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We consider the most energetically favorable symmetry-allowed spin-singlet and spin-triplet superconducting
pairing symmetries in monolayer and few-layer graphene and for each calculate the energy spectrum in the
presence of a scalar or magnetic impurity. We find that two doubly degenerate subgap states exist for scalar
impurities for all types of pairing, except for the spin-singlet s-wave state. For magnetic impurities, two or four
subgap states may form depending on the order parameter symmetry. We find that the spin polarization of these
states allows one to distinguish between spin-singlet and -triplet pairing; for example, only the spin-triplet states
show opposite-energy subgap states with the same spin. We also calculate the quasiparticle interference patterns
associated with the subgap states and find that they exhibit features that could distinguish between different types
of pairing symmetries, especially a breaking of rotational symmetry for nodal states, which is stronger for the
spin-singlet dxy and dx2−y2 states than for the spin-triplet px and py states.

DOI: 10.1103/PhysRevB.108.134516

I. INTRODUCTION

Ever since the discovery of superconductivity in graphene-
based systems, such as twisted bilayer graphene [1–12],
Bernal (or AB) bilayer graphene [13], and rhombohedral
trilayer graphene [14,15], the identification of the pairing
symmetries in these unconventional superconductors has been
one of the main goals of theoretical and experimental studies.
However, the present state of the analysis of microscopic
theories for different graphene systems does not allow for a
definite answer to this question [16]. Multiple different mech-
anisms have been proposed based on both phonon-mediated
pairing [17,18] and electron-electron interactions [19–21],
and they predict different pairing symmetries [8,9,22–37].
Despite the absence of experimental evidence for supercon-
ductivity in monolayer graphene, the investigation of pairing
symmetry in this system remains an intriguing and rele-
vant topic. Understanding the pairing symmetry in monolayer
graphene holds the potential to provide valuable insights into
the characteristics of superconductivity in few-layer graphene
systems [38].

In two related works [38,39] we examined all expected
spin-singlet and spin-triplet superconducting states with the
lowest angular momentum (l � 3) in monolayer graphene, as
well as in AB-stacked bilayer and ABA- and ABC-stacked tri-
layer graphene, all without twist. Our goal was to analyze both
the basic electronic properties and the topological properties
of various superconducting graphene systems by computing
their band structure and density of states (DOS), as well as the
Chern number and the associated topologically protected edge

states [26,27,40]. The analysis of these properties may help to
experimentally distinguish between various order parameters.
For example, the DOS, measurable with scanning tunneling
microscopy (STM), can, in principle, distinguish between
nodal superconductors (SCs) (dxy, dx2−y2 , px, py waves), which
have a V-shaped DOS, and gapped SCs (son, sext, p + ip ′,
d + id , f waves), which have a U-shaped DOS. However, in
real experiments it can still be hard to distinguish between
these two types of DOSs if the resolution is not sufficient, and
disorder may additionally locally perturb the superconducting
state [41]. Note that, for simplicity, we choose to assume that
all the sources of superconducting pairing for all possible
symmetries considered are intralayer, and we do not take into
account any interlayer pairing terms, even if to show there is
no experimentally justified consensus regarding their effects.
The interlayer pairing terms are believed to play a role, for
example, in rhombohedral graphite [14], in which supercon-
ductivity is observed in the presence of a displacement field.
In this final work in the series, we propose another tool to
distinguish between different superconducting order parame-
ters in moiréless graphene systems by studying the effects of
a single impurity on the local density of states (LDOS) and
on the spin-polarized local density of states (SPLDOS). It is
already well known from the Anderson theorem [41] that con-
ventional s-wave SCs are not affected by scalar impurities and
do not allow the formation of subgap states, whereas scalar
impurities usually induce subgap bound (resonance) states in
unconventional fully gapped (nodal) SCs [42]. Also, it is well
known that a magnetic impurity induces Yu-Shiba-Rusinov
subgap states in a SC due to local time reversal symmetry
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breaking [43–45]. In what follows we refer to all low-energy
impurity states, irrespective of their origin, as simply subgap
states.

Although subgap states are often expected, their multiplic-
ity and characteristics strongly depend on the underlying sym-
metries of the normal state and, especially, the superconduct-
ing order parameter [42,46]. Thus, one may hope that studying
the features induced by a single impurity would help differen-
tiate between the different superconducting states. Motivated
by these prospects, we perform an extensive study of the
effects of both scalar and magnetic impurities in monolayer,
AB bilayer, and trilayer ABA and ABC graphene for the same
set of symmetries considered in Refs. [38,39]. Using the well-
known T -matrix approach [42], we compute both the spatially
averaged LDOS as a function of energy and the Fourier trans-
form of the LDOS change induced by the impurity at a given
energy (FT-LDOS, also known as the quasiparticle interfer-
ence pattern, or QPI). The QPI and the spin-polarized QPI,
measurable via STM and spin-polarized STM, respectively,
provide a direct connection to angle-resolved photoemission
spectroscopy experiments [47–50] and thus contain informa-
tion about the band structure of the system. In fact, such
measurements have already been used to study impurity scat-
tering effects in graphene systems [46,51–57].

