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Abstract. In the field of Explainable AI, multiples evaluation metrics
have been proposed in order to assess the quality of explanation methods
w.T.t. a set of desired properties. In this work, we study the articulation
between the stability, correctness and plausibility of explanations based on
feature importance for image classifiers. We show that the existing metrics
for evaluating these properties do not always agree, raising the issue of
what constitutes a good evaluation metric for explanations. Finally, in
the particular case of stability and correctness, we show the possible
limitations of some evaluation metrics and propose new ones that take
into account the local behaviour of the model under test.

Keywords: XAI - Saliency maps - Evaluation metrics

1 Introduction

The permeation of Artificial Intelligence (AI) in an increasing range of everyday
applications is such that it seems hard to overstate its potential impact. Increasing
trust towards Al systems is crucial both for social acceptability and for ethical
purposes, and in this regards explainability is probably the most important
dimension for helping users to better understand and control complex AI models.
Indeed, when interfacing with the user, Deep Neural Networks (DNN) are usually
black boxes, and the link between their inner-workings and their results remains
obscure, notably due to their increasing size [5]. Thus, a considerable research
effort has been deployed to alleviate this problem [24J6l172612328)27122]. How-
ever, this plethora of methods sometimes lacks clear and measurable ways of
comparison, making it hard for a DNN developer to make informed decisions
on which method to choose. It is this difficulty that we aim to abate in this
paper. In particular, we target attribution methods assigning scores to every
input dimension of the data (e.g. pixel in image and video classification tasks), in
a “white-box” (model-agnostic) setting [4] that relies on an access to the model
(for example to compute gradients [22] or analyse the features in convolutional
layers [6].
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An explanation is often multifaceted information, which should satisfy a set
of domain specific [20] properties[I5], such as correctness, stability and plausibil-
ity. Correctuess [15] (a.k.a. fidelity [3], faithfulness [29]) evaluates the adequacy
between the explanation and the model behaviour. Stability [3] (a.k.a. continu-
ity [15], sensitivity [31]) evaluates how similar explanations are for similar inputs.
Plausibility (a.k.a. coherency [15]) evaluates the credibility of an explanation
from the user point of view. The degree of adequacy between an explanation and
a given set of properties is evaluated qualitatively and/or quantitatively using
dedicated metrics.

Our contribution This work studies the articulation between the stability, cor-
rectness and plausibility of explanations based on feature importance for image
classifiers. It shows that existing metrics for evaluating these properties may
disagree, raising the issue of what constitutes a good evaluation metric for expla-
nations. Finally, in the particular case of stability and correctness, it shows the
limitations of some existing metrics and proposes new ones that take into account
the local behaviour of the model under test. The paper is organized as follows:
Sec. [2| presents the related work; Sec. [3| presents new metrics for measuring the
stability and correctness of explanation methods; Sec. ] presents our experimental
results; Sec. p| contains our closing remarks.

2 Related work

We recall that this work is related to the evaluation of explanation methods
rather than the explanation methods themselves (see [4J12I21] for various surveys
on the subject). We focus on the relation between correctness, plausibility and
stability, three properties that are highly relevant for explanation methods applied
to image classifiers, as opposed to properties such as compactness or covariate
complexity [I5] that are more suited to models processing tabular data.

Correctness Correctness can be evaluated using parameter randomisation [I] -
which assesses the causal relationship between the model parameters and a given
explanation method. However, an explanation method sensitive to parameter ran-
domisation does not necessarily reflect the correct model behaviour. Alternatively,
deletion and insertion metrics [I7] evaluate the ability of a method to correctly
identify the relative importance of each pixel w.r.t. to the model decision. The
Area Under the Deletion Curve (AUDC) measures the variations of the model
output when masking out pixels in the original image, from the most to the least
important pixels. Pixels can be removed incrementally [I7] or individually [3].
Similarly, the Average Drop (AD), Average Increase (Al) [7] and Average Gain
(AG) [32] metrics study the model output when masking out unimportant pixels
from the image. However, such metrics use Out-of-Distribution (OoD) samples
(i.e., inputs that significantly differ from the distribution of training data) to
evaluate the local behaviour of the model [10]. Finally, the Causal Local Ex-
planation metric [I831] (CLE) assumes that a correct explanation should also
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accurately predict the behaviour of the model in the neighbourhood of a given
input. However, this metric does not take into account the potential instability
of the model.

