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Abstract—Early detection of anomalies in data centers is 

important to reduce downtimes and the costs of periodic maintenance. 
However, there is little research on this topic and even fewer on the 
fusion of sensor data for the detection of abnormal events. The goal of 
this paper is to propose a method for anomaly detection in data centers 
by combining sensor data (temperature, humidity, power) and deep 
learning models. The model described in the paper uses one 
autoencoder per sensor to reconstruct the inputs. The auto-encoders 
contain Long-Short Term Memory (LSTM) layers and are trained 
using the normal samples of the relevant sensors selected by 
correlation analysis. The difference signal between the input and its 
reconstruction is then used to classify the samples using feature 
extraction and a random forest classifier. The data measured by the 
sensors of a data center between January 2019 and May 2020 are used 
to train the model, while the data between June 2020 and May 2021 
are used to assess it. Performances of the model are assessed a 
posteriori through F1-score by comparing detected anomalies with the 
data center’s history. The proposed model outperforms the state-of-
the-art reconstruction method, which uses only one autoencoder taking 
multivariate sequences and detects an anomaly with a threshold on the 
reconstruction error, with an F1-score of 83.60% compared to 24.16%. 
 

Keywords—Anomaly detection, autoencoder, data centers, deep 
learning.  

I.INTRODUCTION 

UTAGES and malfunctions of the equipment of a data 
center could lead to considerable damage and to severe 

consequences on the integrity of the center and of the hosted 
services. A recent example is the case of the fire in OVH data 
center in Strasbourg, France in March 2021 [1]. The cause of 
the fire is not precisely known but the first elements of the 
investigation tend to a fire from Uninterruptible Power Supply 
(UPS) systems. This fire caused a shutdown of major services 
for companies hosting their websites or online services on OVH 
servers. This event emphasizes the need of a proper and 
complete maintenance program for data centers. 

The three types of maintenance are commonly distinguished: 
reactive, preventive (or periodic) and predictive. 

Reactive maintenance consists of replacing or repairing a 
broken part of the system after an outage or a problem 
happened. In the case of a critical (or costly) piece of 
equipment, this approach may not be satisfying as it might lead 
to longer outages and higher maintenance costs. In these cases, 
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preventive maintenance, which is a way to overcome the issue 
from the reactive one, is often preferred. However, it involves 
replacing a piece according to a predetermined timeline, 
without considering its wear condition, which may also lead to 
financial and environmental costs. Therefore, a balance 
between reducing the number of outages and reducing the costs 
of the maintenance program must be found. 

Predictive maintenance performs as a kind of trade-off 
between preventive and reactive. The key aspect of predictive 
maintenance is to evaluate continuously the status of the 
equipment. With this approach, a piece of equipment is replaced 
only when it is considered as abnormal or faulty and just before 
a critical issue happens.  

Predictive maintenance has its own drawbacks, as it requires 
additional sensors, leading to higher costs and potential sensor 
failures. It also relies on the hypothesis that the failure can be 
predicted with a low error margin. 

Outages in data centers are extremely critical, as a data center 
has to be available at any time to perform computation and to 
answer queries and as it is composed of expensive devices. 
Therefore, a proper maintenance program is needed for these 
facilities. The current state of maintenance in a data center is 
preventive maintenance and redundancy. Redundancy is to 
ensure that even if something fails, a secondary system could 
take over it.  

In 2016, Ponemon Institute and Emerson Network Power 
highlighted the main causes of outages in data centers [2]: 25% 
are due to UPS systems, 22% to cybercrime (denial-of-service 
attacks), 22% to accidental human error, 11% to air 
conditioning systems, 10% to the weather, 6% to electrical 
generators and 4% to IT machines. 

This paper is focused on the predictive maintenance of UPS 
systems, as they are the first causes of outages in a data center. 

