

Radionuclide-free efficiency calibration of an HPGe detector using monochromatic photon beams measured with a cryogenic radiometer

Victor Hernandez-Elvira, Yves Ménesguen, Marie-Christine Lépy

► To cite this version:

Victor Hernandez-Elvira, Yves Ménesguen, Marie-Christine Lépy. Radionuclide-free efficiency calibration of an HPGe detector using monochromatic photon beams measured with a cryogenic radiometer. ICRM 2023 - 23rd International Conference on Radionuclide Metrology and its Applications, Mar 2023, Bucarest, Romania. cea-04258120

HAL Id: cea-04258120 https://cea.hal.science/cea-04258120

Submitted on 25 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Radionuclide-free efficiency calibration of an HPGe detector using monochromatic photon beams measured with a cryogenic radiometer

Víctor H. Elvira, Yves. Ménesguen, Marie-Christine Lépy

Motivation

cea

Accurate measurement of fundamental parameters, such as X-ray emission intensities, require **well-calibrated spectrometers in terms of efficiency**

In the **conventional approach**, efficiency calibration is carried out by using radionuclides standards, calibrated in activity, and **previously known photon emission probabilities**

$$\varepsilon(E) = \frac{N(E)}{A I(E) t} \prod_{i} C_{i}$$

$$N(E): Net peak area t: counting time (live time)$$

$$A: source activity I(E): photon emission intensity$$

$$Ci: correction factors$$

- Photon emission intensities measurements and efficiency calibration strongly linked
 Intrinsic limitation: we rely on the same probabilities we intend to measure
- Few radionuclides for calibration
- Correlation between emission intensities

$$I_{XK} = P_{\gamma} \frac{\alpha_K}{1 + \alpha_T} \, \omega_K$$

 $I_{XK} = P_{\varepsilon} P_{K} \omega_{K}$

Motivation

<u>cea</u>

1.1E-2 -1.0E-2 -Efficiency 8.906-3 Ì٠. 109Cd . 129I 133Ba . 137Cs . 8.0E-3 152Eu ٠ 207Bi 210Pb . . 241Am - - Fit

7.0E-3

20

30

40

50

60

70

Energy/keV

80

90

100

Inconsistency in nuclear data •

E.g. Systematic difference of experimental • results using ¹³³Ba (53.2 keV) and ²⁴¹Am (59.5 keV)

110 120

cea

SOLUTION

Using well-measured photon fluxes whose calibration is **independent** of any previously measured **fundamental parameter**

This approach requires **ABSOLUTE MEASUREMENT OF PHOTON FLUXES**

CRYOGENIC DETECTORS

cea

When radiation interacts with an absorber, it provokes a temperature rise, ΔT , which is proportional to the energy of the incident radiation

29/03/2023

Cryogenic detectors

<u>cea</u>

PRINCIPLE OF ELECTRICAL SUBSTITUTION

The amount of energy deposited by the radiation can be known by finding the **electrical power** that needs to be transferred to the absorber in order to obtain **the same temperature rise**

$$\eta P_{\rm rad} = IR^2$$

A **thermistor** linked to the absorber is polarized with a constant current so that the **decrease in resistance** provoked by the **temperature rise** causes a **decrease in tension**

BOLUX - BOLometer for Use in the range of X-rays

V. H. Elvira. *et al.* | Radionuclide-free efficiency calibration of an HPGe detector using monochromatic photon beams measured with a cryogenic radiometer ICRM 2023 | Bucharest, Romania

7

BOLUX - BOLometer for Use in the range of X-rays

<u>cea</u>

29/03/2023

cea

Preliminary: calculation of the correction factor for BOLUX

Average energy deposited in the absorber per incident photon Below 100 % due to

- □ Photons that do not interact with the absorber (transmission)
- Photons that do interact but do not deposit all of their energy
 - Characteristic X-ray escape
 - Scattering

<u>cea</u>

Monte Carlo simulations

PENELOPE

PENetration and ENergy LOss of Positrons and Electrons[†]

[†] F. Salvat, OECD/NEA Data Bank (2015)

10

<u>cea</u>

Preliminary: optimization of the beam – study of harmonics

V. H. Elvira. *et al.* | Radionuclide-free efficiency calibration of an HPGe detector using monochromatic photon beams measured with a cryogenic radiometer ICRM 2023 | Bucharest, Romania

29/03/2023

Calibration of a HPGe

<u>cea</u>

Results for 3.5 keV – 8 keV

V. H. Elvira. *et al.* | Radionuclide-free efficiency calibration of an HPGe detector using monochromatic photon beams measured with a cryogenic radiometer ICRM 2023 | Bucharest, Romania

Calibration of a HPGe

<u>cea</u>

Optimization of the dead layer

V. H. Elvira. *et al.* | Radionuclide-free efficiency calibration of an HPGe detector using monochromatic photon beams measured with a cryogenic radiometer ICRM 2023 | Bucharest, Romania

Extension of the energy interval via Monte Carlo simulations

Extension of the energy interval via Monte Carlo simulations

Extension of the energy interval via Monte Carlo simulations

Determination of geometric efficiency

$$\varepsilon(E) = \varepsilon_{intr}(E) \cdot \varepsilon_{geom} = \varepsilon_{intr}(E) \cdot \Omega/4\pi$$

