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This paper presents an automated process that detects, tracks, and classifies thermal events using infrared 

movies of the inside of the vessel for machine protection. This process relies on a Region-Based Convolutional 

Neural Network, a deep learning model, for the detection of thermal events in infrared images. This model is 

trained using a dataset of thermal events, obtained by manually annotating thermal events in movies from the 

WEST tokamak, which is equipped with 12 infrared cameras that provide information about the surface 

temperature of the in-vessel components. The labels characterizing the thermal events are chosen in a custom-

designed ontology, which is being developed. 

This automated process can correctly detect, track and classify most of the regular thermal events appearing in 

the infrared movies of WEST, in a manner compatible with the real-time plasma operation. These events can 

be used for post-pulse analysis by deriving from them metadata, displayed in a dedicated dashboard, that help 

human operators understand better and more quickly what happened during a pulse. 
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1. Introduction 

The ability to analyze thermal events occurring on 

the internal components of fusion reactors during 

their operation is important both for machine 

protection and for science. The large quantity of 

data generated by diagnostics during the operation 

of long-pulse machines makes it cumbersome for 

humans to cope with the real-time analysis of 

thermal events. There is a strong need for a process 

able to detect and analyze thermal events 

automatically and in real-time, for feedback control 

and investment protection. 

This paper presents an automated process that 

detects, tracks, and classifies thermal events using 

infrared movies of the inside of the vessel. This 

process relies on deep learning models [1], trained 

on a specially created dataset of thermal events. A 

web-based dashboard displays the most critical 

thermal events detected automatically by the 

process, to help the machine monitoring team to 

take action between pulses, if necessary. 

The dataset of thermal events is obtained by 

manually annotating thermal events in movies from 

the WEST tokamak, which is equipped with 12 

infrared cameras that provide information about the 

surface temperature of the in-vessel components 

[2]. 

This paper is structured as follows: Section 2 

presents the thermal events dataset, which 

contains all the knowledge used to train the 

automated process, briefly described in Section 3. 

Section 4 shows results obtained with this process 

using dedicated key performance indicators. 

Section 5 details the dashboard that displays the 

most critical thermal events detected. Finally, 

Section 6 presents the conclusions and outlook of 

this work. 

2. Formalization of knowledge in a thermal 

events dataset 

Supervised deep-learning models learn from 

example: given couples of inputs and expected 

outputs, the parameters of the model are learnt for 

it to perform a specific task, without having to 

properly formalizing it. Here, the automated process 

needs to detect thermal events in the frames of 

infrared movies. This means that, to train the model, 

many infrared images (the inputs) must be 

gathered, with the corresponding thermal events 

manually annotated on the images using bounding 

boxes (the expected outputs). All these data 

constitute what is called a dataset, which is then 

partitioned in three parts: the train split, used to 

learn the parameters of the model; the validation 

split, used to select the values of the hyper-

parameters associated with the training; and the 



 

 

test split, used to evaluate the performance of the 

trained model. 

The dataset is constituted of 88 manually annotated 

infrared movies of the interior vessel of WEST, 

provided by its infrared thermography diagnostic 

[2]. It contains movies from three types of lines of 

sight (divertor: 31 movies, lower-hybrid antenna: 31 

movies, and wide-angle: 26 movies), and from 

pulses from the C4 and C5 campaigns of WEST. 

The training, validation and test splits contain 53, 17 

and 18 movies respectively. The pulses have been 

chosen to maximize the variety in the types of 

experiments, to have movies as different from each 

other as possible. Table 1 presents the repartition 

of the different classes of thermal events in the 

dataset. The classes are selected in a simple 

custom-designed ontology, currently in 

development. A short description of each class can 

be found in [3]. The label “hot spot” is the catchall 

class, which gathers all the thermal events that do 

not belong to any other class in the ontology. This 

explains why it represents more than half the events 

in the dataset. 

Table 1: Repartition of the classes of events in the 
dataset. 