This paper will describe a new method to perform predictive 
maintenance on the UPS system through anomaly detection. 
The proposed model relies on a sensor-wise reconstruction 
using auto-encoders and with a data fusion block based on a 
random forest whose sensitivity is adjusted with a threshold on 
the output probabilities. 

This paper is organized as follows. The related work of 
anomaly detection is presented in Section II. Section III 
describes the data used and the architecture of the proposed 
model. Section IV explains in detail each part of the model and 
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Section V highlights the results obtained with the model and the 
comparison with others. Finally, the goal of Section VI and 
Section VII is respectively to discuss about the model and about 
the choices made and to talk about the improvements and the 
future work that can be made to improve this model, and 
conclusions are drawn in Section VIII. 

II.RELATED WORK 

There are very few papers about anomaly detection applied 
to data centers. Decker et al. proposed a method to detect 
anomalies in the traffic of the data center by using log files and 
a Gaussian mixture-based rules [3]. Wang et al. described a 
second method based on the estimation of a density distribution 
[4].  

Therefore, the research of related work is broadened to other 
application fields of predictive maintenance (turbofan engines, 
buildings, disk drives or elevators). The methods found in these 
applications can be separated in three classes: classical machine 
learning methods, supervised deep learning methods and 
unsupervised reconstruction methods. 

In [5], the detection of an anomaly is done using a random 
forest classifier whose hyper-parameters are tuned to maximize 
the accuracy. The fitting of the forest is done by supervised 
learning. The random forest classifier is replaced by other 
machine learning classifiers in other papers such as Support 
Vector Machines (SVM), decision trees or k-nearest neighbors 
[6].  

Other machine learning methods are trained using 
unsupervised learning on normal data (data labelled as normal), 
these methods are one-class classification methods. For 
example, a type of one-class classification method is density 
methods where the normal data are used to fit a probabilistic 
distribution by maximizing the likelihood as in [4], [7]. In these 
methods, an anomaly is detected if the likelihood of a sample 
with respect to the fitted distribution is low (below a fixed 
threshold). In [7], the one-class classification is done with a 
variant of SVM which is One-Class SVM. The One-Class SVM 
learns a boundary of the normal domain using the normal data, 
a sample that falls outside this domain is considered as 
abnormal. 

The classical machine learning methods do not allow taking 
into account the temporal dependencies in the data. 

That is why deep learning methods with more complex 
models are also used. In [8], [9], supervised deep learning 
methods are described, either using a Long-Short Term 
Memory (LSTM) [10] network that takes a sample and returns 
its status (normal or abnormal) or using another model made of 
convolutional layers. Both LSTM and convolutional layers 
allows catching the temporal information within the data. The 
model described in [11] is based on Convolutional Neural 
Network (CNN) and LSTM. The difference with other methods 
is that the feature extraction done by CNN is performed sensor 
per sensor. Meaning that we have one CNN per sensor to extract 
features from it. Then the extracted features of each sensor are 
concatenated and fed to a LSTM model. This sensor-wise 
approach is interesting for its modularity, one sensor can be 
added or removed without re-training all the CNNs.  

An auto-encoder can be also used to reduce the dimension 
and to extract features from the data (auto-encoder trained by 
unsupervised learning). The supervised detection models are 
then fed with the latent vectors obtained with the encoder [12], 
[13]. 

Usually in anomaly detection, the dataset is highly 
imbalanced meaning that there are much more normal samples 
than abnormal one. The supervised methods need to have a 
balanced dataset, especially in deep learning methods that needs 
many data. So the imbalanced dataset has to be balanced by for 
example oversampling or undersampling or by attribute 
different weights to each class.  

