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A multi-stage process that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of fusion reactors is presented. The process relies on the Cascade R-CNN algorithm for the detection and classification and on the SORT algorithm for the tracking. The process is trained using a dataset of 325 thermal events distributed in seven classes, manually annotated from 20 infrared movies of the inside of the WEST tokamak. This dataset is created using user-friendly annotation tools, based on simple thresholding. The performance of the process is evaluated using modified indicators that emphasize the importance of the detection of the hottest zones of the hot spots. The modified mean average precision on a test dataset establishes at 27%.

Introduction

This paper presents a multi-stage algorithm that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of a fusion reactor. This data pipeline is trained, and its performance is assessed, on data from the infrared thermography diagnostic of the WEST fusion reactor [START_REF] Courtois | Full coverage infrared thermography diagnostic for WEST machine protection[END_REF], a tokamak located in Cadarache, France, right next to ITER, the International Thermonuclear Experimental Reactor, whose aim is to demonstrate the feasibility of fusion for the large-scale production of energy. The infrared thermography diagnostic is constituted of 12 infrared cameras that provide information about the surface temperature of the in-vessel components, which include the wall of the vessel and the divertor. These measurements are used for physics studies and for real-time feedback control during the operation of WEST [START_REF] Mitteau | WEST operation with real time feed back control based on wall component temperature toward machine protection in a steady state tungsten environment[END_REF]. Figure 1 presents an example of infrared image of the inside of the WEST tokamak, with manually annotated thermal events.

The paper is structured as follows: Section 2 describes this data pipeline, the algorithms used and how they are interfaced to detect, track and classify thermal events in infrared movies. The pipeline is designed to be machine independent, so that it can be used on other fusion machines, such as the Wendelstein 7-X Stellarator and later ITER.

Section 3 details the requirements for the dataset of manually annotated thermal events used to train the data pipeline. Annotation tools are also described, which are specifically created to assist experts during the annotation process by reducing both the annotation time and the inconsistencies between annotators. Finally, the simple ontology used to describe the different types of thermal events is introduced.

Section 4 describes the key performance indicators used to quantify the performance of the data pipeline. These metrics involve a modified notion of the intersection over union, specifically tailored to take into account the pixel value of the images (the apparent temperature), which is crucial in the context of hot spots detection where the detection of hotter pixels is more important than the detection of colder ones.

Finally, Section 5 describes the application of this data pipeline to the monitoring of the WEST tokamak. The dataset of manually annotated thermal events from infrared movies of WEST is described, along with the configuration of the pipeline and the results obtained on an independent test dataset, quantitatively and qualitatively. 

Data pipeline

This section presents a data pipeline for the detection, tracking and classification of thermal events in infrared videos. This pipeline is designed to be compatible with a realtime use, so that it could be used for feedback control during plasma operation, for instance.

This pipeline takes as input an infrared movie (potentially in streaming), and returns a collection of thermal events, tracked in time, each associated with a label.

The backbone of the pipeline is described in this section. It is composed of two steps that are described below: the detection and tracking of thermal events, and their classification. The pipeline is designed to be modular, with various specific treatments to be plugged in it either in series or in parallel.

In the following, a hot spot is a region of an infrared image hotter than its surroundings (e.g. a strike line or a reflection), and a thermal event is the temporal evolution of a hot spot (so that a thermal event is a sequence of hot spots).

Detection and tracking of thermal events in infrared videos

The first step of the pipeline is the detection of hot spots in the frames of an infrared movie, using bounding boxes. This is handled by the object detection algorithm Cascade R-CNN [START_REF] Cai | Cascade R-CNN : High quality object detection and instance segmentation[END_REF], a Region based Convolutional Neural Network able to detect efficiently objects in images.

The algorithm takes an image as input and outputs detection proposals in the form of a collection of bounding boxes and labels (chosen in a predefined list of labels or ontology). Each prediction is associated with a confidence score, which quantifies the "confidence" of the algorithm that the proposal box indeed contains an object of interest with the associated proposed label.

Cascade R-CNN needs to be trained to detect hot spots in infrared images. Manual annotations of hot spots are collected in a dataset: Section 3 describes its required properties as well as the tools developed to help during the annotation process.

We use the implementation of Cascade R-CNN available in Detectron2 [START_REF] Wu | Detectron2[END_REF], which relies on the deep learning framework PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF], both developed by Facebook AI Research. The motivation for this choice is the following: Detectron2 is actively maintained, the architecture of the network and the hyperparameters can be changed quickly, which is useful for prototyping, and finally, it trains and runs faster than other implementations of the same methods.