Stability Stability metrics hypothesise that an explanation method should produce
similar explanations for similar inputs. The most common method [3] measures
the maximum discrepancy between explanations in the neighbourhood of a given
input. However, this metric also does not take into account the local model
behaviour. In particular, in a region of high model instability, which can be
identified using adversarial attacks [16], this metric penalises correct explanation
methods in favour of more stable methods. Hence, more recent proposals [2]
propose an evaluation of stability relative to the model behaviour.

Plausibility Plausibility evaluates the adequacy between an explanation and
the mental model [14] of a human user, i.e., how this user thinks the model
is behaving. As such, plausibility evaluation requires additional information
provided by human agents. For computer vision applications, this information
can take the form of Gaze-Fixation Density Maps (GFDMs) that capture the
distribution of human attention inside each image of a dataset. Then, plausibility
can be evaluated by measuring the Pearson Correlation Coefficient (PCC) [33]
or the Similarity [30] (SIM) between a saliency map and the “ground-truth”
information. However, plausibility does not necessarily entail correctness [15]:
if the model decision is biased, then a correct explanation method will likely
produce implausible explanations.

3 Improving stability and correctness metrics through
local surrogate models

As discussed above, current stability and correctness metrics do not always take
the underlying model into account and may penalize correct explanation methods
when the model displays high variations in a local region of the input space.
Additionally, current correctness metrics tend to evaluate local explanations
using perturbed inputs that significantly differ from the original image, assuming
that the model behaviour remains stable in large portions of the input space.
However, as demonstrated by adversarial attacks [16], such hypothesis may not
always hold. Therefore, in this section we propose new metrics that not only use
perturbed samples in a restricted neighbourhood around the original image (as
n [I8]), but also take into account the model behaviour.

We consider a model f: X — ) trained on a visual classification task with K
possible classes. X usually corresponds to the space of RGB images of a given size
H x W, and Y = R¥ represents the output logits of the model (before softmax
normalisation). For k € [1... K], we denote fj : X — R the restriction of f to the
output logit for class k: i.e., f(X) = (f1(X),... fx(X)). During inference, the
model decision p(X) corresponds to the index of the highest value in f(X), which
represents the most probable class for X, i.e., p(X) = argmaxgen...x)(fe(X))-
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Let Xy € X. We study the behaviour of various methods for explaining the
classification result py = p(Xp), which is equivalent to explaining the output of
fpo(Xo). For simplicity, we denote g(X) = fp,(X) the sub-model of f related to
the most probable class predicted for Xy. Without loss of generality, we consider
that an explanation method based on feature importance s : X — S is a function
taking an input image X and producing a saliency map containing the relative
importance of each pixel of X w.r.t. the output of g. In the context of visual
classification, such explanations help answer the question “which part of the
image contributed the most to the decision?”. Note that methods such as FEM [9]
or ML-FEM [6] are class-agnostic and therefore produce the same saliency map
regardless of the target output logit.

Building a surrogate model As in [31], we build a surrogate of the model g from
a saliency map s(Xj) as:

VX € X, Ex,(X) = s(Xo)" (X — Xo) +9(Xo) €R (1)

where elements in S and X can be seen as vectors in R¥*W >3 In particular,
Ex,(Xo) = g(Xo). The construction of Ex, is motivated by the piece-wise linear
nature of ReLU networks (such as ResNet50 [II] or VGG [25]) and is based
on the principles of explanation maps [7] or gradient @ input [23] (where ®
represents the element-wise multiplication).