Finally, another kind of method for anomaly detection is 
reconstruction methods. The aim of reconstruction methods is 
to train the model to reconstruct the normal data of the dataset. 
The models learn the normal behavior of the system by 
unsupervised learning on the data labelled as normal. Once the 
model is fitted, a sample is detected as an anomaly if an error 
(based on the sample itself and its reconstruction) is above a 
fixed threshold. In [7], an auto-encoder is used to reconstruct 
the input and in [14], the auto-encoder is improved by using 
LSTM layers instead of fully connected layers. The error used 
for the detection of an anomaly is the reconstruction error, 
meaning either the L2-distance between the sample and its 
reconstruction or the Mean-Squared Error (MSE). But in [15], 
an error computed as a mix between the reconstruction error 
and an error computed in the latent space of the auto-encoder 
(for example Mahalanobis distance) is proposed to enhance the 
prediction. In [16], the authors described a reconstruction 
method based on Generative Adversarial Network (GAN) with 
convolutional layers. This model, called GANomaly, is made 
of a reconstructor composed of an encoder and a decoder. 
Another encoder is added to encode the reconstruction. The 
training is done as for GAN with a generator and a discriminator 
whose goal is to identify real sample to reconstructed ones. In 
this model, an anomaly is detected if the L2-distance between 
the outputs of the two encoders of the model is above a 
threshold. Finally in [17], the detection is also done using a 
threshold on an error computed with the reconstruction and the 
paper compares a Variational Auto-encoder model (VAE) with 
GANomaly [16]. 

Reconstruction methods have the benefits to be based on 
deep learning models such as LSTM and convolutional layers 
that can catch the temporal information in the time series. 
Furthermore, the training process using only normal data avoids 
the problem of the imbalance of the dataset where anomalies 
are far less represented than the normal behavior. 
The method described in this paper belongs to the class of 
reconstruction methods. The reconstruction is done using auto-
encoders with LSTM layers.  

III.MATERIALS AND METHOD 

The data used come from sensors set in one of the CEA’s 
data centers in Grenoble. The measures of the sensors are taken 
every 5 minutes. As explained in the Ponemon Institute’s study 
[2], most of the outages in a data center are due to UPS systems. 
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Therefore, we decided to focus on UPS system and to perform 
anomaly detection only on this device. 

The sensors taken from the UPS are: 
 Internal temperature and battery temperature, 
 Intensity on the three phases, 
 Battery voltage, 
 Battery capacity, and 
 Total active power. 

The data between January 2019 and May 2021 are used and 
will be annotated using the alarm history of the device given by 
the monitoring software of the data center. The history gives 
several time ranges during which the device sent an alarm 
(critical alarm or complete outages). 

Finally, the dataset is highly imbalanced: during the 2.5 years 
measures from the UPS (corresponding to 253 968 measures), 
only 0.13% are abnormal. 

The whole dataset is resampled by performing the following 
tasks for on the data of each sensor: 
1. A resampling with a frequency of 5 minutes to get exactly 

one measure every 5 minutes for each sensor. If two 
measures are in the same 5 minutes time slot, only the first 
one is kept. Finally, if there is no measure in a 5 minutes 
time slot, a missing value is added. 

2. Replacement of missing values by forward-fill. 
With this resampling step, all sensors now have the same 

number of measures with the same timestamps. 
The resampled data are then fed to the pipeline made of a pre-

processing block and of the detection model. 
The pre-processing part is made of four steps: 

1. First, sensors are selected based on a correlation selection. 
If the correlation between the data of two sensors is above 
a fixed threshold (arbitrarily set to 85%), then only the first 
sensor is selected. This step allows to remove redundant 
information in the dataset. 

2. After that, each sensor is scaled by a min-max 
normalization in order to have the same scale in the range 
[0, 1] for each sensor. 

3. Finally, sequences are created by applying a sliding 
window on the data. The sliding window size (win_size) is 
a parameter of the global workflow. The sliding window 
moves forwards with a step of 5 minutes corresponding to 
a step of 1 measure. So from a dataset containing n 
measures, n-win_size sequences of size win_size are 
created. 

4. The sequences are then labelled using the alarm history of 
the UPS (obtained with the monitoring software). Indeed, 
if in a sequence of size win_size, at least one measure was 
labelled as an anomaly in the history, then the sequence is 
labelled as abnormal.  

