Lessons learnt on the impact of an unprecedented soil decontamination program in Fukushima on contaminant fluxes

Rosalie Vandromme, Seiji Hayashi, Hideki Tsuji, Olivier Evrard, Thomas Grangeon, Valentin Landemaine, John Patrick Laceby, Yoshifumi Wakiyama, Olivier Cerdan

To cite this version:

HAL Id: cea-04245436
https://cea.hal.science/cea-04245436
Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lessons learnt on the impact of an unprecedented soil decontamination program in Fukushima on contaminant fluxes

Rosalie Vandrommea,1, Seiji Hayashib, Hideki Tsujib, Olivier Evrardc, Thomas Grangeona, Valentin Landemainea, John Patrick Lacebyd, Yoshifumi Wakiyamaa, and Olivier Cerdana

In the context of elevated concerns related to nuclear accidents and warfare, the lessons learnt from the Fukushima Daiichi Nuclear Power Plant accident in 2011 are important. In particular, Japanese authorities implemented an ambitious decontamination program to reduce the air dose rate in order to facilitate the return of the local inhabitants to previously evacuated areas. This approach contrasts the strategy adopted in Chernobyl, where the most contaminated areas remain off limits. Nonetheless, the effectiveness of the Japanese decontamination strategy on the dispersion of radioactive contaminant fluxes across mountainous landscapes exposed to typhoons has not been quantified. Based on the unique combination of river monitoring and modeling in a catchment representative of the most impacted area in Japan, we demonstrate that decontamination of 16% of the catchment area resulted in a decrease of 17% of sediment-bound radioactive fluxes in rivers. Decontamination operations were therefore relatively effective, although they could only be conducted in a small part of the area due to the dominance of steep forested slopes. In fact, 67% of the initial radiocesium contamination was calculated to remain stored in forested landscapes, which may contribute to future downstream radiocesium dispersion during erosive events. Given that only a limited proportion of the initial population had returned in 2019 (~30%), it raises the question as to whether decontaminating a small percentage of the contaminated area was worth the effort, the price, and the amount of waste generated?

Contamination from nuclear accidents and warfare have multiple negative impacts on the environment and society (e.g., human health and population migration). Following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011, the Japanese authorities implemented an ambitious decontamination program, which strongly differs from the strategy adopted in Chernobyl where the most contaminated areas still remain off limits. The increasing likelihood of natural disasters with climate change (e.g., extreme events such as droughts, heatwaves, heavy rainfalls, and floods), in addition to seismic risk, may result in other unanticipated nuclear accidents. Unfortunately, the question of decontamination versus restricting access to contaminated areas after a nuclear accident is likely to arise again. Therefore, tools that can help design mitigation strategies to reduce the effects of radioactive fallout are urgently needed.

The FDNPP accident resulted in a massive release of radioactive contaminants into the atmosphere. Although 80% of the fallout from this atmospheric release occurred over the ocean, the remaining 20% was deposited on land in Japan (1–3). One of these radioactive contaminants, cesium-137 (137Cs) is considered to be the most serious risk to the local population because it was emitted in high abundance and it has a relatively long half-life of 30 years (4, 5). Once 137Cs reaches the soil surface, it is quickly and almost irreversibly bound to fine soil particles (6–8) and therefore remains in the upper few centimeters of the undisturbed soils (11, 12), making it susceptible to downstream transfer by water erosion during rainfall events. After the FDNPP accident, 137Cs has been shown to have been transported mainly with suspended matter in rivers draining the main radioactive plume (13–17).

The amount of radiocesium that is washed away by water erosion on hillslopes depends on its concentration in the soil, which is the result of the initial radiocesium fallout concentration, and the magnitude of soil loss driven by local erosion processes (16). Climate and extreme weather events represent key factors driving radiocesium transfers in catchments with annual variations depending on climate seasonality, as river transfers increase in response to heavy rainfall during summer typhoons and snowmelt.

Significance

We used a combined experimental-modeling approach to study soil erosion, sediment, and Cesium-137 (137Cs) transfers in a representative catchment contaminated by the radioactive fallout from the Fukushima Daiichi Nuclear Power Plant accident. This study disentangled and evaluated the processes of 137Cs transfers in a landscape that was included in the early decontamination program performed by the Japanese authorities following the accident. The model demonstrates that the decontamination program was effective in the treated areas, though 67% of the initial radiocesium remains in forested landscapes. The persistence of 137Cs in forests remains an obstacle to the return of the local inhabitants and the resumption of economic activities associated with forest exploitation.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: r.vandromme@brgm.fr.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2301811120/-/DCSupplemental.