After the detection phase, one obtains a collection of frames containing a variable number of hot spot detections. The next step is to match hot spots between frames of the movie, to obtain a collection of thermal events. To do so, the process uses the tracking algorithm SORT [START_REF] Bewley | Simple online and realtime tracking[END_REF], a real-time tracking algorithm whose aim is to match a collection of objects in a movie, by estimating their between-frame motion.

The SORT algorithm handles the intermittent vanishing of thermal events (e.g. obstruction by a component, flickering), and does not require a fixed number of objects to track in the frame. However, the algorithm can fail on complicated trajectories, such as for instance with UFOs (hot particles or specks of dust that move in the frame) for which the motion may not be reliably estimated between two frames. An improved version of the SORT algorithm, called Deep SORT [START_REF] Wojke | Simple online and realtime tracking with a deep association metric[END_REF], integrates appearance information thanks to a learned association metric, and could help addressing the problem of tracking objects with complex motion. The use of such an algorithm constitutes one of the outlooks of this article.

Using these two algorithms, Cascade R-CNN and SORT, the process produces automatic detections of thermal events in infrared videos, tracked in time in a real-time compatible manner. The next section describes how labels are associated with the detected thermal events, using the output labels of Cascade R-CNN and a mapping between the pixels of the movie and the actual physical component in the vessel to which they correspond.

Classification of thermal events in infrared videos

Cascade R-CNN performs object detection and classification frame by frame. More precisely, at a frame with index 𝑇 ≥ 1 (𝑇 = 1 being the first frame of the movie), for a thermal event 𝑒, Cascade R-CNN returns, in addition to the bounding box, a vector 𝐶 𝑒 𝑇 whose 𝑖-th component (𝐶 𝑒 𝑇 ) 𝑖 quantifies the confidence that the encompassed object belongs to the 𝑖-th class. By definition, 𝐶 𝑒 𝑇 is a zero vector if the thermal event 𝑒 is not present in the frame 𝑇.

Then, at frame 𝑇 ≥ 1, we choose the class number attributed to the thermal event 𝑒 defined by

argmax 𝑖 1 𝑇 ∑(𝐶 𝑒 𝑡 ) 𝑖 𝑇 𝑡=1 ,
the maximum average confidence that the thermal event belongs to the 𝑖-th class.

For real-time inference, this amounts at looking at the argument of the maximum of the cumulative moving average of the confidence vector 𝐶 𝑒 𝑡 , for 𝑡 going from one to the current frame number. Therefore, the label attributed to a thermal event might change during real-time inference, especially at its beginning where it might change before stabilizing to its final value.

A correspondence between the pixels of the frame and the actual physical component in the vessel can also be used to rule out some classifications. Indeed, certain classes of events cannot appear on certain components: for instance, a strike line on the grid of an antenna. In that case, the label of the event is changed to the catchall class "hot spot". Another approach would be to change the label to the one associated with the second largest probability in the averaged probability vector, if it is compatible with the component on which the event appeared.

The infrared videos and the mapping may not be sufficient to classify all types of thermal events. For instance, some hot spots appear on the lateral protections of antennas only when the latter are injecting power in the plasma. The correct classification of such events would then require the fusion of data from both infrared movies and other relevant signals, such as the power injected by the antennas. This is an outlook of this article, and is envisaged for a future full data pipeline for the detection and classification of thermal events.

Thermal events dataset

A dataset of thermal events in infrared videos must be created in order to train the data pipeline described in Section 2. This dataset is to be comprised of thermal events that are encompassed with a bounding box, tracked in time and classified following the ontology presented in Section 3.2, all of this manually by experts.

The dataset must satisfy several criteria for the data pipeline to produce good results:

 it must represent the types of events that the pipeline should detect;  the annotations must be consistent between one another;  videos must be fully annotated, meaning that any frame of a video containing a least one annotation should be fully annotated;  the repartition of the types of experimental configurations and of lines of sight in the vessel should be representative of their actual distribution during experimental campaigns. The creation of such a dataset of thermal events in infrared videos with tracked bounding box is a very cumbersome task, which is prone to inconsistencies, both between annotators and between annotation sessions for a same annotator. A semiautomatic thermal events annotation tool is developed in Section 3.1. The annotation tool reduces the annotation time and the inconsistencies. It enables the full annotation of a movie in several minutes instead of potentially few hours. Section 3.2 describes the simple ontology used to classify the annotated thermal events.

Semi-automatic thermal events annotation tool

This section details the annotation tool. Its use case is the following:

i. the annotator plots a rectangle (called the proposal box) that encompasses the thermal event they wish to annotate, ii.

the temporal span of the thermal event is determined, iii.

the proposal box is adapted spatially for each frame of the movie containing the hot spot (as determined in step ii), using either bounding boxes or polygons. During a movie, a given thermal event may appear and disappear several times. This is the case for instance for flickering or pulsating hot spots. It is then important to be able to determine consistently the beginning and end of a thermal event, as well as the time intervals during which it disappears.