We first focus on the energy dependence of the spatially
averaged LDOS and SPLDOS. This allows us to study the
formation of subgap states, thereby distinguishing between
conventional and unconventional SCs. For example, we con-
firm that in the presence of scalar impurities the spin-singlet
s-wave states do not give rise to subgap states, according to
the Anderson theorem [41,46]. On the other hand, magnetic
impurities are pair breaking for both spin-singlet and spin-
triplet states and thus generate subgap states for all types of
pairing symmetries. Here we identify four different subgap
states for the fully gapped (d + id ′)-, (p + ip ′)-, and f -wave
symmetries, while the rest exhibit only two subgap states. For
the SPLDOS generated by a magnetic impurity we note that
pairs of subgap states of the same spin but opposite energies
exist for some of the spin-triplet order parameters but none of
the spin-singlet order parameters, which thus becomes a clear
experimental signature allowing us to identify the existence
of a spin-triplet superconducting state. Another difference be-
tween the spin-singlet and spin-triplet superconducting states
is that the SPLDOS features depend on the impurity spin
orientation, while they are automatically independent of the
direction of the impurity spin for all spin-singlet supercon-
ducting states. We subsequently study the QPI maps and
show that the QPI patterns for nodal superconducting states
break the sixfold symmetry of the normal state, while the
QPI patterns for the gapped superconducting states preserve
this symmetry. This establishes that the QPI can distinguish
between gapless and nodal order parameters, such as px, py,
dxy, and dx2−y2 waves, from fully gapped order parameters,
such as s, sext, p + ip ′, d + id ′, and f waves, in supercon-
ducting graphene systems. Finally, we note that most of the
features of the subgap states are quite generic and unchanged
when studying bilayer or trilayer graphene, except for extra
subgap states arising in the ABC trilayer case and for a smaller
splitting of the features due to the presence of the interlayer
coupling.

The rest of this paper is organized as follows. In Sec. II
we provide the details of the tight-binding model used and
the T -matrix formalism. In Sec. III we focus on monolayer
graphene, and we compute the averaged LDOS and SPLDOS
for both scalar and magnetic impurities, as well as their mo-
mentum dependence, or, equivalently, the QPI. We extend the
study to multilayer graphene in Sec. IV, before summarizing
our results in Sec. V.

II. MODEL AND METHOD

A. Bulk Hamiltonian

Without trying to justify the pairing mechanism for
superconductivity, we consider superconducting graphene de-
scribed by a tight-binding Hamiltonian with a pairing term
that can take all relevant spin-singlet and spin-triplet symme-
tries with the lowest angular momentum. The noninteracting
Hamiltonian is given by

H0(k) =
∑
k,α

μ(a†
kαakα + b†

kαbkα )

+ h0(k)a†
kαbkα + h∗

0(k)b†
kαakα,

h0(k) = − te−iky

[
1 + 2e3iky/2 cos

(√
3

2
kx

)]
, (1)

where μ and h0(k) are the chemical potential and the kinetic
energy, respectively, with t denoting the hopping strength
between nearest-neighbor (NN) carbon atoms. Here a†

kα (b†
kα )

is the creation operator for an electron with momentum k and
spin α in sublattice A (B).

We focus primarily on the intralayer NN superconducting
pairing, but our results are quite generic and are affected very
little if we instead consider intralayer next-nearest-neighbor
(NNN) order parameters, like in our earlier works [38,39,58].
This is important to note since self-consistent calculations
have shown that the NNN range may be preferred over the
NN one for some multilayer graphene configurations [18,58].
The only type of pairing symmetry that cannot be captured by
NN pairing is the f -wave state, for which we thus revert to
NNN pairing. The SC Hamiltonian can be written as

H0
NN =

∑
k

h0
NN(k)(a†

k↑b†
−k↓ − a†

k↓b†
−k↑) + H.c. (2)

for the spin-singlet channel and

Hx
NN =

∑
k

hx
NN(k)(a†

k↑b†
−k↑ − a†

k↓b†
−k↓) + H.c., (3)

Hy
NN = i

∑
k

hy
NN(k)(a†

k↑b†
−k↑ + a†

k,↓b†
−k↓) + H.c., (4)

Hz
NN =

∑
k

hz
NN(k)(a†

k↑b†
−k↓ + a†

k↓b†
−k↑) + H.c. (5)

for spin-triplet channels [38,39,58]. Here hη
NN(k) are the over-

all form factors whose expressions depend on both the spin
channel chosen and the angular momentum symmetry of the
order parameter. Their expressions for the different pairing
symmetries are given in Table I.