Label (class) 
Number of 

thermal 
events 

Proportion 

hot spot 867 54% 
outboard strike 

point 
232 

14% 
inboard strike point 228 14% 

ion ripple losses 16 0.99% 
radiated heat flux 12 0.74% 

electron type 1 234 15% 
reflection 23 1.4% 

Total 1612 100% 

 

The manual annotation of infrared movies is a 

cumbersome task, which presents risks of 

inconsistencies between annotators. To mitigate 

these risks, annotation tools are developed and 

regularly improved; they decrease the annotation 

time and the inconsistencies. To create the dataset, 

the annotation tool initially described in [3] was 

improved to reduce the jittering and flickering of the 

proposed annotations. Figure 1 shows an example 

of manually annotated frame of an infrared movie of 

the divertor of WEST.  

 

Figure 1: Example of manual annotation of an infrared 
video of the divertor of WEST. 

All the thermal events, either manually annotated of 

automatically detected, are centralized in a SQL 

database for easy access and analysis by the 

machine protection and scientific teams.  

3. Automated process for the detection, 

tracking and classification of thermal events 

The automatic detection, tracking and classification 

of thermal events is handled by the process 

represented in Figure 2. It takes as inputs a video 

stream from the infrared (IR) thermography 

diagnostic of WEST as well as data from other 

diagnostics (e.g. additional heating, plasma 

density) and a 3d scene model (the correspondence 

between the pixels of the movies and the 

components inside the machine, as well as the 

associated admissible temperatures, defined in so-

called WEST Operation Instruction sheets). The 

process outputs thermal events detected during the 

pulse, tracked in time and with a classification label, 

that can be sent to the Plasma Control System 

(PCS) for feedback control during plasma 

operation. 

The process is constituted of three stages: 

1. Given the infrared video stream as input, 

the first stage detects, tracks and provides 

a first classification of the thermal events. 

To do so, it relies on Faster R-CNN [4] for 

the detection of thermal events in each 

frame (implementation of Detectron2 [5] by 

Meta AI) and on SORT [6] for the tracking 

of the events between frames. 

2. Given the detections of stage 1 as well as 

the 3d scene model and data from other 

diagnostics, the second stage will provide a 

fine classification of the events. To do so, a 



 

 

deep learning model has to be trained to 

extract meaningful features from all the 

inputs and perform data fusion. This stage 

is to be implemented: the foreseen model 

architecture is a Fully Convolutional Neural 

Network [1]. 

3. Finally, the third stage will use the finely 

classified thermal events to take action on 

the pulse using feedback control loops in 

the Plasma Control System. These loops 

can be expert rules or can be learnt from 

example using learning techniques. 

Additional detail on the automated process can be 

found in [3]. 

Currently, stage 1 is automated, while stages 2 and 

3 are performed by the protection officers between 

pulses, using the detections of stage 1 and the 

thermal events dashboard, described in Section 5. 

If necessary, action on the next pulse is taken by 

the operational team, based on the 

phenomenological analysis of the thermal events by 

the protection officers. 

 

Figure 2: Organigram of the automated process, which is 
constituted of three stages. 

4. Obtained results from stage 1 of the 

process 

Figure 3 shows an example of automatic detection 

of thermal events in an infrared movie of the wide-

angle line of sight of WEST. The process is able to 

detect the major thermal events present in the 

scene, in a qualitatively satisfying manner. 

 

Figure 3: Example of automatic thermal events detection 
on the wide-angle view of WEST. 

The quantification of the performance of the 

process relies on key performance indicators (KPI) 

dedicated to the task of object detection, described 

in [8]. Table 2 presents the results obtained on the 

test set for the three types of lines of sight 

considered, using four KPIs: the mean precision, 

mean recall, mean average precision (mAP), and 

Spatio-Temporal Tube Average Precision (STT-

AP). The precision is the ability of the process to 

only detect relevant thermal events, whereas the 

recall is its ability to find all the relevant thermal 

events. The mean average precision combines the 

(2) 
Fine classification of 
the detected thermal 

events 

(1) 
Detection + tracking + 
coarse classification of 

thermal events 

IR video 
stream 

Other 
diagnostic

s 

3d scene 
model 

(3) 
Action with the 
Plasma Control 
System (PCS) 

Thermal 
events 

database 

Table 2: Key performance indicator values obtained on the test set, averaged over all classes, for each type of lines of 
sight. 