To do so, the annotation tool relies on the maximum value of the temperature inside the proposal box, as a function of time, denoted by 𝑇 𝑚𝑎𝑥 (𝑡). The hot spot is said to be present in the proposal box at time 𝑡 if the following criterion is verified:

𝑇 𝑚𝑎𝑥 (𝑡) ≥ 𝑇 𝑚𝑎𝑥 𝑚𝑖𝑛 + 𝜏(𝑇 𝑚𝑎𝑥 𝑚𝑎𝑥 -𝑇 𝑚𝑎𝑥 𝑚𝑖𝑛 ), with 𝑇 𝑚𝑎𝑥 𝑚𝑖𝑛 = min 𝑡 𝑇 𝑚𝑎𝑥 (𝑡), 𝑇 𝑚𝑎𝑥 𝑚𝑎𝑥 = max 𝑡 𝑇 𝑚𝑎𝑥 (𝑡) the,
respectively, smallest and largest value of 𝑇 𝑚𝑎𝑥 on the whole movie. The parameter 𝜏 ∈ [0, 1] is chosen by the annotator: the closer it is to 0, the more timestamps will be included in the thermal event, and conversely for values closer to 1. In this article, we choose 𝜏 = 0.1. This value of 𝜏 produces annotations with time spans that are consistent with what experts in the protection of the first wall at WEST expect. However, there is no proof that a unique value can lead to good qualitative results for all types of thermal events. Consequently, the value of 𝜏 should be chosen based on experts' definitions of the time span of each type of thermal events. Figure 2 illustrates this thresholding process, with the computed threshold represented as a horizontal line. The annotation tool assumes that only one thermal event is present in the proposal box. Hence, it performs an implicit tracking by matching the hot spots associated with different timestamps (different frames of the video) to a unique thermal event, even in the case of intermittent disappearances of the hot spot.

In some cases, monitoring the maximum temperature in the proposal box as a function of time is not optimal. For instance, noise in the image can lead some temperature values to be much greater than what they should be. In that case, the threshold described above can be adapted simply, to monitor for instance a quantile of the temperature in the proposal box or a maximum that filters aberrant temperature values.

This procedure determines the frames of the video in which the proposal box contains a hot spot. The rest of the section presents two ways of adapting the proposal box automatically and consistently for each of these frames, using either bounding boxes or segmentation masks.

The aim of the adaptation with bounding boxes is to encompass with a rectangle the foreground of the image (the hot spot), in order to separate it from the background of the image. To do so, the tool computes a temperature threshold, introduced by Yen et al. [START_REF] Yen | A new criterion for automatic multilevel thresholding[END_REF] and obtained by maximizing the total correlation provided by the distributions of the foreground and the background, defined by

𝑇𝐶(𝑝) = -ln(𝐺(𝑝)𝐺 ′ (𝑝)) + 2 ln(𝑃(𝑝)(1 -𝑃(𝑝)) with 𝐺(𝑝) = ∑ 𝑝(𝑖) 2 𝑝-1 𝑖=0 , 𝐺 ′ (𝑝) = ∑ 𝑝(𝑖) 2 𝐿-1 𝑖=𝑝 , 𝑃(𝑝) = ∑ 𝑝(𝑖), 𝑝-1 𝑖=0
where 𝑝(𝑖) is the probability of obtaining the grey level 𝑖 and 𝐿 is the total number of grey levels in the image.

By thresholding the image with this method, one obtains a segmentation mask, separating the hot spot from the background (in a maximum total correlation sense). The adapted bounding box is then taken as the bounding box of the segmentation mask. Figure 3 illustrates the adaptation procedure, from the original image cropped using the proposal box, to the segmentation mask using the computed threshold, to the final adapted bounding box. This simple criterion ensures a consistent adaptation of the bounding box. Furthermore, it is robust to small variations of the proposal box: if the rectangle does not encompass any other hot spot, the tool is able to obtain very similar adapted boxes (as illustrated in Figure 4), hence ensuring annotations that are consistent between annotators. For some applications, such as the computation of the area of a hot spot, using bounding boxes is not sufficient. A followup technique is possible for the spatial adaptation of the proposal box. This technique produces segmentation masks instead of bounding boxes.

This segmentation mask is created by the deep convolutional neural network U-net [START_REF] Ronneberger | U-net : Convolutional networks for biomedical image segmentation[END_REF], slightly modified to reduce its size by trimming its deepest layer, to go roughly from 31 to 5 million parameters.