134516-2



SUPERCONDUCTIVITY IN MONOLAYER AND FEW-LAYER … PHYSICAL REVIEW B 108, 134516 (2023)

TABLE I. Expressions for the form factors for different spin-
singlet and spin-triplet order parameter symmetries. The overall
amplitude for the order parameter is set to �0, the distance between
two NN carbon atoms is set to 1, and h̃0(k) = h0(k)/t .

η Symmetry Form factor hη

NN(k)

0 sext h0,sext
NN (k) = �0√

3
h̃0(k)

0 dx2−y2 h
0,dx2−y2

NN (k) = 2�0√
6

e−iky
[
1 − e

3i
2 ky cos

(√
3

2 kx

)]

0 dxy h
0,dxy
NN (k) = �0

√
2i e

i
2 ky sin

(√
3

2 kx

)
x py h

η,py
NN (k) = 2�0√

6
e−iky

[
1 − e

3i
2 ky cos

(√
3

2 kx

)]

x px hη,px
NN (k) = i

√
2�0e

i
2 ky sin

(√
3

2 kx

)
x fx(x2−y2 ) hη, fx

NNN(k) = 2i�0√
6

[
sin(

√
3kx )

−2 sin
(√

3
2 kx

)
cos

(
3
2 ky

)]

The explicit matrices corresponding to Eqs. (2)–(5) can be
found in Appendix A of Ref. [38].

For the NNN range the above formulas need to be modi-
fied such that the pairing terms couple two electrons within
the same sublattice. The NNN form factor for the fx =
fx(x2−y2 ) order parameter, which is the only one considered
here, is also given in Table I (we exclude the fy(y2−3x2 )-wave
state because it has multiple nodes and is, as such, highly
unfavorable).

For superconducting multilayer graphene, the Hamiltonian
is given by

Hk =
L∑

�=1

(
H (�)

0 + H (�)
NN

) + Hinterlayer, (6)

where L is the number of layers; H (�)
0 and H (�)

NN are the non-
interacting and superconducting Hamiltonians, respectively,
associated with each layer � and given by Eqs. (1)–(5); and
Hinterlayer is the coupling Hamiltonian between adjacent layers
given in Ref. [38]. The interlayer Hamiltonian depends on

three additional parameters, the phase difference φ between
the superconducting state in two adjacent layers and the in-
terlayer couplings γ1 and γ3 [59], where γ1 is the simple
interlayer coupling corresponding to hopping between atoms
on top of each other and the smaller γ3 corresponds to hopping
between an atom A in one layer and the neighboring B atoms
in the adjacent layer. We have checked that the addition of
this trigonal warping γ3 with a realistic value γ3 � γ1 does
not change our results. We thus set γ1 = 0.2t and γ3 = 0 in
the rest of the work for simplicity. Note that, as mentioned
in the Introduction, we choose to take into account in our
model only the intralayer SC pairing terms, and we do not
consider the effect of interlayer SC couplings. As it could
be argued that, in general, the interlayer couplings are me-
diated by van der Waals forces and thus are smaller than
the intralayer ones [22,60], the interlayer superconducting
coupling terms have not been demonstrated experimentally
to be negligible, and they may play a role, for example, in
rhombohedral graphite [14]. However in this work we as-
sume for simplicity that all SC pairings arise from intralayer
couplings.

The band structures of both the normal and superconduct-
ing states for various pairing symmetries are illustrated in
Ref. [38].

Collating the operators in each layer � into a vector, the
Hamiltonian can be expressed as

Hk = 1
2�

†
kĤBdG�k, (7)

using the basis

�k� = (ak�↑, bk�↑, ak�↓, bk�↓, a†
−k�↑, b†

−k�↑, a†
−k�↓, b†

−k�↓)T ,

(8)

where �k thus combines all individual-layer bases �k� and
ĤBdG is the 8L×8L Bogoliubov–de Gennes (BdG) Hamil-
tonian matrix. The factor of 8 corresponds to a product of
two spins, two sublattices, and the particle-hole doubling of
the degrees of freedom in the BdG formalism. Finally, the
retarded Green’s function for this system is given by

Ĝ r (E , k) = [E + iδ − ĤBdG(k)]−1, (9)

FIG. 1. δρ(E ) as a function of energy E and impurity strength U for a scalar impurity. We take μ = 0.4t and �0 = 0.4t . The dotted lines
indicate the SC gap edge, which, as noted in Ref. [38], does not always lie at an energy equal to �0 and may depend on various parameters,
including the symmetry of the SC order parameter.
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FIG. 2. δρ(E ) as a function of energy E and impurity strength Jz for a z-magnetic impurity. We take μ = 0.4t and �0 = 0.4t . The dotted
lines indicate the gap edge.

with δ being the quasiparticle lifetime. We set δ = 0.03 in the
rest of the work.