Measuring stability To measure the local stability of a given explanation method
s in the neighbourhood of Xy € X, [3] introduces a metric equivalent to the
Lipschitz criterion (LIP), under the postulate that a stable method s should
produce similar explanations for similar inputs:

oo o)
LIP(X,) = max - (2)
Ixo-xll,<e | %0 - ]|

for some ¢ > 0. However, this metric does not take into account the possible
instability of the model g in the neighbourhood of Xj. Since saliency maps aim to
capture the local behaviour of the model, a correct explanation method applied
to an unstable model might return a high value LIP(Xj) and be discarded in
favour of a less correct, but seemingly more “stable” method (e.g., an explanation
method returning a constant value such as Fake-CAM [19] will yield LIP(X) =
0, VX € X). In this work, we state that stable explanation methods should
produce similar explanations for similar model behaviours. Therefore, we propose

a revised stability metric, as illustrated in Fig. Let X € X s.t. HXO - XH <€,
2

m = (Xo + X) /2 be the middle point between X, and X, and

D (XO,X) = |Ex,(m) — Eg(m)| (3)
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Fig. 1: Our LSS metric. For a given pair of inputs (Xo, X) and an explanation

method s, we build two surrogates Fx, and E'y approximating the local behaviour
of the model. Our proposed metric measures how these surrogate models match
at the mid-point between Xy and X.

We define the Local Surrogate Stability (LSS) of the explanation method s around
Xo as

D (XO, X)
LSS(X()) = max

[ Xo—X|l2<e

e @
Xo- x|,

In particular, for a constant explanation method s.t. VX € X, s(X) = k, then
D (XO,X) = |k x (X —XO) +f(Xo) - f(X)], ie., D (XO,X) > 0.

Measuring correctness To measure the correctness of a given explanation method
in the neighbourhood of Xy, [18] introduces the Causal Local Ezplanation metric
(CLE):

CLE(X0) = E|x,_g|| «C (X0.X) (5)

where [E is the expectation operator and C' (Xo7 X ) measures the local prediction

error of the surrogate model Ex, for an input X and is equal to ‘EXO (X) — g(X) ‘

However, as for the LIP metric, CLE does not take into account the possible
instability of the model ¢ in the neighbourhood of X,. We propose to measure
this prediction error, but relative to the changes in the model output between
X, and X (see Fig. . More precisely, we define the Local Relative Correctness
(LRC)

C XO,X)

LRC(X,) (6)

:E % ¢ —
”XO X||2< Ag (XO’X)+772
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Fig.2: Our LRC metric. For a given pair of inputs <X0, X ) and an explanation
method s, we build the surrogate model Ex,, then measure the prediction error
C(Xo,X) of the surrogate at X, but relative to the changes Ay (Xo, X) in the
output of the underlying model g.

Fig. 3: Tllustration of our revised metrics for measuring the stability and correct-
ness of explanations

where A, (XO, X) = ‘g (Xo) — g(X)| and n is a small constant used for numerical
stability.

4 Experiments and results

In this section, we present our experimental setup and results, with the goal of
showcasing the limitations of state-of-the-art metrics described above, but also
of studying the consensus between metrics from multiple perspectives.

4.1 Setup

Since evaluating the plausibility of explanations requires additional ground-truth
information representing the user’s expectations of the model, we restricted
ourselves to datasets providing such information. In our experiments, we used
the Salicon dataset [I3], which provides Gaze Fixation Density Maps (GFDMs)
for all images. For our classifier, we use a ResNet50 [I1], processing images of
size 256 x 256, pre-trained on the ImageNet [§] dataset and fine-tuned to the
Salicon dataset with 20,000 images split into 10,000 images for training, 5,000
for validation and 5,000 for test. All explanation methods were evaluated on 50
images from the Salicon test dataset, that we further call Salicon50.

Explanation methods We evaluated several popular explanation methods: Grad-
CAM [22], back-propagation [24] (denoted Grads in this work), Integrated Gradi-
ents [28] (black baseline, 10 samples), SmoothGrads [26] (10 samples, with noise
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level 0.2), Guided Back-propagation [27] (GBP), FEM [J] and ML-FEM [6]. To
showcase possible limitations of evaluation metrics, we also implemented the triv-
ial method Fake-CAM [I9] returning a saliency map obtained after upsampling
a 7 X 7 map - equal to 0 on the top-left corner and 1 everywhere else - to the
size of Xy. We also proposed center-biased-CAM (or CB-CAM), obtained after
upsampling a 7 X 7 map - equal to 1 at its center and 0 everywhere else - to the
size of Xy. Since images in popular classification datasets are usually centered
on the object, the purpose of CB-CAM is to act as a baseline for plausibility
evaluation metrics.