The segmentation model was trained with 37554 manually segmented images (23% of them not containing a hot spot, in order to reduce the false positive rate of the U-net). Early stopping was used during training, relying on a validation set of 9388 images. On a test set of 11736 images, the model produced a pixelwise accuracy of 95.72%.

Figure 5 illustrates the adaptation procedure, from the original image cropped using the proposal box, to the segmentation mask using the U-net, to the final polygon, which is the boundary of the mask.

One shortcoming of this adaptation technique is that it relies on manual annotations to learn how to segment the hot spots. It can therefore suffer from the inconsistencies mentioned above when annotating movies manually. However, networks such as U-net have a large generalization power, and can handle complex shapes that may not be recovered with a simple temperature threshold, such as the one used for the annotation with bounding boxes, which make them potentially useful tools. This spatial adaptation can also be used as a postprocessing step, by taking as proposal box an automatic detection from Cascade R-CNN, described in Section 2.1, to segment thermal events automatically. This enables the computation of high-value metadata, such as the area of the thermal events, automatically from infrared movies.

Ontology

Work is progressing toward the definition of a consistent ontology for thermal events in fusion machines. In the meanwhile, a voluntarily simplistic ontology is used to allow progress.

The considered ontology comprises seven classes:  "electron type 1": a hot spot which appears on the lateral protections of antennas, and whose appearance is correlated with the power injected by the antenna;  "inboard strike point": a strike line located on the inboard part of the divertor;  "outboard strike point": a strike line located on the outboard part of the divertor;  "reflection": the photonic reflection of a thermal event on the metallic wall of the vessel;  "radiated heat flux": a hot component, such as a Langmuir probe, being heated by plasma radiation;  "UFO": a hot particle or speck of dust that moves in the frame;  "hot spot": a catchall class for events that do not belong to any other category, or for events whose original labelling was incompatible with the mapping pixelcomponent (as explained in Section 2.2).

Key performance indicators

The definition of key performance indicators is important to express quantitatively the performance of the data pipeline presented in Section 2.

Usually, performance indicators for the task of object detection in images rely on a notion of covering between a reference box and a prediction box. This covering is called intersection over union (IoU). Compared to classical object detection in visible images, the pixel values in the infrared images used in this work correspond to a measure: an apparent temperature. A modified definition of the intersection over union is introduced in Section 4.1. This proposed definition takes into account this temperature information, by nulling the IoU if the prediction box does not encompass the hottest pixels in the associated ground truth box.

The following sections introduce the metrics used to quantify the performance of the data pipeline in Section 5, and illustrate them on a simple example of the detection of strike lines on the divertor of the WEST tokamak.

Intersection over Union taking into account the temperature

In order to penalize detections that do not encompass the hottest zones of the hot spots, a Intersection over Union is defined:

𝐼𝑜𝑈(𝐷, 𝑇) = { |𝐷 ∩ 𝑇| |𝐷 ∪ 𝑇| if 𝐻(𝑇) ∈ 𝐷 0 else
, with  𝐷 a bounding box produced by the data pipeline (the detection);  𝑇 a true bounding box (the ground truth);  𝐻(𝑇) the bounding box of the 10% hottest pixels in the ground truth 𝑇; in addition, |⋅| denotes the area, ∪ the union and ∩ the intersection.

In other words, this modified IoU is equal to the original intersection over union if the prediction encompasses the 10% hottest pixels of the ground truth and else, it is equal to zero.

This threshold of 10% can of course be adapted based on how much importance one wishes to put on the detection of the hottest zones of hot spots. It is kept fixed to 10% throughout this article.

The next section describes the metrics used to quantify the performance of the data pipeline. They all rely on the modified IoU for their computation.

Useful definitions

A prediction 𝐷 is said to be a true positive if there exists a ground truth 𝑇 such that 𝐼𝑜𝑈(𝐷, 𝑇) ≥ 𝜏 and ℒ(𝐷) = ℒ(𝑇), with ℒ a function that returns the class of an event (the label), and with 𝜏 ∈ [0, 1] a user-defined threshold.

In other words, a prediction is considered as a true positive if it has a modified intersection over union with a ground truth greater or equal than 𝜏, and if both have the same label.

Conversely, a prediction 𝐷 is said to be a false positive if there is no ground truth so that the above criterion is satisfied.

Finally, a false negative is either a ground truth 𝑇 for which no prediction satisfies the above criterion, or a prediction 𝐷 that has an 𝐼𝑜𝑈(𝐷, 𝑇) ≥ 𝜏 with a ground truth 𝑇 but not the same label (ℒ(𝐷) ≠ ℒ(𝑇)).

