zigzag edges. In Fig. 13(a)
we plot the LDOS as a function of energy along a cut perpen-
dicular to the direction of the stacking fault. We observe some

Figure 13. LDOS as a function of energy and position for a finite-
size system with zigzag edges (a) and armchair edges (b). The white
dashed lines indicate the position of the defect. The ABA region
corresponds to x < 45 (left of the stacking fault), while the ABC
region to x > 50 (right of the stacking fault). We used a numerical
broadening η = 1.10−3 t0, and for the zigzag ribbon we have ex-
cluded the leftmost and rightmost edges. The length of the ribbons
(perpendicular to the impurity) is 95a0, while the width is 35a0 in
both geometries.

predominant features. First we note that the edge states, local-
ized at the exterior edges of the sample, continue to exhibit a
strong spectral weight even in the finite configuration, this is
expected from previous studies of graphene. We can see here
that these states also penetrate quite significantly in the bulk
(∼ 30a0). The second relevant feature is the formation of the
quantized states localized at the ABA/ABC interface, these
are just a result of the quantization of the interface bands ob-
served in the previous section. Their intensity once more is
not more significant than that of the bulk, indicating that the
zigzag interface does not generate strong localized interface
states.

We now turn to the case of armchair edges, and in Fig. 13(d)
we plot the LDOS as a function of energy and position along
the y axis. Here we do not have any zero-energy modes as the
armchair edges do not exhibit any localized states. We can see
however very clearly the quantization of the energy levels in
the stacking fault. The spectral weight associated with these
localized states is higher than the spectral weight for delocal-
ized states in the ABC or ABA bulk. This is in agreement with
the results for the semi-infinite ribbon presented in Section IV.
The limited size for the bulk ABA and ABC stacking regions
does not allow us to have a good quantitative understanding
for the low-energy DOS outside the impurity.

In the Appendix we study a different finite-size configura-
tion, that of a square system for which the outer region has an
ABC stacking while the inner region an ABA stacking, which
confirms the quantization of the edge modes observed here,
as well as a significant dependence of the intensity of the edge
modes with the details of the stacking fault configuration, for
both zigzag and armchair interfaces.

VI. CONCLUSION

We have studied the formation of interface states between
ABC and ABA trilayer graphene regions. We have considered
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both zigzag and armchair junctions and both infinite ribbons
and finite-size configurations. We noticed the formation of in-
terface dispersing bands, which differ between the zigzag and
armchair cases. They are very intense for the armchair geom-
etry, while in the zigzag case they do not show a significant
intensity with respect to the bulk bands. The local density of
states also clearly indicates that these states are localized in
the stacking faults. The corresponding bands transform into
a set of discrete quantized levels for a fully finite-size con-
figuration. We believe that these states are non-topological,
given their strong dependence on the type of interface (zigzag
or armchair), as well as on the details of the stalking fault
interface. This is consistent with the fact that there is no no-
tion of a non-zero topological invariant in graphene in the ab-

sence of an electric field. Our observations should be impor-
tant for experiments concerning interfaces between ABA and
ABC graphene nanoribbons, as well as graphene regions of a
particular stacking embedded in a bulk with a different stack-
ing.
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Figure 14. bottom right: Top layer of a graphene trilayer with ABC stacking with an ABA island in the middle. The stacking faults have
a zigzag termination along the x axis and an armchair one along the y axis. The blue dashed lines indicate the position to the defects. top
right LDOS as a function of energy and position along the x axis, for a fixed value of y ≈ 7. The stacking faults have a zigzag geometry and
correspond respectively to a ’stretching’ and a ’compressing’ defect for the left-side and right-side impurities. We observe strongly localized
quantized states in the stretching case but the DOS in the compressing case is featureless, consistent with the results presented in the main
text. bottom left: LDOS as a function of energy and position along the y axis, for a fixed value of x ≈ 6. The stacking faults have an
armchair geometry and correspond to the impurity studied in the main text (top side) and its complementary (bottom side). We observe
strongly localized quantized states on the top side, consistent with the results in the main text, while the complementary defect does not show
any strong signature.

Appendix A: Square system

We present in this appendix the result of a tight-binding calculation on a square system for which the outer region has an ABC
stacking while the inner region an ABA stacking. The transition between the two types of stacking is made by four defects, each
on a side of a square, among which two have an armchair configuration and two have a zigzag configuration. The positions of
the atoms in the top layer, that are responsible for the stacking faults, is presented in Fig. 14. The right side of the impurity
square has the same atomic configuration as the zigzag stacking fault presented in the text, while the top side corresponds to
the armchair one described in Fig. 1. For the other sides we have chosen complementary impurities, such that the left side is a
’stretching’ impurity, i.e. the transition between the two stackings is realized not by shortening the distance between the atoms
inside the interface region (as we did for the ’compressing’ impurity in the main text), but by increasing it. For the bottom side
we have taken an impurity for which the atoms are shifted to the left, rather than to the right, oppositely to the armchair interface
studied in the main text. These choices insure that we recover the same stacking and an uniform bulk outside the impurity square
in all four directions.

In Fig. 14 top-right and bottom-left panels we plot the LDOS as a function of position and energy, along both the zigzag (x)
direction and along the armchair (y) direction. We can clearly see that even if they are created along the same type of interface
(armchair or zigzag), the complementary impurities have significantly different effects on the density of states. Thus for the
zigzag ’stretching’ defects as well as for the armchair defects presented in the main text (left and top side) we recover strong
quantized states localized on the interface. The situation is however reversed in the case of a zigzag ’compressing’ defect, as well
as for the armchair defect complementary to that of the main text (right and bottom sides) where the LDOS does not show strong
localized states on the impurity. This is a strong indication that the states that we found are very sensitive to lattice effects, and
thus they are not topological states and can be tuned in and out of existence by modifying the lattice structure, same as zigzag
edge states in monolayer graphene.
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