Evaluation metrics For the evaluation of stability, we compared LIP [3] to
our proposed metric (LSS, see Eq. . For the evaluation of correctness, we
compared the Deletion metric [I7] (DEL), the Average Drop (AD)/Average
Increase (AI)/Average Gain (AG) metrics [732], the Causal Local Explanation
metric [I8] (CLE) and our Local Relative Correctness (LRC, see Eq. [6). For
the evaluation of plausibility, we computed the Pearson Correlation Coefficient
(PCC) and the Similarity metric [30] (SIM) between the provided GFDMs and
the saliency map generated by the explanation methods.

Sampling strategies As indicated in Sec. [3| LIP/LSS metrics (stability) and
CLE/LRC metrics (correctness) evaluate the behaviour of explanation methods
in a neighbourhood of X, defined by a radius ¢ w.r.t. the L2 distance. In this
work, these metrics are estimated by sampling 50 perturbed inputs X per image
Xo from the Salicon50 dataset, either using a uniform or adversarial strategy.
When using the uniform strategy, each perturbed input X is sampled uniformly
in the n-dimensional sphere of radius € around Xj, then rounded and clipped to
values in [0, 255]. These last operations ensure that X is a valid RGB image with
integer pixel values.

The adversarial strategy helps identify regions in the neighbourhood of X
where the underlying model g might be unstable (high variation in the output)
and to act as a sanity check for evaluation metrics using sampling. When using
the adversarial strategy, each sample X is generated with the goal of minimizing
the value g (f( ) as follows: we draw a target norm d €]0,¢[ from a uniform
distribution; using back-propagation, starting from Ag = X+ @ - with @ a small
random perturbation (modification of 3 pixels in practice) - we generate the
series A;11 = A; — Vxg(A4;) until ||4;41 — Xoll2 > d, then set X = A,;. Similar
to the uniform strategy, A; is rounded in order to ensure that X is a valid RGB
image with integer pixel values. Since multiple perturbed samples X must be
generated from the same image Xy, the goal of the initial noise @ is to ensure
that the series will not systematically converge towards the same X. Finally,
since evaluation metrics aim to measure local properties of explanations, we set
e = 250 for both strategies in order to generate perturbed samples very close to
original image (this roughly corresponds to switching one pixel from white to
black). For additional results involving a Gaussian noise instead of a uniform
noise, we refer the reader to [33].
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Table 1: Evaluating properties on various explanation methods. Each value corresponds to the average score obtained by a given
explanation method evaluated using a given metric over the Salicon50 dataset. For each metric, the best score is indicated in
bold. 1/] indicates that the lowest/highest value is better. For sample-based methods (LIP, LSS, CLE and LRC), we indicate
the average score when using the uniform (uni.) or adversarial (adv.) strategy. For each correctness evaluation method, we

indicate the average evaluation radius R (see Sec.

between the original images and evaluation samples.

Explanation method

Property | Evaluation metric | 4 cAM @2 FEM [] ML-FEM [§] Grads 24 Int.Grads [28] SmoothGrads [25) GBP [27] |Fake-CAM [[9] CB-CAM (ours)

LIP [3] | (uni) | 0.01%002 643+ 7.82 1.86+£0.75 0.64% 1.33 090+ 203 299+ 378  9.054 7.44 | 0.00£0.00  0.00 0.00

Stability | VP Bl (adv) | 17T9E 302 5838+ 64.21 820+ 5,80 1051 2075 $99% 1592 FSTTHATST 2635+ 25.78| 0.00£0.00 0.0+ 0.00

LSS (ours) | (uni)| 0.00£0.00  0.59% 0.16 0.094 0.04 0.00+0.00 0004001  0.00+0.00 021015 | 3704257  0.61% 0.12