After the pre-processing step, a new dataset composed of 
both the data sequences and the labels of each sequence is 
created and will be used by the detection model. 

The pre-processed data passes through a sensor-wise 
reconstructor whose output is a reconstruction of the input 
sequences (based on auto-encoders). From the real data and 
their reconstruction, squared difference sequences are 

computed sensor per sensor from which statistical features are 
extracted. These extracted features will then be used to train in 
a supervised manner the prediction block that is based on 
random forest. A high-level view of the model is given in Fig. 
1. Our method belongs to the class of reconstruction methods. 

The development of the model was done with Python 3.8, the 
neural networks are made using Keras interface of Tensorflow 
and the random forest in the prediction block is done with scikit-
learn. To extract some statistical features, we also used scipy. 
 

 

Fig. 1 Overview of the proposed model for anomaly detection 

IV.DETAILS OF THE PROPOSED SOLUTION 

A. Reconstructor Model 

The goal of the reconstructor is to take the input sequence 
and to reconstruct it. The reconstructor is based on the auto-
encoders model as in [14] with LSTM layers. Unlike other 
reconstruction methods, the proposed model uses one auto-
encoder per sensor instead of one taking all the sensors as input, 
this multi auto-encoder approach is inspired by the multi-head 
CNN model in [11]. 

Each auto-encoder (AE) in the reconstructor is trained using 
only the data labelled as normal for the corresponding sensor in 
the dataset. The AEs are trained to minimize the Mean-Squared 
Error (MSE) between the input and the output (the 
reconstruction). The Adam optimizer [18] is used to learn the 
parameters of the AEs and the data are fed to it during training 
step by batches of size 64. In the Adam optimizer, the 
parameters are fixed to 𝜂 0.001, 𝛽 0.9, 𝛽 0.999 and 
𝜖 10 . 

See Fig. 2, for an overview of the reconstructor model. 
 

 

Fig. 2 Architecture of the sensor-wise Reconstructor 

B. Architecture of the Auto-Encoders 

Let us go further and describe the structure of the auto-
encoders used in the Reconstructor. 

The model needs to take into account the temporality of the 
sequences in input. That is why the AEs in the reconstructor are 
made with LSTM layers. LSTM is preferred to vanilla 
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Recurrent Neural Network in order to avoid the problem of 
gradient vanishing for long sequences. 

As in a classical auto-encoder, one part is the encoder that 
will match the input to the latent space. Then from the latent 
representation, the decoder will build a new sequence that is 
supposed to be close to the input.  

The encoder is made of three LSTM layers, the last one 
returning the latent vector whose dimension (latent_dim) is 
fixed to half of the length of the input sequence (win_size). 

As for the decoder, a RepeatVector layer is used to take the 
latent vector and to create a sequence of the desired length (the 
latent vector is repeated as many times as needed). This 
sequence composed of the repetition of the latent vector passes 
through two LSTM layers and finally through a Time 
Distributed Dense layer. Time Distributed Dense layer is a fully 
connected layer that is applied for every vector of the time 
series, for each timestep. Between each LSTM layer, a Dropout 
layer is added with a dropout parameter set to 0.2 to avoid 
overfitting. 

The architecture is detailed in Fig. 3 (Dropout layers are not 
shown). 

The activation function of the LSTM layers is tanh, and the 
linear activation function is used for the Time Distributed 
Dense layer. 

In Fig. 3, the shape written just below the layers refers to the 
shape of the output of the corresponding layer. The first 
coordinate of the shape is the length of the sequence and the 
second one is the dimension of the vectors of the time series. 

With that process, the auto-encoder is able to return a 
sequence having the same shape as the input and that minimizes 
the MSE with the input (reproduce the identity function). 
 