Key performance indicator divertor lower hybrid antenna wide-angle all 

𝑚𝑅𝑒𝑐𝑎𝑙𝑙@0.5 70.53% 59.05% 71.57% 68.07% 

𝑚𝑅𝑒𝑐𝑎𝑙𝑙@0.75 46.40% 27.55% 42.47% 37.24% 

𝑚𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@0.5 89.87% 80.82% 76.26% 76.72% 

𝑚𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@0.75 60.59% 38.65% 43.64% 41.63% 

𝑚𝐴𝑃@0.5 66.19% 54.88% 61.87% 59.70% 

𝑚𝐴𝑃@0.75 34.26% 14.87% 27.13% 22.82% 

𝑚𝐴𝑃@0.5: 0.95 35.77% 23.19% 31.28% 27.81% 

STT-𝐴𝑃@0.5 27.86% 30.96% 29.15% 30.29% 

STT-𝐴𝑃@0.75 13.76% 10.41% 11.80% 11.88% 

 



 

 

two notions into one number, by computing the area 

under the precision x recall curve. Finally, the 

spatio-temporal tube average generalizes the 

average precision to videos instead of individual 

frames. The number next to each KPI represents 

the selected Intersection over Union (IoU) 

threshold. For the STT-AP, a generalization of the 

IoU to spatio-temporal detections is used, called 

spatio-temporal tube IoU (STT-IoU). The larger the 

threshold, the more a prediction box must be close 

to a real box for the prediction to be counted as 

correct. The mention “0.5:0.95” indicates that the 

measures were done for values of the IoU threshold 

in [0.5, 0.95] in steps of 0.05, and then averaged. 

The column “all” corresponds to the KPIs obtained 

when combining the detections from all the lines of 

sight. 

The detector gives good performance for relatively 

low IoU threshold values, and this performance 

decreases with the increase of the IoU threshold. 

This behavior is expected, and is actually not 

critical for thermal events detection. Indeed, for 

machine protection, the key aspect of a detector is 

its ability to correctly detect and roughly 

encompass thermal events; being able to 

encompass them tightly with a box is secondary, 

especially when many types of thermal events 

have fuzzy boundaries, making them hard to 

annotate precisely and consistently. 

Some disparities can be noticed between the lines 

of sight. They can be explained by the differences 

between the thermal scenes and thermal events 

observed in each view. Indeed, the divertor line of 

sight contains mainly strike lines, which are large, 

whereas the lower hybrid antenna line of sight 

mainly contains many small hot spots. The wide-

angle view, which is the most complex thermal 

scene, contains both large and small objects. 

Given these results, special care ought to be taken 

to improve the detection of smaller objects; this is 

an outlook of this paper. Finally, given an IoU (or 

STT-IoU) threshold, the difference in performance 

between the mAP and the STT-AP shows that the 

tracking algorithm should be improved: this is also 

an outlook of this article. 

5. Dashboard of the most critical thermal 

events 

A web-based dashboard, accessible anywhere at 

WEST, displays automatically the most critical 

thermal events detected. It is available to the 

protection officers in the control room, to help them 

analyze the thermal events and take action on the 

next pulse in coordination with the operational team, 

if necessary for machine protection. 

The dashboard, called ēveniō (to “happen” or 

“occur” in Latin), is shown in Figure 4, where the 

thermal events detected during the last pulse of 

WEST’s C5 campaign are displayed. The graphical 

 

Figure 4: Dashboard display for the pulse #56927 (last pulse of WEST's C5 campaign). 