LSS (ours) | (adv)| 059+ 0.69  1.30% 0.73 0.63% 0.68 039+ 0.57 0.24+ 034  0.59% 069 1204 1.00 | 3.18% 1.33  1.42+ 0.98

CLE [I8] | (uni) | 0.00+0.00  0.18+ 0.05 0.03+ 0.0l 0.0040.00 000+ 0.00  0.00+0.00  0.05+0.03 | 1.55+1.90  0.18+ 0.04

CLE [I8] | (adv) | 0.15£019  0.30£024 016£0.19 0.11£016 0.11£015  015£019 018+ 018 | 0.68£052  0.31% 0.31

LRC (ours) | (uni)| 0.00+0.00  0.18+ 0.05 0.03+ 0.01 0.0040.00 0.00+ 0.00  0.00+0.00  0.05+ 0.03 | 1.55+1.90  0.18+ 0.04

Comecines|FRC (0urs) 4 (adv)| 0.10£0.11 024016 011010 0.07+0.08 0.07£008  0.10£0.11  013£010 | 057041  0.25% 0.2

DEL [I7] | 13.944 7.36  14.24% 7.02 13.07 7.98 584+ 555 523+ 491  3.81+£ 380  6.09% 5.48 | 24.20+ 1.60  15.88% 8.50

AD [T} 018+ 0.26  0.39+0.26 0224024 0024010 003£012  0.04% 010 003+ 0.09 | 0.00%000  0.45% 0.23

AG BY+ 0.00£0.00  0.00£0.00 0.00% 0.00 0.00% 0.00 0.00%0.00 000000  0.00%0.00 | 0.00&000  0.00% 0.00

AL[Z) 1 047+ 0.50  0.14%0.35 0.31% 047 0.78% 042 0.76+£ 043  0.45% 050 059 050 | 0.53% 050  0.14% 0.35

Plausibility]  PCC B3I 028+ 0.19 0314020 0.57+0.22 0204013 019+ 014 0394012 024+ 0.13 | 0.06£0.02  0.35+0.25

STM 30 4 0374 0.10  0.39+ 0.1 0.54% 0.10 0.39+ 0.10 038+ 0.11 0474009 040+ 0.07 | 0.37+0.12  0.33+ 0.14
Average | CVE I8J/LRC 306 (uni.) / 233 (adv.) 306 (uni.) / 233 (adv.)
e DEL [I7] 38,767 38,343 39,428 39,194 39,216 39,336 43,283 1,882 24,062
AD/AG/AI [7132) 44,259 52,083 49,308 28,378 30,600 27,657 27,139 2,409 53,487
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Fig. 4: Evaluation radius of correctness metrics on a GRAD CAM explanation:
(a) Original image; (b) After deleting 50% of the pixels when computing the
AUDC (deletion metric) (R = 57,994); (c) Explanation map used in AD/AI/AG
(R = 752,614); (d) Perturbed samples generated in the neighbourhood of original
image for CLE/LRC using uniform sampling (R < € = 250); (e) Perturbed
samples generated in the neighbourhood of original image for CLE/LRC using
adversarial sampling (R < e = 250).

Locality of evaluation metrics The use of OoD samples for evaluating the correct-
ness of an explanation describing the local behaviour of the model is debatable [10].
Thus, we restrict ourselves to replacing up to 50% of the pixels with black pixels
when computing the AUDC for the DEL metric. Similarly, the use of explanation
maps in AD/AI/AG metrics also creates images with large black regions (see
Fig. [4)). Thus, for a given correctness evaluation metric, we measure the average
evaluation radius R between the original images from Salicon50 and the perturbed
samples used for the evaluation: for the deletion metric (DEL), this corresponds
to the L2 distance between the original image Xy and the image where 50% of the
most important pixels have been set to black; for AD/AI/AG, this corresponds
to the L2 distance between X, and the explanation map s(Xy) @ Xo; for CLE
and our LRC metrics, this corresponds to the maximal L2 distance between X
and a perturbed sample X. Note that in this last case, the evaluation radius
R < € by construction.