 

Fig. 3 Structure of the auto-encoders in the Reconstructor 

1. Features Extraction 

Once the Reconstructor has reconstructed the input sequence, 
the squared difference sequence is computed. Usually for an 
anomaly detection task, the Mean Square Error is computed 
between the input and its reconstruction. Here, we want to 
extract information sensor per sensor and not to have only the 
mean of the error sequence but other statistical features that can 
bring additional information.  

Therefore, the aim of feature extraction and the prediction 
block is to do classical machine learning on the squared 
difference sequence using the reconstruction of the input. For 
each sensor, the difference sequences are just new sequences 
(of size win_size) which are the difference between the input 
sequence and its reconstruction (the output of the 
Reconstructor). 

For each sensor, the following features are extracted from the 
squared difference sequence: min, quartiles, max, mean, 
standard deviation, skewness and kurtosis. 

All these extracted features are then concatenated in a unique 
vector of size n_features*n_sensors, these vectors of features 
will then be fed to the prediction block. 

So far, there is no data fusion in the model. The sensors are 
processed separately and no combination of sensors is used. 
The data fusion will be achieved within the prediction block.  

2. Prediction Block  

The previous block created a vector of features, which were 
extracted sensor per sensor from the squared difference 
sequence. The features vectors are used to train a Random 
Forest Classifier to detect whether there is an anomaly or not.  

A random forest is used as it gives an insight on the features 
that were used to detect an anomaly and hence, we can 
determine the responsible sensors. 

Compared to the state-of-the-art approach with a threshold 
set on the reconstruction error (MSE between the input and its 
reconstruction), here we do not only use the mean error and the 
thresholds on the features are not fixed manually but are found 
by the model to minimize the entropy of the predictions. 

In the random forest, the number of features to consider at 
each node of the trees is set to the square root of the total 
number of features to add regularization. Furthermore, since the 
dataset is highly imbalanced, the forest is used in the 
“balanced_subsample” mode. It means that in each bootstrap 
created for the generation of the decision trees, weights will be 
applied on the minority class to balance the importance of the 
two classes in the bootstrap. 

During the inference step, the random forest is used to predict 
the probability of a sample to be in the normal class (through 
the predict_proba method). If the probability of the normal class 
given by the forest is above a fixed threshold, then the sample 
is considered as normal by the model, otherwise, it is 
considered as an anomaly. The fixed threshold on the 
probability will be found to maximize the criterion used to 
assess the model (see the next section). This approach for the 
inference is equivalent to consider a sample as normal only if 
this sample is very likely to be normal, allowing reducing false 
negatives. See Fig. 4 for details on the prediction rule. 
 

 

Fig. 4 Prediction block based on random forest classifier 

III. RESULTS 

A. Anomaly Detection Results 

To assess the performances of the model, we used the dataset 
presented in Section III (Materials and Method) of the paper. 

The dataset is split in two parts, one part for training the 
model and the other for its evaluation. The data between 
January 2019 and May 2020 are used to train the model whereas 
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the data between June 2020 and May 2021 are used for the 
assessment. 

All steps of the pre-processing pipeline are also trained on 
the training set (correlation-based selection and min-max 
scaler). Among the sensors taken from the UPS system, six are 
selected by the correlation-based selector: 
 Internal temperature, 
 Battery temperature, 
 Intensity on the first two phases, 
 Battery voltage, and 
 Battery capacity. 

Since the dataset is highly imbalanced (much more normal 
samples than anomalies), the accuracy is not a relevant metrics. 
Indeed, even if the model classifies all the samples as normal, 
the accuracy will still be excellent as only a small proportion 
(the anomaly samples) will be misclassified. 

That is why the model is assessed through F1-score metrics, 
which is the harmonic mean between precision and recall. 
 

F1-score
2

1
precision

1
recall

 

 
where: 
 

precision
TP

TP FP
 

 

recall
TP

TP FN
 

 
TP refers to True Positive (anomaly well classified by the 

model), FP refers to False Positive (normal samples considered 
as abnormal by the model) and FN is False Negative (anomalies 
that are not detected by the model). 