B. Impurity scattering

In this work we are interested in the consequences of
introducing a pointlike (scalar or magnetic) impurity. Using
the basis in Eq. (8), the Hamiltonian matrix for such pointlike
impurity can be written as

V̂ = τ z ⊗ V̂ , V̂ = û ⊗ v̂. (10)

Here

v̂ = Uσ 0 + Jσ ν, (11)

where τ ν (σ ν ) are the ν-Pauli matrices in the particle-hole
(spin) space and σ 0 is the 2×2 identity matrix, while û is a
2L×2L matrix for which all the elements are equal to zero,
except for one diagonal element, whose matrix position iimp

corresponds to the layer/sublattice of the impurity, which we
take to be equal to 1. The parameters U and J are, respectively,
the strengths of the scalar and magnetic impurities.

To compute the corresponding variation of the unpolar-
ized (LDOS) and spin-polarized (SPLDOS) local densities of
states, we use the T -matrix approach [42]. The T matrix can
be written as

T (E ) =
[
18L − V̂

∫
d2k

(2π )2
Ĝ r (E , k)

]−1

V̂, (12)

where 18L is an 8L×8L identity matrix. The physical observ-
ables (here LDOS and SPLDOS), which can be measured
near an impurity, can be expressed directly in terms of this T
matrix if we assume the dilute-limit approximation, such that
the impurities are well separated from each other. The Fourier
transform of the change in the LDOS induced by the impurity
δρ(q, E ) and the same quantity for the SPLDOS δSν (q, E )
can then be written as

δρ(q, E ) = − 1

2π i

∫
d2k

(2π )2

∑
b

[g̃b,↑↑(E , q, k)

+ g̃b,↓↓(E , q, k)], (13)

FIG. 3. δSz(E ) as a function of energy E and impurity strength Jz for a z-magnetic impurity. We take μ = 0.4t and �0 = 0.4t . The dotted
lines indicate the gap edge.
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FIG. 4. δSx (E ) as a function of energy E and impurity strength
Jx for an x-magnetic impurity. We take μ = 0.4t and �0 = 0.4t . The
dotted lines indicate the gap edge.

δSx(q, E ) = − 1

2π i

∫
d2k

(2π )2

∑
b

[g̃b,↑↓(E , q, k)

+ g̃b,↓↑(E , q, k)], (14)

δSy(q, E ) = − 1

2π

∫
d2k

(2π )2

∑
b

[gb,↑↓(E , q, k)

− gb,↓↑(E , q, k)], (15)

δSz(q, E ) = − 1

2π i

∫
d2k

(2π )2

∑
b

[g̃b,↑↑(E , q, k)

− g̃b,↓↓(E , q, k)], (16)

where the index b runs over all electron bands (the hole bands
are not taken into account since, experimentally, only the
available electron density of states is measured) and

g/g̃(E , q, k) = G r (E , q)T (E )G r (E , q + k)

± [G r (E , k + q)]∗T ∗(E )[G r (E , q)]∗. (17)

At q = 0, the quantities δρ(q = 0, E ) → δρ(E ) and
δSν (q = 0, E ) → δSν (E ) correspond to the spatially
averaged disorder-induced LDOS and SPLDOS, respectively.
In the next two sections, we plot and analyze δρ(E ) and
δSν (E ) as a function of energy and impurity strength to
establish the formation of subgap states. Furthermore, at
constant energy, the QPI patterns described by Eqs. (13)–(16)
provide a map in reciprocal space of the possible scattering
processes. Experimentally, the QPI patterns are obtained by
performing a fast Fourier transform of the STM measurements
of the LDOS in real space [46,54].

III. MONOLAYER GRAPHENE

A. Unpolarized and spin-polarized local densities of states

We first consider the spatially averaged LDOS, i.e., δρ(E )
and δSν (E ), in the presence of both scalar and magnetic

impurities. If and when subgap states form, these quantities
will display clear peaks inside the superconducting gap. The
position of the peaks may depend on various parameters,
such as the impurity strength, the amplitude of the SC order
parameter and its symmetry, and the chemical potential. The
gap edge is identified by the energy of the superconducting
coherence peak. We find it numerically in the impurity-free
DOS ρ0(E ) in the same manner for both fully gapped and
nodal superconducting states.

In Fig. 1 we plot δρ(E ) for all the order parameter sym-
metries as a function of energy and impurity strength in the
presence of a scalar impurity. We first note that for the on-site
(ON) and sext symmetries, there is no impurity subgap peak.
This is consistent with previous observations in the litera-
ture: conventional s-wave SCs are unaffected by the presence
of nonmagnetic or scalar impurities [41,42,46] and thus do
not show any subgap states since these impurities do not
break time reversal symmetry [61]. This reasoning can also
be applied to extended s-wave SCs: as long as the chemical
potential is chosen such that the order parameter is almost
constant along the Fermi surface, the phenomenology is ap-
proximately the same [62].