Consensus between metrics The consensus between evaluation metrics is measured
as the Spearman Rank Correlation Coefficient (SR) between the mean scores of
the metrics for all non-trivial explanation methods (i.e., ignoring Fake-CAM and
CB-CAM). Before computing the SR between the vectors of mean metric scores
for AG/AI/PCC/SIM, we multiply them by —1 so that a strong consensus for
two metrics is always represented by a SR close to 1.

4.2 Results and discussion

Table [I] indicates the mean scores of explanation methods over the Salicon50
dataset. As each metric measures a different quantity, comparisons can only be
performed between explanation methods for a given metric (lines). Regarding
the stability of explanation methods, our experiments show that trivial methods
such as Fake-CAM and CB-CAM defeat the LIP metric but not our LSS metric,
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Table 2: Spearman Rank Correlation Score (SR) between the vectors of average scores of all non-trivial explanation methods.
The p-value is given in parenthesis for statistical significance. Results for sample-based evaluation metrics (LIP/LSS/CLE/LRC)
are given when using a uniform sampling. A SR greater than 0.7 indicates a strong positive correlation (in bold).

Evaluation method Stability Correctness Plausibility

vertation m LIP LSS (ours) [Avg| DEL AD AG AI CLE  LRC (ours)|Avg| PCC SIM  |Ave.
LIP - 0.82 (0.02)[0.82[0.04 (0.94) 0.29 (0.53) 0.57 (0.18) 0.43 (0.34) 0.82 (0.02) 0.82 (0.02)|0.49 |-0.29 (0.53) -0.50 (0.25)|-0.39

LSS (ours)  |0.82 (0.02) - 0.82[0.43 (0.34) 0.57 (0.18) 0.75 (0.05) 0.61 (0.15) 1.00 (0.00) 1.00 (0.00)|0.73|-0.29 (0.53) -0.21 (0.64)|-0.25
DEL 0.04 (0.94) 0.43 (0.34)]0.23 - 0.71 (0.07) 0.75 (0.05) 0.54 (0.22) 0.43 (0.34) 0.43 (0.34) | 0.57|-0.29 (0.53) 0.29 (0.53)]0.00

AD 0.29 (0.53) 0.57 (0.18)]0.43 [0.71 (0.07) - 0.75 (0.05) 0.96 (0.00) 0.57 (0.18) 0.57 (0.18)|0.71]-0.79 (0.04) -0.11 (0.82)|-0.45

AG 0.57 (0.18) 0.75 (0.05)|0.66 |0.75 (0.05) 0.75 (0.05) - 0.68 (0.09) 0.75 (0.05) 0.75 (0.05)]0.74]-0.39 (0.38) 0.07 (0.88) |-0.16

Al 0.43 (0.34) 0.61 (0.15)]0.52|0.54 (0.22) 0.96 (0.00) 0.68 (0.09) - 0.61 (0.15) 0.61 (0.15)|0.68|-0.86 (0.01) -0.29 (0.53)|-0.57

CLE 0.82 (0.02) 1.00 (0.00)[0.91{0.43 (0.34) 0.57 (0.18) 0.75 (0.05) 0.61 (0.15) - 1.00 (0.00)| 0.67 |-0.29 (0.53) -0.21 (0.64)|-0.25

LRC (ours)  [0.82 (0.02) 1.00 (0.00)[0.91]0.43 (0.34) 0.57 (0.18) 0.75 (0.05) 0.61 (0.15) 1.00 (0.00) - 0.67]-0.29 (0.53) -0.21 (0.64)|-0.25
PCC -0.29 (0.53) -0.29 (0.53)|-0.29]-0.29 (0.53) -0.79 (0.04) -0.39 (0.38) -0.86 (0.01) -0.29 (0.53) -0.29 (0.53)|-0.48 - 0.61 (0.15) |0.61