In the proposed model, one important parameter is the 
threshold that will be set on the probability of the normal class 
returned by the random forest. This threshold will be found by 
grid search on the interval [0.5, 1] to maximize the F1-score of 
the model on the test set. 

Our model is compared with other existing reconstruction 
methods that were presented in the “Related work” section: 
1. GANomaly [16].  
2. A unique auto-encoder and the detection by a threshold on 

the reconstruction error as in [7], [14], [15]. 
3. A unique auto-encoder and the detection by a threshold on 

a mix between Mahalanobis distance in the latent space and 
reconstruction error as in [15].  

The model is also compared to another model where the 
reconstruction is done sensor per sensor (as in ours) but where 
the detection is performed using a threshold on the 
reconstruction error (instead of machine learning on the 
difference sequence as in our model) (model denoted as Multi 
AE + reconstruction error). We add this model to the 
comparison to see the direct impact of the sensor-wise 
reconstruction on the F1-score compared to the reconstruction 
using only one auto-encoder. 

For the four methods above, the threshold is set as the 
quantile of order q of the error on the training set. The order q 
of the quantile is found by grid search on the interval [0.99, 1] 
to maximize the F1-score on the test set. This interval has been 
chosen because an order q below 0.99 for the quantile gives a 
bad F1-score (near 0) as it leads to a lot of false positives. 

Table I summarizes the score obtained for each method with 
the optimal thresholds and with the default number of trees in 
the random forest (100 trees) of our model.  

The models have been tested for different sizes of rolling 
windows, since we have a measure every 5 minutes, a rolling 
window of size 12 represents a sequence of 1 hour. Mono-AE 
refers to a model where the reconstruction is done with a single 
autoencoder taking a multivariate time series as input, while 
Multi-AE refers to a reconstruction done with one auto-encoder 
per sensor (as in the proposed model). 
 

TABLE I 
COMPARISON OF F1-SCORE FOR DIFFERENT MODELS AND FOR DIFFERENT 

SIZES OF WINDOW 

 6 12 24 48 72 
Proposed model 

(ours) 
82.94% 65.40% 70.02% 55.56% 55.91% 

Multi-AE + 
reconstruction error

47.52% 31.90% 22.40% 22.29% 26.87% 

Mono-AE + 
Mahalanobis 
distance and 

reconstruction error 
[15]

13.63% 18.93% 22.50% 15.83% 5.85% 

Mono-AE + 
reconstruction error 

[7], [14]
24.16% 34.59% 21.64%  19.19% 20.36% 

GANomaly [16] 38.84% 41.40% 30.80% 22.24% 17.06% 
Random guess 

classifier
0.41% 0.47% 0.59% 0.81% 1.03% 

Only majority class 0.93% 0.80% 0.65% 0.47% 0.36% 

 
For a better reproducibility, all random seeds (tensorflow, 

numpy and random forest) have been set to 42. 
Fig. 5 shows the impact on the threshold on the F1-score for 

the proposed model and for different sizes of window. 
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Fig. 5 Evolution of the F1-score of the proposed model for different sizes of window with respect to the value of the threshold set on the 
probability of the normal class 

 
The proposed model described outperforms the other 

reconstruction methods for every size of sliding window.  
Choosing 6 as the size of the sliding windows gives the 

optimal results on the test set: 82.94% of F1-score (achieved 
with a threshold of 0.8737 and 100 trees).  

Overall, a reconstruction with a multi auto-encoders model 
(one per sensor) seems to be more suited for anomaly detection 
than a reconstruction using a single auto-encoder. Even if 
GANomaly is supposed to deal with images, it outperforms the 
detection with a threshold on the reconstruction error with a 
single auto-encoder and competes with the multi-AE model 
with a threshold on the error while still being behind the 
proposed model (multi-AE + random forest on extracted 
features from the squared difference sequence). 

Finally, for this dataset, the usage of Mahalanobis distance in 
the latent space does not improve the performances but worsen 
them. 