In contrast, the spin-singlet nodal, dxy- and dx2−y2 -wave,
and the fully gapped, chiral (dxy + idx2−y2 )-wave (d + id ′)
states show spin degenerate subgap states in the presence of
a scalar impurity. For these states the Anderson theorem does
not forbid the presence of subgap states, even for a nonmag-
netic impurity. The physical interpretation is that scattering by
an impurity disturbs the phase distribution for some particular
directions of the momenta in all these nontrivial supercon-
ducting states [42]. This has also been noted in d-wave SCs on
the square lattice, modeling the cuprate SCs [42], and is also
in agreement with former studies on the chiral (d + id ′)-wave
superconducting state in graphene [46,63]. Similarly, we find
subgap states for all spin-triplet states, both the nodal px- and
py-wave states, and the fully gapped, chiral (px + ipy)-wave
(p + ip′) superconducting state, as well as the fully gapped
fx-wave state. For all these subgap states we find that their
energies evolve with the impurity strength such that the states
cross zero energy at given, but different, impurity strengths. A
similar observation was also noted in Ref. [64].

We next study the effect of a magnetic impurity on the
formation of subgap states. First, we plot in Fig. 2 δρ(E )
as a function of energy and impurity strength for all the or-
der parameter symmetries considered. We first note that for
a magnetic impurity we find subgap states for all types of
pairing symmetries, including the s-wave states. We also note
that for the fully gapped (d + id ′)-, (p + ip ′)-, and f -wave
states, the spin degeneracy has been lifted, and we now have
four distinct subgap states rather than two pairs of degen-
erate ones. On the other hand, the nodal superconducting
dxy-, dx2−y2 -, px-, and py-wave states show the same number
of subgap states, i.e., two distinct states, for both magnetic
and scalar impurities; however, a pair of extra impurity states
often arises outside the gap. As a consequence, the number
of subgap states can be used as a simple tool to experimen-
tally distinguish between various order parameters; that is,
if we can identify four distinct subgap states, then we can
be sure to have a (d + id ′)-, (p + ip ′)-, or f -wave pairing.
We note, however, that the reverse may not always work
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FIG. 5. |δρ(q)| at the values of impurity strength U and energy provided in Table II for a scalar impurity. We take μ = 0.4t and �0 = 0.4t .
The Brillouin zone is indicated by dashed lines.

since the four states may be too close together to distinguish
experimentally.

In order to get a better understanding of what happens for
magnetic impurities, we also look at the spin polarization of
the induced subgap states. Here we find that each impurity
gives rise to a nonzero spin polarization only in the spin
channel parallel to its spin direction; thus, for an α-magnetic
impurity we plot only the α-magnetic component of the SPL-
DOS, with α = x, y, z. We first plot in Fig. 3 the SPLDOS
δSz(E ) as a function of magnetic impurity strength and energy
for all types of pairings for a z-magnetic impurity. Here we

find that the SPLDOS shows even more clearly the difference
between the two and four subgap scenarios, as it clearly dif-
ferentiates between the different states. We can next ask if
the interplay between the direction of the impurity spin and
the choice of the triplet channel, which we fixed to x above,
influences the results. We have checked that for this particular
choice a y-magnetic impurity yields exactly the same behavior
as the z-magnetic impurity. However, for an x-magnetic impu-
rity, the LDOS is unchanged, but the x-SPLDOS differs in the
spin-triplet channel. In Fig. 4 we illustrate this by plotting the
x-SPLDOS for all spin-triplet states.

FIG. 6. |δρ(q)| at zero energy and the corresponding impurity strength values U in Table III for a scalar impurity. We take μ = 0.4t and
�0 = 0.4t . The Brillouin zone is indicated by dashed lines.

134516-6



SUPERCONDUCTIVITY IN MONOLAYER AND FEW-LAYER … PHYSICAL REVIEW B 108, 134516 (2023)

FIG. 7. |δρ(q)| at zero energy and the corresponding impurity
strength Jz = J values in Table III. We take μ = 0.4t and �0 = 0.4t .
The Brillouin zone is indicated by dashed lines.

We further note in Fig. 3 that for the spin-singlet super-
conducting states, opposite-energy states have opposite spin,
while for the spin-triplet states the opposite-energy states have
the same spin. This, however, seems to be a feature dependent
on the direction of the impurity spin: for the different impu-
rity directions considered in Fig. 4, we find that the states
with opposite energy also have opposite spin for spin-triplet
pairing. We thus conclude that the peculiar occurrence of
having the same spin for subgap states with opposite energies
is a distinguishing characteristic of a spin-triplet pairing state
(px, py, p + ip ′, and f waves) and could be used as an ex-
perimental signature to identify a spin-triplet order parameter.
Moreover, the dependence of the SPLDOS on the direction
of the impurity spin is also a characteristic unique to spin-
triplet pairing, which additionally could be used to distinguish
between spin-singlet and spin-triplet triplet order parameters.