 

 

interface is generated using a Streamlit1 instance 

that runs on a local server, and is linked to the 

centralized SQL thermal events database. The 

dashboard is interfaced with the visualization 

software ThermaVIP [7], so that the detected 

thermal events can be easily visualized, analyzed 

and modified, relabeled, or rejected if necessary, by 

displaying them in the software in one click. 

Each row of the dashboard corresponds to one 

detected thermal event. For each event, many 

metadata are displayed, for instance: a label that 

characterizes it, the physical component on which it 

appeared, and the maximum temperature that it 

reached.  

Furthermore, two criteria are displayed (appearing 

in color on the dashboard): the maximum 

temperature ratio, and the displacement criterion. 

The first one is equal to the greatest ratio between 

the maximum temperature reached by a thermal 

event and the maximum admissible temperature of 

the component on which it appeared, defined in the 

WEST Operation Instruction. The second criterion 

quantifies the displacement of the thermal event 

during its life: its aim is to detect abnormal events, 

such as a sensor that is dislodged from its 

protective casing. To compute it, the centroid of the 

thermal event for each timestamp is stored, and the 

value of the criterion is defined as the greatest 

Euclidian distance between all the possible pairs of 

centroids, normalized between 0 and 1 to make it 

independent from frame size. The dashboard is 

implemented in a flexible way, so that new criteria 

can be implemented easily to suit the needs of the 

users. 

These two criteria are used to quantify the criticality 

of an event. Indeed, when a criterion exceeds user-

defined warning thresholds, the associated thermal 

event is moved at the top of the table and displayed 

in bold, so that it is highlighted to the protection 

officers. A color map is used to represent 

graphically the values of the criteria, with the value 

being red if it exceeds the warning threshold. 

For the computation of the maximum temperature, 

a small time interval of 0.1s on each side of the 

disruption (if one occurred) is ignored, because the 

maximum temperature measured during this brief 

period is not relevant for machine protection. The 

disruption time is inferred from the plasma current 

automatically at the end of the pulse. 

The dashboard can be used by the protection 

officers to provide feedback to other protection 

                                                                 
1 https://streamlit.io/ 

officers or to the developers of the process, by 

selecting a status for an event. This status can for 

instance be “Analyzed (follow-up required)” to 

indicate the need for a follow-up analysis, or 

“Detection Error” to indicate that the automated 

process has produced a false positive, in other 

words a detection that is not a real thermal event. 

Furthermore, additional pages can easily be added 

to the dashboard to perform specific tasks, such as 

showing statistics on the thermal events that have 

been detected during a given week. This is for 

example useful for the weekly reporting meetings 

that take place during experimental campaigns at 

WEST. 

6. Conclusions and outlook 

A process that detects, tracks and classifies thermal 

events automatically from infrared videos and 

signals from other diagnostics is presented, in a 

manner compatible with the feedback control 

system of fusion machines. This process relies on 

artificial intelligence and deep learning techniques 

to learn from example: it then requires the creation 

of a dedicated dataset, constituted of many 

manually annotated infrared movies.  

Currently, only the first stage (detection, tracking 

and coarse classification of thermal events from 

infrared movies) of the process has been 

implemented and tested on data from the WEST 

tokamak, with encouraging results, both 

qualitatively and quantitatively. The implementation 

of stages 2 and 3 is an outlook of this paper. 

A dedicated web-based dashboard is developed, to 

display the detected thermal events automatically 

after an experiment. Its aim is to provide an easy to 

use tool for the officers in charge of machine 

protection to analyze the thermal events that 

occurred on the first wall of a fusion machine. It is 

interfaced with ThermaVIP, enabling the quick 

visualization of the detected thermal events in the 

infrared movies. The dashboard is a powerful tool 

that is highly customizable to suit the needs of the 

protection and operational teams.  

The automated process, the thermal events dataset 

and the dashboard have been developed and 

tested on data from previous campaigns of WEST, 

and are to be continuously improved during its 

future experimental campaigns. They will also be 

used on other fusion reactors (W7-X, DTT, ITER, 

https://streamlit.io/


 

 

with simulation and/or experimental data when 

available) using transfer learning. 
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