So far, the random forest in our model is made of 100 trees 
leading to a F1-score of 82.94%. However, Fig. 6 highlights 
that F1-score can be slightly improved to 83.60% by using 170 
trees in the random forest instead of 100. Above 170 trees, the 
score does not change. 

 

 

Fig. 6 Evolution of the F1-score of the model (with win_size=6 and 
threshold=0.8737) with respect to the number of trees in the random 

forest of the prediction block 
 

Therefore, the best model for anomaly detection on this 
dataset is the model presented in this paper with a size of rolling 
window of 6, a threshold of 0.8737 on the probability of the 
normal class and 170 trees in the random forest classifier. 

A. Comparison of Reconstruction Methods Based on AE 

Finally, let us compare directly the reconstruction using a 
model with one auto-encoder per sensor and the reconstruction 
using a single auto-encoder to see the impact of the sensor-wise 
approach. We will compare them using the mean of the MSEs 
computed on the training set. The MSEs are computed on the 
training set because the second metrics used (Akaike 
Information Criterion) for the comparison has to be computed 
on the training set and not on the test set. 
 

TABLE II 
MEAN OF THE MEAN SQUARED ERRORS BETWEEN THE INPUTS AND THEIR 

RECONSTRUCTION ON THE TRAINING SET FOR DIFFERENT SIZES OF WINDOW 

 6 12 24 48 72 

Multi-AE 7.91*10-5 8.16*10-5 4.05*10-4 4.18*10-4 4.11*10-4 

Mono-AE 1.09*10-4 1.11*10-4 1.42*10-4 2.10*10-4 2.06*10-4 

 
Table II shows that the Multi-AE model performs a better 

reconstruction for small sequences while Mono-AE model 
seems to be better for longer sequences. However, each auto-
encoder in the Multi-AE model has much fewer parameters than 
the model with a single auto-encoder. Therefore, we have a 
trade-off between performances (through MSEs) and 
complexity of the models (through the number of parameters). 

This trade-off can be measured using Akaike Information 
Criterion (AIC) [19]. AIC is a criterion that considers both the 
performances of the model and its complexity. A model with a 
lower AIC is preferred. 

In our case, AIC can be computed as follows: 
 

𝐴𝐼𝐶 𝑛 ln 𝑀  2𝑝 
 

Where 𝑛 refers to the size of the training set and 𝑀 to the 
mean of the MSEs on the training set (table) and 𝑝 refers to the 
number of parameters. 
 

TABLE III 
AIC OF THE DIFFERENT RECONSTRUCTION METHODS BASED ON AUTO-

ENCODERS FOR DIFFERENT SIZES OF WINDOW (LOWER IS BETTER) 

 6 12 24 48 72 

Multi-AE -694730.3 -676594.8 -412961.9 -346501.1 -273505.8 

Mono-AE -517507.3 -469336.2 -325787.4 8213.9 364398.7 
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The results of AIC are summarized in Table III. It is clear 
that the Multi-AE model performs a better trade-off for the 
reconstruction between performances (reconstruction error) 
and complexity (number of parameters) as it has a lower AIC. 
The Multi-AE model with a size of 6 for the sliding windows 
has the best value for AIC among all window sizes. 

As a conclusion of this section, the proposed model that uses 
a sensor-wise reconstruction and data fusion using a random 
forest on the squared difference sequence outperforms the other 
anomaly detection models based on a reconstruction of the 
input. The sensor-wise approach of our model outperforms a 
reconstruction using a single auto-encoder in terms of balance 
between performances and complexity. 

III. DISCUSSION 

For the Reconstructor block, unlike other state-of-the-art 
reconstruction methods, a sensor-wise approach has been 
implemented. This sensor-wise approach has two benefits: 
1. A higher modularity if we add a sensor or remove one. 
2. Having one auto-encoder per sensor allow a more accurate 

reconstruction of the sensor signal with less parameters in 
the auto-encoders. Each auto-encoder catching the 
specificity of each sensor. This is illustrated by a lower 
value of AIC compared to a model with a single auto-
encoder (see Section V, Results). 