B. Quasiparticle interference

Figures 1 and 2 describe the dependence of the average
LDOS change induced by an impurity as a function of energy
and impurity strength and thus tell us at which energy the
subgap states form. In what follows we are interested in the
spatial dependence of the subgap states. In particular, we
study the Fourier transform of the LDOS and of the SPLDOS
at a given subgap energy peak as a function of momentum.
We primarily focus on two different peak energies, E = 0 and
E 	= 0. In Tables II and III we provide the values of the scalar

TABLE II. Values of impurity strength and energy used to gen-
erate the QPI plot for scalar (U ) and magnetic (J) impurities for all
considered order parameter symmetries in Fig. 5.

Energy Scalar Magnetic Symmetry

0.02 J = 3.5 sext

0.1 J = 2.5 dx2−y2

0.1 U = 2.5 J = 2.5 dxy

0.1 U = 3 J = 3 dx2−y2 + idxy

0.1 U = 1.5 J = 1.5 px

0.1 U = 1.5 J = 1.5 py

0.1 U = 2 J = 2 px + ipy

0.2 U = 1.5 J = 3 fx(x2−y2 )

0.2 U = 3 J = 1.5 sON

TABLE III. Values of impurity strength corresponding to a zero-
energy subgap state used to generate the QPI for scalar (U ) and
magnetic (J) impurities for all considered order parameter symmetry
in Figs. 6–9.

Energy Scalar Magnetic Symmetry

0 J = 2 sext

0 J = 5 dx2−y2

0 U = 5 J = 5 dxy

0 U = 6 J = 6 dx2−y2 + idxy

0 U = 5 J = 5 px

0 U = 5 J = 5 py

0 U = 6 J = 6 px + ipy

0 U = 6 J = 6 fx(x2−y2 )

0 U = 2.5 J = 2.5 sON

impurity strength U and of the magnetic impurity strength J
and the corresponding peak energies for each order parameter
symmetry. All energies are given in units of t ; that is, we set
t = 1.

In the following we also plot only the absolute values
of δρ(q) and δSα (q), α = x, y, z. This is because, for the
hexagonal structure of the lattice, these are generally complex
quantities that have both nonzero real and imaginary parts.
However, at present it is very hard to distinguish experi-
mentally between the real and imaginary parts: experiments
calculating the QPI patterns based on fast Fourier transform
cannot precisely keep track of either the phase or the sign.
Moreover, spin-polarized STM experiments with correspond-
ing QPIs are still in their infancy. Thus, in order to avoid the
overload of information, we focus on only the absolute Fourier
transform values. If more accurate experimental data become
available, this study could easily be extended and refined to
take into account separately the real and imaginary parts of
the Fourier transforms of both the LDOS and SPLDOS.

Similar to what we did above, we start by considering
a scalar impurity (U 	= 0 and J = 0) and calculate the QPI
patterns for both nonzero energy in Fig. 5 and zero energy in
Fig. 6. Since the sON-wave and sext-wave order parameters do
not exhibit any subgap states for a scalar impurity, we do not
include them in the scalar impurity QPI analysis. Overall, the
QPI patterns are dominated by a central feature at the center
of the Brillouin zone (� point), corresponding to intranodal
scattering (in the normal-state band structure) of the electrons
by the impurity, and by six features localized at the corners
of the Brillouin zone (K points), corresponding to internodal
scattering.

We further note that the gapless nodal states clearly pro-
duce a QPI pattern that breaks the sixfold symmetry, while the
gapped states, i.e., the f -wave and the chiral (d + id ′)- and
(p + ip ′)-wave states, all show QPI patterns that preserve the
full rotation symmetry of the lattice. This is fully consistent
with the symmetries of the superconducting order parameter,
modulo the order parameter phase that might change sign
but which seemingly does not affect the QPI, in contrast to
the case of d-wave cuprates [65]. It is also fully consistent
with the fact that these states have a symmetry-preserving
superconducting band structure [38] for all gapped states. QPI
would thus be a good experimental tool to distinguish between
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FIG. 8. |δSz(q)| at zero energy and corresponding impurity strength values Jz = J in Table III. We take μ = 0.4t and �0 = 0.4t . The
Brillouin zone is indicated by dashed lines.

nodal states that break rotation symmetry and the gapped
states, which do not. A similar observation was already made
in Refs. [46,63] in the comparison of the nodal d-wave states
and the chiral d-wave states. Here we establish that this also
holds for both spin-singlet d-wave and spin-triplet p-wave
symmetries in graphene.