Published October 16, 2023.
Several studies in the Fukushima region have demonstrated that a single typhoon can account for a large portion of the annual 137Cs export (13, 14, 17, 18). In addition to the major role played by rainfall erosivity (19), topography, land use and soil characteristics also greatly affect the local spatial patterns of erosion and sediment deposition (16). In particular, the area of the main radioactive plume is mainly covered with forests on steep slopes and agricultural land in the valley bottoms, including paddy fields. Erosion rates on agricultural land are much greater than those under grassland and forests. Consequently, cropland is the main source of sediment and radiocesium fluxes in this area (17, 20).

This knowledge of the initial spatial pattern of the radioactive contamination across the landscape and the main redistribution processes has guided the Japanese authorities in their choices to implement a remediation strategy. A decontamination roadmap was established in January 2012 under the direct supervision of the Japanese government. The decontamination program was implemented in special areas where targets were set with regard to the exposure of the public to air dose rates that would allow residents to return to their day-to-day lives. These areas were mainly residential, including zones located within a radius of 20 m around houses and roads or cultivated areas (mainly paddy fields). Forests were not targeted because the implementation of decontamination is technically complicated and less efficient in these areas (e.g., removal of litter and humus) and they are expected to be less susceptible to erosion.

The original goal of the decontamination work in Fukushima was accomplished, as the air dose rates in living areas were reduced by 30 to 50% on average, thus allowing residents to return (21). 137Cs concentrations in sediment transported in river systems draining the main radioactive plume were also shown to have significantly decreased between 2011 and 2020 (22–25). This is due to the cumulated effects of 137Cs physical decay, erosion, and decontamination operations. Although the relative proportion of these different processes cannot be experimentally quantified, novel modeling tools can be developed to estimate these dynamic processes (Table 1). The fact that 137Cs remains elevated in river systems shows that forests continue to provide a significant contribution to 137Cs fluxes (20).

These post-accidental conditions, including the completion of a large-scale decontamination program, provide an opportunity to quantify the impacts of the decontamination program on erosion, 137Cs fluxes, and the remaining 137Cs stock. Quantification and understanding of the physical processes involved in particulate 137Cs transfer can provide a fundamental scientific foundation to help policymakers make decisions in the event of another nuclear catastrophe. Accordingly, the objectives of this study are to i) design and validate an original radiocesium module with a spatially distributed runoff, erosion model, ii) analyze 137Cs flux monitoring data and rainfall data acquired during the decontamination operations, and iii) evaluate the potential fluxes and stocks without decontamination, simulating the approach taken in Chernobyl.

Results

Study Region and Decontamination Strategy. The study catchment (44 km2) is a headwater mountainous watershed representative of those found in the main radioactive plume in the Fukushima Prefecture, northeastern Japan. It is drained by the Mano River and located upstream of the Mano Dam (Lake Hayama). The Mano Dam catchment is in the northern part of the radioactive contamination plume of the FDNPP and drains soils with total initial 137Cs concentrations ranging from 3,500 to 17,500 Bq kg$^{-1}$ (Fig. 1) (28). In this northern area, upstream sections of the catchments are the most contaminated with 137Cs. The catchment’s elevation varies from 180 m to 694 m, and approximately 50% of the catchment has a slope >25°. The Mano Dam catchment is mainly covered with forests (88.0%), residential areas (5.6%), agricultural land (3.3%), ponds and streams (2.3%), and roads (0.7%). Further downstream in the study catchment, toward the coastal plain, the proportion of agricultural land increases, at the expense of woodland.

A hydrological station installed immediately upstream of Mano Dam Lake was used to measure water flows and sediment concentrations at 5-min intervals from June 2014 to September 2015. The hydrological station was moved a few hundred meters further upstream in 2017 because of damage from Typhoon Etau. Flow and sediment concentrations were subsequently monitored at 10-min intervals until the end of 2019 (SI Appendix).

Table 1. Summary table of previous studies addressing particulate 137Cs fluxes monitoring and modeling in the Fukushima region

<table>
<thead>
<tr>
<th>References</th>
<th>Period</th>
<th>Location</th>
<th>Monitoring</th>
<th>Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>Use of data from 2000 to 2010 to make predictions</td>
<td>Abukuma River catchment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(13)</td>
<td>2013, 2015 and 2016</td>
<td>Hiso River and Mano River catchments</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(14)</td>
<td>2011 to 2012</td>
<td>Abukuma River catchment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(16)</td>
<td>July 2011 to Nov 2012</td>
<td>Plots (5 m × 22.1 m) in Kawamata Town</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(15)</td>
<td>2011 to 2100</td>
<td>Abukuma, Uta, Mano, Niida, Ota, Odaka, Ukedo, Maeda, Tomioka, Ide, Kido, Natsui and Same rivers catchments</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(26)</td>
<td>Jan 2011 to Dec 2012</td>
<td>Kuchibuto River catchment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(27)</td>
<td>May 2011 to Dec 2015</td>
<td>Oginosawa River catchment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(23)</td>
<td>2013 to 2018</td>
<td>Niida River catchment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>This study</td>
<td>Jun 2014 to Dec 2019</td>
<td>Mano Dam catchment</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Q = discharge, SSC = suspended sediment concentration, 137Cs–p = particulate 137Cs, D = impact of decontamination works.
Moreover, river water samples were collected to measure 137Cs concentration in suspended sediment (SS) (66 measurements during floods, SI Appendix, Fig. S6) from June 2014 to December 2019 (30). A rainfall record acquired by the Fukushima Prefecture was available for this catchment (Maenori station) at 10-min time steps during the entire hydrological monitoring period (30).