In the prediction block, the purpose of the threshold on the 
probability of the normal class is to mitigate the number of false 
negatives and false positives (false alarms) returned by the 
model. In the case of maintenance, false negatives are damaging 
as it leads to some outages not being treated. However, too 
many false positives come with higher costs of the maintenance 
program. Therefore, the number of false negatives and false 
positives must be balanced. This balance is done in our model 
with the threshold on the probability of the normal class. This 
threshold is meant to adjust the sensitivity of the model to 
anomalies. One can change the value of the threshold to change 
the sensitivity and to have the desired balance between false 
negatives and false positives.  
Finally, to summarize these choices, the novelty of the approach 
compared to the state of the art comes from four points: 
1. The sensor-wise reconstruction; 
2. The sensor-wise feature extraction that is not limited to 

only the computation of the MSE between a sequence and 
its reconstruction; 

3. The usage of a random forest to consolidate the 
classification and to perform data fusion on the features 
extracted from each sensor; and, 

4. A prediction made by the forest based on a threshold on the 
probability of the normal class given by the forest to adjust 
the sensitivity of the model. 

An important part of the proposed model is its modularity, 
when we want to add a sensor or to remove one for the detection 
task. Thanks to their sensor-wise approach, the Reconstructor 
and the feature extraction blocks are modular. To add a new 
sensor to the model, it is only required to train a single new 
auto-encoder while all the others auto-encoders corresponding 
to the other sensors do not require retraining. For the feature 

extraction, this remark still holds, the features are extracted on 
each sensor independently so there is no problem if one is added 
or removed. Moreover, if we have new training data for a 
sensor, we could retrain the auto-encoder associated to this 
sensor with the new training set without retraining the entire 
Reconstructor block. 

However, while the Reconstructor does not need to be 
retrained entirely if a sensor is added or removed (just an auto-
encoder is trained), the random forest still needs to be retrained, 
as it will take new features as input. 

IV. FUTURE WORK AND POSSIBLE IMPROVEMENTS 

One possible improvement would be to make the model 
robust to the outage of a sensor. Indeed, the model can be 
improved by still giving a prediction even if one sensor is 
missing. Currently, if a sensor is missing, the model detects an 
anomaly but the ideal scenario would be that the model uses 
also the available sensors to make a prediction. 

The Reconstructor part and the features extraction of the 
proposed model are already robust to the lack of a sensor since 
the reconstruction and the extraction are done sensor per sensor. 
However, the prediction block with the random forest is not.  

One possible way to overcome this problem would be to 
create and train as many random forests as there are 
combinations of sensors (so 2 _  forests). In case of a 
sensor outage, the model will make the prediction using the 
forest corresponding to the combination of the currently 
available sensors. 

This model may also be applied to other applications of 
predictive maintenance. In this paper, we focused on the UPS 
system in the data center and the model was developed and 
tested using only the data from this device. The proposed model 
may be retrained and tested on the data coming from the air 
conditioner systems for example, as they are a great cause of 
outages in a data center. 

V. CONCLUSION 

In this paper, we presented a new model for anomaly 
detection of a UPS in a data center. The model uses a 
reconstruction method based on auto-encoders model. The 
reconstruction is done using one LSTM-auto-encoder per 
sensor for better modularity. The detection is then performed 
using a random forest trained on statistical features extracted 
from the squared difference sequence between a sequence and 
its reconstruction and using a threshold on the probability of the 
normal class to make the model more sensitive and avoid false 
negatives. 

The proposed model outperforms other reconstruction 
methods on the dataset we created with the sensors in the CEA’s 
data center. 

In particular, our method outperforms a reconstruction 
method that uses a single auto-encoder for the reconstruction 
and a threshold on the reconstruction error for the prediction.  
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