In practice, to match predictions with ground truths, one first ranks the predictions by decreasing confidence. Then, one tries to match each prediction with a ground truth. Every time a ground truth is matched, it is removed from the pool of potential ground truths to be used for subsequent matches. Therefore, predictions that satisfy the above criterion might not be considered as true positives if another prediction satisfying the criterion with the same ground truth (but with a larger confidence) has already been matched.

Equipped with these definitions, we can now describe in the next section the performance metrics used, namely: the precision, the recall, and the average precision.

Performance indicators

We begin by introducing two useful indicators: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝜏 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑃 𝑅𝑒𝑐𝑎𝑙𝑙@𝜏 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁 where 𝑇𝑃 is the number of true positives, 𝐹𝑃 the number of false positives, and 𝐹𝑁 the number of false negatives in an image, defined in the previous section. The mention @𝜏 indicates that the modified Intersection over Union threshold introduced in Section 4.1 is taken equal to 𝜏 ∈ [0, 1]. Indeed, different IoU thresholds will lead to different values of the performance indicators. The denominator of the precision is the total number of predictions in the image, whereas the denominator of the recall is the total number of ground truths in the image. The precision quantifies the proportion of correct predictions in an image, whereas the recall is the fraction of ground truths that were detected by the pipeline. One typically wishes for a model to have both high precision and high recall. However, as it is often the case in machine learning, there is usually a trade-off between high precision and high recall.

Another useful performance indicator is the Average Precision (𝐴𝑃), which is a measure of the area under the Precision-Recall Curve: a large value indicates that the detector has high precision and recall at all confidence levels.

The 𝐴𝑃 is defined for a fixed modified IoU threshold 𝜏, and is denoted by 𝐴𝑃@𝜏. The quantity 𝐴𝑃@0.5: 0.95 denotes the average of 𝐴𝑃@𝜏 for values of 𝜏 taken between 0.5 and 0.95 with a 0.05 step.

The reader is referred to the survey [START_REF] Padilla | A comparative analysis of object detection metrics with a companion open-source toolkit[END_REF] for a more in-depth description of how the average precision is computed.

The average precision is computed per class; we define the mean Average Precision (𝑚𝐴𝑃) as the average of the 𝐴𝑃 for all classes. We define in a similar way the mean recall (𝑚𝑅𝑒𝑐𝑎𝑙𝑙) and mean precision (𝑚𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛).

Finally, 𝑚𝐼𝑜𝑈 is the mean of the IoU for all the predictions with their respective ground truth match. It quantifies the average coverage of the ground truth boxes by the predictions.

Illustration of the indicators on a simple example

To illustrate the indicators introduced in the previous section, let us consider the simple example of Figure 6, which presents, for one image (a divertor view of WEST), a set of ground truths (in black) and predictions (in red). For simplicity, we consider a unique class, for instance the catchall class "hot spot", for all the ground truths and predictions. The results visible in the last column of Table 1 are obtained with the modified Intersection over Union defined in Section 4.1, which takes into account the temperature in the ground truth. Despite the good qualitative results of Figure 6, the quantitative performance is low, with an 𝐴𝑃@0.5: 0.95 of 3%. The results obtained without taking into account the 10% hottest pixels of the ground truth in the computation of the intersection over union are provided in the second column of the same table. The modified IoU drastically reduces the performance, which is expected, this criterion being more restrictive.

Table 1: Example of obtained results for the ground truths and detections showed in Figure 6.

IoU type

Original Modified 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@0.5 0.75 0.25 𝑅𝑒𝑐𝑎𝑙𝑙@0.5 0.75 0.25 𝐴𝑃@0.5 0.67 0.08 𝐴𝑃@0.5: 0.95 0.23 0.03

The criteria presented in this section are computed across frames, with the ground truths and detections in one frame being independent from the ones of the other frames. An outlook of this article is the development of key performance indicators that rely on thermal events instead of hot spots, hence directly on videos instead of on their frames considered independently. To do so, the intersection over union could be generalized to 3D "tubes" (space and time) to compute the socalled Spatio-Temporal Tube Average Precision (STT-AP) [START_REF] Padilla | A comparative analysis of object detection metrics with a companion open-source toolkit[END_REF], which involves the volume of the intersection divided by the volume of the union, instead of the area.

Obtained results

This section details the results obtained when training the data pipeline introduced in Section 2 with data from the WEST tokamak. The dataset used for the training is created with the help of the annotation tool described in Section 3.1, and is labelled according to the ontology of Section 3.2. This dataset is presented first, before giving more details on the actual implementation of the pipeline. Finally, the results obtained for the detection, tracking and classification of thermal events in infrared videos are analysed.

