





# Shading losses measurements for integrated photovoltaics potential estimation for solar city bus and data-driven simulations



Dr. Bertrand Chambion <u>Bertrand.chambion@cea.fr</u> Dr. Fathia Karoui <u>fathia.karoui@cea.fr</u>

Authors: Fathia Karoui, Shehrazade Nassibi, Bertrand Chambion, Fabrice Claudon, and Benjamin Commault

**University Grenoble Alpes, France CEA LITEN - Campus INES** 

MOTION

2023





### > Objectives

- Energy and mileage modeling , methodology
- Shading losses measurements on vehicle
- Simulation results
- Life Cycle Assessment methodology and results
- Conclusions and next steps





- Primary energy saving / reduce greenhouse emissions → Vehicle Integrated PhotoVoltaics has ongoing interest
- $\blacktriangleright$  Exploring the potential of VIPV in term of PV used energy, mileage and avoided CO<sub>2</sub> emissions
- $\triangleright$  Give conclusions and recommendations to reach an influence on climate change (positive CO<sub>2</sub> balance)
- > Case study : solar city bus in Europe
  - ✓ Best potential for PV surface on Wh/km ratio
  - $\checkmark$  Use case in good accordance with solar period (day time)





### **Energy and distance modeling**





#### City bus parameters

Available PV surface Battery nominal energy System efficiencies Electrical consumption **Shading losses** Frequency of recharge with the grid

#### Inputs Time series

Monthly solar energy

Distribution of solar irradiance

Use profile

Mathematical model Calculations for 365 days Energy balance within ¼ h time step Battery state of charge

#### Outputs

Annual PV energy Annual mileage with VIPV Daily distance with VIPV Battery state of charge profiles



### Simulation parameters and assumptions



#### Projections in 2030

▶ **PV**: 27 m<sup>2</sup>, 230 W/m<sup>2</sup>,

Ageing: -2 % first year then -0.7 %/year  $\rightarrow$  5.7 kW at midlife

- ➤ Battery : 440 kWh
- Consumption : 880 Wh/km and 400 W during standby

System efficiency and extra consumption for using PV
 Direct charge in main battery: 93 %, extra consumption for using PV: 26 W parking and 12 W during grid charge and driving
 Via 48 V auxiliary battery: 89 %, periodic wake-up every 100 Wh with consumption 8.5 Wh, 12 W extra consumption

- ➤ Use profile :
- 5am-9pm, 6 days per week
  48 weeks per year
- ➤ 40700 km/year
- ➢ 200km/day



Shading losses: 0 %, 10 % and 30 % + measured values





PVinMotion 2023 February 15-17 |s-Hertogenbosch, the Netherlands

cea

### Shading losses measurements, city of Chambery





3 sensors installed GPS location 1 Hz recording (data logger)





- Measurement configuration:
  - City bus, 200 km/day, from 5am → 9pm
  - Average of 3 sensors data to take into account the shading influence
  - Data comparison to CEA INES reference sensor (10 km distance)











|                  | Shading loss (%) for simulation |      | nb of<br>measurement<br>days |  |  |
|------------------|---------------------------------|------|------------------------------|--|--|
|                  | January                         | 1,4  | 6                            |  |  |
|                  | February                        | 0,75 | 8                            |  |  |
|                  | March                           | 0,1  | 9                            |  |  |
|                  | April                           | 0,1  | 10                           |  |  |
|                  | May                             | 0    | 25                           |  |  |
|                  | June                            | 9,2  | 50                           |  |  |
|                  | July                            | 5,7  | 44                           |  |  |
|                  | August                          | 7,2  | 44                           |  |  |
|                  | September                       | 6,72 | 45                           |  |  |
|                  | October                         | 4,61 | 43                           |  |  |
|                  | November                        | 2,5  | 21                           |  |  |
|                  | December                        | 4,75 | 33                           |  |  |
|                  | Annual                          | 3,6  |                              |  |  |
|                  |                                 |      |                              |  |  |
| Inputs for       |                                 | Meas | Measurement robustness       |  |  |
| simulation model |                                 |      | appreciation                 |  |  |
|                  |                                 |      |                              |  |  |



nes

### **Simulation results: annual mileage covered by VIPV**



#### Chambery, France: 4105 – 6940 km

Malaga : 5749 - 9739 km



→ 9 % - 15 % of the annual total distance

- → 14 % 24 % of the total annual distance
- → Direct charge in main battery > charge via 48 V battery
- → Location > Shading > electric architecture > battery saturation

PVinMotion 2023 February 15-17 s-Hertogenbosch, the Netherlands

8







### → End of life of solar roof : not considered









cea



#### **Chambery: 2.5 – 5.2 T CO<sub>2</sub>-eq**

Malaga : 16.2 – 28.5 T CO<sub>2</sub>-eq



France scenario for carbon electricity mix  $50 \text{ g CO}_2/\text{kWh}$ 

Spain carbon electricity mix 183 g  $CO_2/kWh$ 







### Average Europe : 5.3 – 9.9 T CO<sub>2</sub>-eq



Average in term of solar irradiance (Paris) and electricity mix (122 g  $CO_2/kWh$ )







- $\succ \text{ City bus use case } (2030 \rightarrow 2050)$
- Simulation tool of useful PV energy, coupled with shading measurements (annual shading 3.6%)
- Parameter influence on City Bus : location > the shading losses > electric architecture > battery saturation
- > Architecture with direct charge of the high voltage battery is better for city bus
- European best case:
  - ▶ up to 9739 km annual mileage covered by VIPV (24 % the total distance), up to 47 km/day.
- ➤ Average Europe (Paris):
  - ▶ up to 6269 km annual mileage covered by VIPV (15 % the total distance) and up to 35 km/day.
- ≻ Chambery
  - ▶ up to 6940 km annual mileage covered by VIPV (17 % the total distance) and up to 41 km/day.



### **Conclusions and perspectives**

- ➤ With +2.7 °C climate change electricity mix scenario : solar city bus vs e-bus
  - ✓ Solar average Europe + Europe electricity mix  $\rightarrow$  up to 10 T CO<sub>2</sub>-eq
  - ✓ Solar average Europe + low carbon electricity mix → up to 5 T  $CO_2$ -eq
  - ✓ Solar best case Europe + high carbon electricity mix → up to 28 T CO<sub>2</sub>-eq
- $\blacktriangleright$  With decarbonized electricity mix, VIPV = limited impact.

### > Next steps : Real bus VIPV experimentation with entire system prototype

### > Up Coming: two other papers:

1. VIPV on passenger car : effect of the thresholds due to extra consumption with several PV peak power and use conditions

PVinMotion 2023 February 15-17 s-Hertogenbosch, the Netherlands

2. VIPV on light VAN with several use profiles





Lie, K.W.; Synnevåg, T.A.; Lamb, J.J.; Lien, K.M. The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway. Energies 2021

Battery : 50 T CO<sub>2</sub> - eq

14, 770. https://doi.org/10.3390/en14030770





## **THANK YOU!**

Acknowledgments: This work was partly supported by The French Agency for Ecological Transition



<u>Contact:</u> <u>Bertrand.chambion@cea.fr</u> <u>fathia.karoui@cea.fr</u>