In the Mano Dam catchment, decontamination operations occurred between June 2014 and December 2016 (SI Appendix, Fig. S7). The decontaminated area progressively increased from 7.7 ha in 2015 to 54 ha in early 2016 and was ultimately implemented on an area of 700 ha by early 2017 (16% of the total catchment area). Decontamination operations consisted of the removal of vegetation and the replacement of topsoils (within the upper ~5 cm) with locally extracted crushed rock (granite or sandstone) (31). After decontamination, residual 137Cs activities in soils were estimated to reach a maximum of 20% of the initial activity levels (32) and the erodibility and potential sediment concentrations in runoff from farmlands increased significantly. Areas decontaminated in winter remained more erodible during this period as soils were left bare and exposed to rainfall, runoff, and erosion. During the rest of the year, due to vegetation growth, erodibility of decontaminated areas decreased within 2 mo.

Measured Suspended Sediment and 137Cs Concentrations at the Catchment Outlet. Point-based 137Cs concentrations at the outlet of the catchment from June 2014 to the end of 2019 during storm flow events were analyzed against flow rate (in Bq L\(^{-1}\)) and suspended sediment concentration (SSC) (in Bg g\(^{-1}\)) to investigate potential relationships with erosion processes and decontamination operations (Fig. 2). The measured particulate 137Cs concentrations in SS decreased exponentially over time (Fig. 2A), as a result of 137Cs physical decay, erosion, and decontamination operations. The relative proportion of these different processes cannot be experimentally quantified. Scattering is found in the regression plots, which is the result of cumulative changes in sediment source contributions, uncertainties in SS monitoring (33) and annual fluctuations in 137Cs concentrations (24).

The Fig. 2B–D show the occurrence of two different trends before 2016 during and after the decontamination operations.
Before 2016, 137Cs concentrations are high even for low sediment concentrations and low flow rates. After 2016, 137Cs concentrations are in contrast lower on average and for a wide range of conditions.

Point-based measurements of 137Cs concentrations illustrate that the higher the SSC, the lower the 137Cs concentration in SS (Fig. 2D). This finding suggests an erosion dilution effect during intense rainfall and flood events. The most intense events can generate rill (or gully) erosion that incises the soil profile and therefore mobilizes subsoil. Indeed, large gullies were observed on steep forested slopes, at several locations across the catchment area. Rill or gully erosion processes can release large amounts of sediment, particularly from subsoils deeper than the FDNPP 137Cs contamination (e.g., a few centimeters). During less intense rainfall events, inter-rill erosion dominates and mobilizes surface soil particles enriched in 137Cs. These results confirm previous findings (13) obtained for the Mano and Hiso River catchments between 2013 and 2016, and more importantly, validate these results over a longer time frame (until 2019), providing a strong basis for modeling and process analysis.

Modeled Sediment Dynamics and Fluxes. The WaterSed model was used to model runoff, erosion, and associated 137Cs fluxes. It is an event-based distributed model that simulates runoff and soil erosion from the plot to the catchment scale during a sequence of rainfall events (34–37). It is a raster-based model that describes runoff, erosion, and sediment transport based on hydrological and sediment balances. Infiltration-excess and saturation-excess runoff are included, as well as sheet and gully erosion—see SI Appendix for more details. The model was calibrated and validated with the measured flow rate and suspended sediment data: 21 events between June 2014 and September 2015 were used for calibration and an extensive set of 103 events between June 2014 and December 2019 were used for validation. Soil erosion properties in decontaminated areas (from June 2014 to December 2016) were increased following decontamination operations and then gradually decreased following vegetation regrowth.

To quantify and analyze particulate 137Cs transfer and sources, we modeled all the rainfall events that occurred from June 2014 to December 2019 (296 events, Fig. 3). The calculation of the water runoff volume and the total sediment exports over the entire monitoring period permitted the determination of a specific sediment yield of 1 t ha$^{-1}$ y$^{-1}$, which is in good agreement with results from similar Japanese catchments (4, 13, 14, 16, 38). Despite representing 0.24% of the monitoring period, five typhoon events represented 37% and 50% of water and sediment fluxes measured at the catchment outlet, respectively, underlining the importance of extreme events driving sediment dynamics in this region (31, 37).