Manually annotated thermal events dataset

A total of 33 infrared movies from the WEST tokamak have been manually annotated, from three lines of sight in the vessel: divertor (see example in Figure 8), lower hybrid antenna (see example in Figure 9), and tangential (see example in Figure 1). The movies come from the last two campaigns of WEST, namely the C4 (from July to November 2019) and the C5 (from November 2020 to January 2021) campaigns. The movies are constituted of 512x640px² 16-bit black and white images.

The movies are split in three datasets: the training set, used to train the Cascade R-CNN algorithm presented in Section 2.1; a validation set used to choose hyperparameters and to perform model selection during the training; and finally a test set used to evaluate the performance of the data pipeline on previously unseen data.

In order to reduce the false positive rate when using Cascade R-CNN on images that do not contain any hot spot, a quarter of the images of the training set do not contain annotations.

The training set is constituted of 20 movies (32293 images), which contain 325 annotated thermal events:

 electron type This dataset constitutes a good first basis to train the data pipeline, and to assess its potential in terms of performance of detection, tracking and classification. However, due to its relatively modest size and to the fact that not all types of events occur with the same frequency, the validation and test datasets do not contain UFOs.

An outlook of this work is the creation of a larger dataset that would be split in datasets containing images with similar repartitions of the labels. Such a dataset would consolidate the relevance of the validation set for model selection, and of the test set for performance quantification.

Implementation details

The data pipeline is trained and tested on a Dell Precision 7750 laptop with an Intel Core i7-10850H@2.7GHz CPU, 32Go of RAM and an NVidia Quadro RTX 4000 GPU with 8Go of VRAM, running on Windows 10.

As mentioned in Section 2.1, the hot spots are detected with the Detectron21 implementation of Cascade R-CNN, with most of its default configuration options. The official implementation of SORT2 is used for the tracking.

A number of important technical details about the data pipeline are provided hereafter:

 the training is performed from scratch: starting from a pre-trained model from Detectron2's model zoo did not improve the performance of the model;

 data augmentation is used during training, in the form of random vertical and horizontal flips of the image, with a probability of 0.5 for each; no data augmentation is used during inference3 ;  the intersection over union is modified according to Section 4.1, with a threshold 𝜏 = 0.1, which means that the 10% hottest pixels of a ground truth must be encompassed by a prediction for it to be considered as correct;  the default backbone of Cascade R-CNN, resnet50, is reduced to a resnet18 given the modest size of the training set: the complete model then has roughly 56.1 million parameters to determine;  automatic mixed precision is used at both training and inference times to reduce the network's runtime and memory footprint;  the batch size is chosen to 2, meaning that at each step of the stochastic gradient descent algorithm used to train the model, the gradient is estimated using two images;  the training is performed for 100000 iterations;  the learning rate is fixed to 0.005, with a 1000-iteration linear warmup starting from 0.00005, and is reduced by a factor of 10 after 50000 and 75000 iterations;  due to the imbalance of the training set, a specific sampling is performed, called repeat factor sampling [START_REF] Gupta | Lvis : A dataset for large vocabulary instance segmentation[END_REF], which increases the frequency of appearance of less represented classes by oversampling images containing them; this method requires the choice of a hyperparameter, taken equal to the default value 0.001;  model selection is performed using the validation set and the performance indicators introduced in Section 4;  during detection, the predictions with a confidence score less than 5% are discarded, after which nonmaximum suppression is applied with a threshold of 50%;  for the tracking during inference, the maximum number of frames between two hot spots of a same event is fixed to 10, and an (unmodified) intersection over union threshold of 0.1 is chosen to add new hot spots to existing thermal events;  finally, the mapping between the pixels of the movies and the components of the vessel is not used for classification. The next section presents the results obtained by the data pipeline on the test set.

Obtained results for the detection, tracking and classification of thermal events in infrared videos

After training the Cascade R-CNN model, model selection is performed based on the 𝑚𝐴𝑃@0.5: 0.95 computed on the validation set, leading to the selection of the last model, associated with the maximum number of iterations. This indicates that the training should be continued, as the 𝑚𝐴𝑃 may still increase. Model selection could also be performed using another indicator, such as the precision or the recall, depending on the desired performance of the detector.

During inference on the high-end laptop described in the previous section, the pipeline reaches inference speeds of 14fps on average (up to 25fps) on the test set. However, the detection by Cascade R-CNN reaches a speed of 25fps on average (up to 30fps) on the test set, which indicates that a large part of the inference time can be attributed to the posttreatment of the detections, which should be optimized. These detection speeds obtained on a laptop are encouraging: with minor optimizations of the post-treatment of the detections of Cascade R-CNN and the use of a more powerful dedicated computer, the goal of real-time detection (50fps at WEST) seems reachable.