<u>cea</u>

Measurement of 133Ba k_{α} count rate of the same source at variable distance

17

Application to the determination of photon emission intensities

Preliminary measurements of I_{y} 53 keV of ¹³³Ba

I _γ (53 keV) ¹³³ Ba								
DDEP 2004	2.14 (3)							
DDEP 2016	2.14 (6)							
This work	2.25							
Lépy et al. (2018) *	2.229 (23)							

* M.-C. Lépy, L. Brondeau, Y. Ménesguen, S. Pierre, J. Riffaud Appl. Radiat. Isot., 134 (2018), pp. 131-136

Conclusions

Successfully accomplished

- Set-up and restart of cryogenic detector BOLUX
- Absolute measurement of synchrotron photon flux intensities
- Determination of the intrinsic efficiency of a HPGe in the energy range where the thickness of the dead layer is critical
- Extrapolation of the efficiency curve via Monte Carlo simulations to the whole energy range where the active thickness is not critical (3 55 keV)
- > Determination of the geometric efficiency through the measurement of the same source at variable distances
- > Preliminary measurement of ¹³³Ba γ -emission intensity at 53 keV. Promising results

In progress – future work

- Geometrical characterization of the HPGe for the accurate determination of the geometric efficiency
- Refinement of measurement of ¹³³Ba γ-emission intensity at 53 keV and extension to other photon emission intensities of radionuclides of interest: ^{93m}Nb, ¹⁵²Eu, ^{103m}Rh...

Thank you for your attention! Multumesc foarte mult! Merci beaucoup ! ¡Muchas gracias!

LABORATOIRE NATIONA DE MÉTROLOGIE ET D'ESSAL

Víctor H. Elvira, Yves Ménesguen, Marie-Christine Lépy

victor.hernandez-elvira@cea.fr

We gratefully acknowledge Synchrotron SOLEIL and the team of Métrologie Beamline!

Testing solid angle fit

According to the activity of the source, and taking emission intensities from bibliography and correcting for the intrinsic efficiency of the detector, the expected emission rate of k α in 4π would be 9908.6 cps

We measured k α count rate at a fixed position and calculated the emission rate in 4π relying on the solid angle obtained from the fit with a = 4 mm and correcting for intrinsic efficiency. This leads to 9309 cps in 4π

We try several fits at different *a* fixed. The one that predicts the expected value the best is a = 3.88 mm

								а	r .	r. /s.
Model	GOUDURIX (L	Jser)	Model	GOUDURIX (User)		Model	GOUDURIX (User)	a	'4π	⁴ π ² intr
Equation	A*(1-1/sqrt(1+(4/(B+x))^2)) Equation		A*(1-1/sqrt(1+(R/(B+x))^2))		Equation	A*(1-1/sqrt(1+(R/(B+x))^2))				
Plot	ka TOT corr att et decay		Plot	ka TOT corr att et deca		Plot	ka TOT corr att et decay	Δ	8811	0000
A	4422,30761 ± 53	4422,30761 ± 53,39771 A		4536,27086 ± 54,80089		A	4654,62532 ± 56,32543	-	0044	9309
В	-6,76712 ± 0,1653		В	-6,75746 ± 0,165	536	B 13,25201 ± 0,16593	3.95	9072		
Reduced Chi-Sqr	0,05315		R	3,95 ± 0		R			3,9 ± 0	9549
R-Square (COD)	0,99986		Reduced Chi-Sqr	0,05323		Reduced Chi-Sqr	0,05332			
Adj. R-Square	0,99985		R-Square (COD)	0,99986		R-Square (COD)	0,99986	3.9	9308	9798
Nominal radius		Adj. R-Square	0,99985		Adj. R-Square	0,99985			5750	
Ν	Model GOUDURIX (Equation A*(1-1/sqrt(1+(R/		DURIX (User)	Model	GOUDURIX (User)			3.88	9406	9901
E			t(1+(R/(B+x))^2))	Equation A*(1-1/sqrt(1+(R/(B		/sqrt(1+(R/(B+x))^2))				
Plot A B R		ka TOT (corr att et decay	Plot	ka TOT corr att et decay		3.87	9456	9954	
		4777,6	6041 ± 57,774	A	4905,54208 ± 59,42067 13,2707 ± 0,16607					0001
		-6,738	352 ± 0,1655	В				3.85	9556	10050
		$3,85 \pm 0$		R	3,8 ± 0			0100	0000	10059
F	Reduced Chi-Sqr		0,0534	Reduced Chi-Sqr	0,05348			2 00	0010	
F	R-Square (COD)		0,99986	R-Square (COD)		0,99986		3.80	9810	10326
A	dj. R-Square	(0,99985	Adj. R-Square	0,99985					

Accurate value of a, to be confirmed by characterization by X-ray imaging

V. H. Elvira. *et al.* | Radionuclide-free efficiency calibration of an HPGe detector using monochromatic photon beams measured with a cryogenic radiometer| ICRM 2023 | Bucharest, Romania

<u>cea</u>

Calibration of a Silicon-Drift Detector

V. H. Elvira. *et al.* | Radionuclide-free efficiency calibration of an HPGe detector using monochromatic photon beams measured with a cryogenic radiometer ICRM 2023 | Bucharest, Romania