SIM -0.50 (0.25) -0.21 (0.64)|-0.36|0.29 (0.53) -0.11 (0.82) 0.07 (0.88) -0.29 (0.53) -0.21 (0.64) -0.21 (0.64)|-0.08 0.61 (0.15) - 0.61
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which actually indicates that Grads (uniform sampling) or Integrated Gradients
(adversarial sampling) are the most stable among “non-trivial” methods. Regard-
ing the correctness of explanation methods, most evaluation metrics also indicate
that Grads and Integrated Gradients are the best performing methods. It is also
interesting to note that Grad-CAM and SmoothGrads have similar scores across
all evaluation metrics except DEL and AD. As expected, Fake-CAM represents
the best performing explanation method when using the AD metric, confirming
the results of [32]. Moreover, as indicated by the average evaluation radius R
(in parenthesis in Table , CLE and LRC evaluate explanation methods using
samples that are significantly closer to the original image w.r.t. to the L2 distance
and that are more likely to reflect the local adequacy between the original classi-
fier and the surrogate model built from the explanation maps. Finally, regarding
the plausibility of explanation methods, our experiments show that saliency maps
produced by ML-FEM and FEM are most correlated to the ground truth GFDMs.
However, we also note that our trivial explanation CB-CAM correlates more
strongly with the GFDMs than most non-trivial methods when using PCC.

Consensus between evaluation metrics From Table 2| it can be stated that
evaluation metrics do not always agree on the best performing explanation
methods w.r.t. the three properties under study.

In particular, the LIP metric does not correlate strongly with correctness
methods (0.49 on average), while our LSS stability metric seems to bridge the
gap between LIP and correctness evaluation metrics, strongly correlating with
both sets of methods. Since our proposed LRC metric for evaluating correctness
is similar to CLE (when using uniform sampling), the correlation between the
two methods is very strong, as expected. Finally, we notice that both plausibility
metrics seem very uncorrelated to all other metrics. In summary, although Grads
seems to produce the most stable and correct explanations on average (see
Table , the lack of conclusive consensus between various metrics evaluating
the same property (or across multiple properties) raises several questions: in the
absence of a formal definition of what a correct and/or stable explanation method
should be, how to decide which metric best evaluates the desired property? And
if no explanation method can simultaneously satisfy all the desired properties,
how to achieve a compromise between diverging requirements?

Consistency w.r.t. perturbed samples To study the sensitivity of sample-based
evaluation metrics to the choice of perturbed samples X in the neighbourhood of
X, we measure the PCC between vectors of mean scores of non-trivial explanation
methods when using a uniform and adversarial sampling strategy. This score
measures the consistency of the evaluation metric, when perturbed samples are
potentially located in a region of instability for the model. Table |3| indicates that
while our LRC metric offers a marginal improvement in consistency over CLE,
our LSS metric is significantly more robust to adversarial samples than LIP.
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Table 3: Consistency of sample-based evaluation metrics, measured as the PCC
between mean scores over non-trivial explanation methods when using uniform
or adversarial sampling. The p-value is given in parenthesis. Higher is best.

Property ‘Evaluation method‘Consis‘cency T

o LIP 0.678 (0.09)
Stability ‘ LSS (ours) ‘ 0.832 (0.02)
Corroctnoss CLE 0.954 (0.00)
LRC (ours) 0.972 (0.00)

5 Conclusion and perspectives

In this work, we showed that the use of evaluation metrics for measuring the
quality of explanations based on feature importance w.r.t. a set of properties is not
a panacea to electing the best explanation method. Indeed, metrics evaluating the
same property - either stability, correctness or plausibility in this paper - do not
necessarily agree, a limitation that also prevents a more global consensus across
properties. In this regards, it would be interesting to check whether explanations
generated from a classifier trained using GFDMs as auxiliary annotations [0]
would reconcile these three properties. More generally, there exists a mutual
dependency between the model, explanation methods and evaluation metrics,
that is difficult to disentangle in the absence of any form of ground truth or
formal definition of the desired properties.

This work also introduces improved metrics for evaluating the stability and
correctness of explanations that are less sensitive to the model behaviour than
current state-of-the-art metrics and that use samples in a close neighbourhood
around the original image. In a future work, we would like to extend our study
to more recent proposals - such as the metrics proposed by [2] for stability - and
to other properties of explanations such as completeness - the extent to which an
explanation covers the model behaviour - or counsistency (relevant for sampling
based methods).
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