Table 2 shows the values of the performance indicators, defined in Section 4.3, obtained on the test set presented in Section 5.1 for different types of lines of sight. We notice a large discrepancy between the lines of sight: the tangential view gives the worst results, with a 𝑚𝐴𝑃@0.5: 0.95 more than two times smaller than for the lower hybrid antenna. This worse performance on the tangential line of sight can be explained by the fact that it is the most complex type of line of sight in WEST: it contains a large number of classes of thermal events, with various sizes.

Table 3 also presents performance indicators, but broken down by thermal event class instead of line of sight. There are no results for the UFO class, since there are no UFO in the test set (nor in the validation set) because of their rarity. We notice once again a large discrepancy between the different classes. Notably, the performance of the detection of the inboard strike points is low: this can be explained by the fact that these events do not exhibit a strong contrast (see example in Figure 7), so that their 10% hottest pixels may be spread all over the bounding box, increasing the chance for the modified intersection over union to be zero. This is confirmed by the fact that the 𝑚𝐴𝑃@0.5: 0.95 is equal to 0.37 for the inboard strike points when using the original intersection over union instead of 0.09 for the modified one. A similar, though more moderate, difference is observed for the outboard strike points (0.37 instead of 0.27) and the type 1 electrons (0.27 instead of 0.23). The other types of events are almost not influenced by the modification of the intersection over union.

Several leads can be investigated to increase the performance metrics and reduce the discrepancies between the lines of sight and between the classes. Firstly, more manual annotations should be created (with an emphasis on the addition of more rare events, such as UFOs), in order to increase the available information during training, and to increase the statistical significance of the performance metrics during testing. Secondly, different anchor sizes and aspect ratios could be tested, in order to obtain better results with the diverse range of sizes and shapes of the observed thermal events. Finally, the criterion defining the modified intersection over union, namely the inclusion of the 10% hottest pixels of the ground truth box, could be modified. For instance, taking the maximum temperature in the ground truth box (or a filtered maximum, not to take into account outlier values), could yield better results that would be more adapted to the problematic of fusion machine monitoring. Indeed, it would still force a true positive prediction to encompass the hottest zone of the ground truth, while ensuring that this zone does not occupy the majority of the ground truth box, such as with inboard strike points.

Figure 7, Figure 9 and Figure 1 show examples of ground truths for the divertor, lower hybrid antenna and tangential lines of sight, respectively. Figure 8, Figure 10 and Figure 11 show the predictions associated with the same images. We notice that the data pipeline gives very good qualitative results, even in the divertor line of sight (where the inboard strike points were poorly detected according to the key performance indicators). This constitutes a good indication that the criterion of the modified intersection over union should be modified, as mentioned above.

Most hot spots that are present in the ground truth are correctly detected and classified on the three types of lines of sight displayed in the figures. However, this is usually not the case at the beginning and end of the movies, where the performance is typically worse: the use of the Spatio-Temporal Tube Average Precision, mentioned in Section 4.4, which computes performance statistics based on complete thermal events instead of individual hot spots, would yield more significant and interpretable results. 

Conclusions

A data pipeline for the automated detection, tracking and classification of thermal events in infrared movies of the inside of fusion reactors is presented in the paper.

A new semi-automatic annotation tool that drastically reduces the annotation time as well as the inconsistencies between annotators is also reported. It was used to annotate infrared movies from the WEST tokamak constituting the dataset used to train the automated process.

The performances of the pipeline were assessed on data from WEST, using custom key performance indicators that emphasize the importance of the detection of the hottest zones of the manual annotations, thanks to a redefinition of the notion of intersection over union. The obtained results are encouraging, and show the potential of such a pipeline for the real-time monitoring of fusion machines.

In order to increase the classification performance of the pipeline, fusion of data should be performed, coming from infrared cameras and other diagnostics (for instance heating systems, spectrometry).

Furthermore, the definition of key performance indicators should be done in coordination with the operational teams of WEST and other fusion machines. This would ensure that the definition of the true/false positives/negatives, the model selection procedure and the quantification of the performance of the pipeline would all be tailored to the needs of the operational teams, which will be the end users of the process.

Finally, it would be interesting to apply this pipeline to data from other fusion machines, such as the Wendelstein 7-X Stellarator, to assess its generalization power to different machines. This would enable the creation of a transfer procedure that would fine-tune the pipeline to new machines using a small amount of new data (experimental or simulated), with the ultimate goal of being used on ITER, DEMO and future power plants.