We next analyze the QPI patterns generated by a mag-
netic impurity (J 	= 0 and U = 0). We here plot only the QPI
corresponding to the zero-energy peaks, as we find that the
effect for the nonzero energy subgap states is very similar. We
further find that in the presence of a z-magnetic impurity we
recover the same features for |δρ(q)| as those for the scalar

FIG. 9. |δSx (q)| at zero energy and corresponding impurity
strength values Jx = J in Table III for an x-magnetic impurity. We
take μ = 0.4t and �0 = 0.4t . The Brillouin zone is indicated by
dashed lines.

impurity depicted in Fig. 6. The main difference is that, in the
presence of a magnetic impurity, the states with sON-wave and
sext-wave order parameters also exhibit subgap states. Thus,
to avoid repetition, in Fig. 7 we plot |δρ(q)| for only these
two s-wave states, for which the corresponding values of the
z-magnetic impurity strength, J = Jz, are given in Table III.

While |δρ(q)| does not show any significant differences,
|δSz(q)|, i.e., the spin-polarized LDOS, shows more interest-
ing features, which we plot in Fig. 8 for the same z-magnetic
impurity. The main differences from the QPI of the scalar
impurity are a ringlike feature arising in the center of the
Brillouin zone in the d-wave superconducting states and a
reduction in the asymmetry for the K-point features.

FIG. 10. δρ(E ) as a function of energy and impurity strength U
for a scalar impurity at �0 = 0.4 and μ = 0.4 for the nodal SC states
in ABC-stacked trilayer graphene. The dotted lines indicate the gap
edge.

134516-8



SUPERCONDUCTIVITY IN MONOLAYER AND FEW-LAYER … PHYSICAL REVIEW B 108, 134516 (2023)

FIG. 11. δρ(E ) as a function of energy and impurity strength Jz

for a z-magnetic impurity at �0 = 0.4 and μ = 0.4 for the nodal SC
states in ABC-stacked trilayer graphene. The dotted lines indicate the
gap edge.

We also note that for the spin-triplet pairing states, the x-
SPLDOS QPI for an x-magnetic impurity is different from the
y and z ones and becomes more reminiscent of the spin-singlet
ones, which have no dependence on x-, y-, and z-magnetic
impurity directions. For example, as depicted in Fig. 9, the
spin-polarized QPIs for px-, py-, and (p + ip ′)-wave states at
zero energy and the corresponding impurity strength values
Jx = J provided in Table III acquire more similarities to the
dxy-, dx2−y2 -, and (d + id ′)-wave states, in that they show
a ring of high intensity for the feature in the center of the

FIG. 12. δSz(E ) as a function of energy and impurity strength Jz

for a z-magnetic impurity at �0 = 0.4 and μ = 0.4 for the nodal SC
states in ABC-stacked trilayer graphene. The dotted lines indicate the
gap edge.

FIG. 13. δSx (E ) as a function of energy and impurity strength Jx

for an x-magnetic impurity at �0 = 0.4 and μ = 0.4 for the spin-
triplet nodal SC states in ABC-stacked trilayer graphene. The dotted
lines indicate the gap edge.

Brillouin zone and increased asymmetry for the features at
the corners of the Brillouin zone.

IV. MULTILAYER GRAPHENE

We next consider both AB-stacked bilayer graphene and
ABC- or ABA-stacked trilayer graphene. We first note that
for most of the order parameter symmetries, the number of
subgap states, their impurity-strength dependence, and their
spin dependences are quite universal, generic features and do
not depend on the number of layers or the stacking. In what
follows, to avoid redundancy, we present the LDOS and SPL-
DOS results only when there is a difference from the generic
case. In particular, we find differences for ABC-stacked tri-
layer graphene in the presence of gapless dxy-, dx2−y2 -, px-, or
py-wave order parameters.

Figures 10 and 11 show δρ(E ) in ABC-stacked trilayer
graphene for all nodal order parameters in the presence of a
scalar impurity and a z-magnetic impurity, respectively. Since,
in our calculations, the LDOS and SPLDOS are averaged
over all atoms in all layers, the results do not depend on
the position of the impurity chosen, so we here arbitrarily
consider an impurity in the top layer, located on an atom that
does not sit on top of any atoms in the neighboring layer.
We note that for ABC-stacked trilayer graphene extra subgap
states appear besides the two subgap states observed in all the
other graphene systems. We have checked using tight-binding
calculations that even when these states are close to zero
energy for extended parameter ranges, they do not appear to
correspond to Majorana zero modes. Furthermore, Fig. 12
plots δSz(E ) for the z-magnetic impurity. For completeness
we show in Fig. 13 the effect of changing the spin orientation
for the spin-triplet nodal states by plotting δSx(E ) for an x-
magnetic impurity. Like before, we find that the x-magnetic
impurity shows a different behavior than y- and z-magnetic
impurities for spin-triplet order parameters.