Figure 1 :

 1 Figure 1: Example of manual annotations on the tangential line of sight of WEST. The reader is invited to zoom in for more detail.

Figure 2 :

 2 Figure 2: Illustration of the determination of the temporal span of a thermal event to annotate. The horizontal line is the threshold used to determine if the thermal event is present at a given time.

Figure 3 :

 3 Figure 3: Illustration of the spatial adaptation of the proposal box using a bounding box. The left image represents an infrared image cropped using a proposal box; the central image is the segmentation of the left image using the threshold described in Yen et al. [8]; the right image represents the bounding box of the segmentation mask (in red) overlaid on the original cropped image.

Figure 4 :

 4 Figure 4: Illustration of the robustness of the annotation tool to differences in the proposal rectangle (left: proposal rectangles, right: spatially adapted bounding boxes).

Figure 5 :

 5 Figure 5: Illustration of the spatial adaptation of the proposal box using a segmentation mask. The left image represents an infrared image cropped using a proposal box; the central image is the segmentation of the left image, obtained with the U-net segmentation network; the right image represents the boundary polygon of the segmentation mask (in red) overlaid on the original cropped image.

Figure 6 :

 6 Figure 6: Example of ground truth (in black) and prediction (in red) boxes. The pixel value corresponds to the apparent temperature.

Figure 7 :

 7 Figure 7: Example of ground truths on a divertor line of sight of WEST. The reader is invited to zoom in for more detail.

Figure 8 :

 8 Figure 8: Example of predictions on a divertor line of sight of WEST. The reader is invited to zoom in for more detail.Figure 9: Example of ground truths on a lower hybrid antenna line of sight of WEST. The reader is invited to zoom in for more detail.

Figure 9 :

 9 Figure 8: Example of predictions on a divertor line of sight of WEST. The reader is invited to zoom in for more detail.Figure 9: Example of ground truths on a lower hybrid antenna line of sight of WEST. The reader is invited to zoom in for more detail.

Figure 10 :

 10 Figure 10: Example of predictions on a lower hybrid antenna line of sight of WEST. The reader is invited to zoom in for more detail.

Figure 11 :

 11 Figure 11: Example of predictions on the tangential line of sight of WEST. The reader is invited to zoom in for more detail.

Table 2 :

 2 Performance indicators values obtained on the test set, averaged over all classes, for each type of lines of sight.

	Line of sight type		divertor	lower hybrid antenna	tangential	all
	𝑚𝑅𝑒𝑐𝑎𝑙𝑙@0.5		0.44		0.67	0.36		0.55
	𝑚𝑅𝑒𝑐𝑎𝑙𝑙@0.75		0.28		0.47	0.23		0.36
	𝑚𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@0.5	0.35		0.82	0.31		0.44
	𝑚𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@0.75	0.23		0.56	0.2		0.29
	𝑚𝐴𝑃@0.5		0.36		0.66	0.26		0.49
	𝑚𝐴𝑃@0.75		0.21		0.4	0.15		0.29
	𝑚𝐴𝑃@0.5: 0.95		0.2		0.37	0.15		0.27
	𝑚𝐼𝑜𝑈		0.29		0.59	0.38		0.48
	Thermal event class electron	inboard	outboard	reflection	radiated	UFO	hot spot
	type 1	strike point	strike point		heat flux		
	𝑅𝑒𝑐𝑎𝑙𝑙@0.5	0.52	0.2	0.45	0.59	0.99	𝑁𝑎𝑁	0.56
	𝑅𝑒𝑐𝑎𝑙𝑙@0.75	0.31	0.14	0.37	0.24	0.82	𝑁𝑎𝑁	0.31
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@0.5	0.69	0.17	0.38	0.22	0.55	𝑁𝑎𝑁	0.63
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@0.75	0.41	0.12	0.31	0.09	0.46	𝑁𝑎𝑁	0.34
	𝐴𝑃@0.5	0.51	0.14	0.42	0.43	0.98	𝑁𝑎𝑁	0.49
	𝐴𝑃@0.75	0.26	0.11	0.32	0.11	0.75	𝑁𝑎𝑁	0.21
	𝐴𝑃@0.5: 0.95	0.23	0.09	0.27	0.17	0.62	𝑁𝑎𝑁	0.23
	𝑚𝐼𝑜𝑈	0.55	0.14	0.43	0.37	0.80	𝑁𝑎𝑁	0.49

Table 3 :

 3 Performance indicators values obtained on the test set, averaged over all lines of sight, for each class of thermal events.

https://github.com/facebookresearch/detectron2

https://github.com/abewley/sort

Also known as Test Time Augmentation (TTA). Using TTA could improve the performance during detection: it is an outlook of this article.
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