We next turn to the QPI patterns. For simplicity we focus
first on only the zero-energy plots for AB-bilayer graphene in
the presence of a scalar impurity. The corresponding impurity
strength values are quasi-identical to those for the mono-
layer, and thus, we use the same values as those presented
in Table III. These results can be generalized to the other
configurations because we find the differences from the mono-
layer analysis to be quite generic. We here choose to calculate
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FIG. 14. |δρ(q)| at zero energy and the corresponding impurity strength values U in Table III, evaluated in the top layer for a scalar
impurity placed in the bottom layer on an A-sublattice atom. We take �0 = 0.4 and μ = 0.4. The Brillouin zone is indicated by dashed lines.

only the contribution to the LDOS from the top-layer atoms
since that is what is measured experimentally [56,57]. Like
in Refs. [56,57], the QPI patterns are different depending
on whether the impurity is placed in the top layer or in the
bottom layer. However, the measured QPI for a given sample
becomes an average between all possible contributions given
a random distribution of impurities between the atoms in
the two layers. In Fig. 14 we plot the QPI resulting from a
bottom-layer A-sublattice impurity, while in Fig. 15 we plot
the QPI from a top-layer A-sublattice impurity. Note that here
in the top layer the A atom is the atom that does not sit on

top of another atom, while the A atom in the bottom layer is
the one sitting directly underneath another atom. We find that
the main difference for a bottom-layer impurity, compared to
a top-layer impurity, consists of having a more equal intensity
between the central feature at the � point (corresponding to
intranodal scattering) and the features at the corners of the
Brillouin zone (corresponding to internodal scattering). Thus,
for the A bottom-layer impurity the corner features appear to
be sharper. Note also that the features exhibit an extra split due
to the interband effect introduced by the interlayer hopping
compared to monolayer graphene.

FIG. 15. |δρ(q)| at zero energy and the corresponding impurity strength values U in Table III, evaluated in the top layer for a scalar
impurity placed in the top layer on an A-sublattice atom. We take �0 = 0.4 and μ = 0.4. The Brillouin zone is indicated by dashed lines.
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For ABA- and ABC-stacked trilayer graphene we obtain
overall similar QPI patterns (not shown), underlining the
generic features that we observe for all QPI patterns: (i)
breaking of the sixfold rotational symmetry for the nodal
d-wave and p-wave states, which is more pronounced for
the d-wave symmetries; (ii) the dependence of the details of
the QPI patterns on the nature of the impurity (magnetic or
scalar), as well as its spin direction for the spin-triplet states;
and (iii) spin-polarized measurements that help us distinguish
better between various order parameter symmetries. Overall,
these features could help us to experimentally identify the
symmetry of the superconducting states in different mono-
and few-layer graphene systems.

V. CONCLUSION

We calculated the impurity-induced LDOS and SPLDOS,
as well as their Fourier transforms (through the QPI patterns),
for SC monolayer, AB-stacked bilayer, and ABA- and ABC-
stacked trilayer graphene for all expected SC order parameters
resulting from NN pairing (NNN pairing in the case of f -wave
symmetry). We assumed only SC intralayer pairing terms in
our model and neglected the role of interlayer SC couplings.
We analyzed the formation of subgap states as a function of
energy and impurity strength and found that the number of
subgap bound states depends on the type of order parameter.
For a scalar impurity we found no subgap states for s waves,
both on-site and extended s waves, while two spin-degenerate
subgap states appear for all other order parameter symmetries.
For a magnetic impurity we found two subgap states for order
parameters with s-wave symmetries and for nodal states with
dxy-, dx2−y2

-, px-, and py-wave symmetries, while four subgap
states exist for the fully gapped (d + id ′)-, (p + ip ′)-, and

f -wave states. The spin polarization of the impurity states
is also different depending on whether one has a spin-
singlet or spin-triplet order parameter and could thus be
used to distinguish between the two. In particular, the spin-
triplet superconducting states are the only ones for which
the opposite-energy subgap states may have an identical spin
polarization and for which the spin structure of the subgap
states may depend on the direction of the impurity spin. These
observations could provide an experimental test to distinguish
unambiguously, via spin-polarized STM, between spin-singlet
and spin-triplet SC order parameters, as well as between
gapped and nodal pairings. The analysis of the QPI patterns
additionally showed a breaking of the sixfold symmetry for
nodal states, while the gapped states preserve this crystalline
symmetry, in agreement with the observation that these states
also have a symmetry-preserving superconducting band struc-
ture [38]. Except in a few peculiar situations, our results do not
change significantly for bilayer or trilayer graphene, such that
we can easily extend our conclusions to multilayer graphene,
and thus, the features described here are quite generic and
independent of the number of layers or the graphene layer
stacking.
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