The spatial analysis of the sediment quantities eroded by rill or inter-rill erosion for each land use type shows that the primary sediment source is rill/gully erosion in forests (~60%), followed by inter-rill erosion in forests (~20%), and paddy fields (~14%)
kg m$^{-3}$ was assumed for soils of the region, and iv) the activity updated following erosive rainfall events. After each run, 137Cs was designed and added to the WaterSed model that adequately reproduced runoff and sediment fluxes to simulate particulate 137Cs transport as well. This module is based on the following assumptions: i) 137Cs is transported in particulate form only, ii) 137Cs resulting from post-accident fallout was deposited over a constant soil thickness, iii) a constant bulk density value of 1,400 kg m$^{-3}$ was assumed for soils of the region, and iv) the activity concentrations are decay-corrected to the date of the accident.

The model was initialized with a constant contaminated soil thickness and a corresponding 137Cs soil concentration map. The 137Cs inventory and associated contaminated soil thickness maps are used to calculate the updated catchment total 137Cs stock.

The radiocesium module was calibrated using the same 21 events outlined above for the WaterSed model, using the soil-contaminated depth as a calibration parameter. The best results obtained for the 137Cs fluxes at the outlet were for a soil contamination depth of 2.2 cm (SI Appendix, Fig. S2D). The radiocesium module was then validated on 103 events that took place between June 2014 and December 2019 (SI Appendix, Fig. S4D).

All the rainfall events that occurred from June 2014 to December 2019 were then modelled. As found previously for the sediment fluxes, the majority of 137Cs exports occur during typhoons (Fig. 5A), although the relative contributions of radiocesium sources differ (Fig. 4C). The primary source of radioesium is inter-rill erosion in forests (~50%) followed by inter-rill erosion in paddy fields (30%). Inter-rill erosion in residential areas and rill erosion in forests each contributed 9%. However, decontamination operations had a significant impact on the relative contributions of radiocesium sources (Fig. 4B and C), 137Cs fluxes (Figs. 5A and 6), and catchment 137Cs total stock (Fig. 5B). Without decontamination (Fig. 4B), the results of the model demonstrate that the primary sources of radiocesium would be inter-rill erosion in paddy fields (~40%) and forests (~40%) followed by inter-rill erosion in residential areas (~10%) and rill erosion in forests (~7%).

The WaterSed model has been calibrated (SI Appendix, Fig. S2) and validated (SI Appendix, Fig. S4) based on the monitoring dataset. It correctly reproduces the dynamics and sediment fluxes generated by the rainfall events of the 2014 to 2019 period (see Material and Methods for more details), which includes the decontamination phase.

Impact of Decontamination on Modeled 137Cs Fluxes and Stocks. We used the decontamination program data, the associated measurements, and the development of the 135Cs transfer module to provide an estimate of the relative contribution of the natural 137Cs decay, decontamination operations, and particle transport in river systems during erosive rainfall events to the total 137Cs fluxes and stock variations. To quantify the relative contribution of the decontamination operations, the model was run with and without decontamination. The impact of decontamination operations on sediment exports (~3 tons) was found to be negligible compared to the total quantities exported downstream (~20,000 tons). Indeed, after decontamination, the soil remains bare for a very short period of time due to the rapid regrowth of vegetation, which protects it from erosion.

Over the entire period (mid 2014 to 2019), the basin has exported 0.24 TBq of particulate 137Cs (Fig. 5A). Without decontamination, these exports would have amounted to 0.29 TBq. Hence, the decontamination implemented on 16% of the catchment surface area reduced the 135Cs flux in rivers by only an
addition, an additional 17% compared to that estimated in the absence of any decontamination measure.

The simulated 137Cs concentrations in sediment transported in late 2019, after decontamination had been completed in the area, incorporating the decontamination work in the calculations ($2,500 \text{ Bq kg}^{-1}$), were close to the measured values (less than $5,000 \text{ Bq kg}^{-1}$) (Fig. 6). In contrast, the simulations without decontamination were three times higher ($7,500 \text{ Bq kg}^{-1}$) than the measured values.

The estimated 137Cs stock in the catchment immediately after the accident in 2011 was estimated to be 37.1 TBq. This stock was estimated to be 32.8 TBq at the time when monitoring started in 2014, taking into account the physical decay of 137Cs and the 1.5% decrease in the initial inventory through riverine exports from 2011 to 2014. The estimated 137Cs stock taking decontamination operations into account was found to reach 24.2 TBq by 2019, representing a 26% decrease in the 137Cs stock compared to that in 2014. (Fig. 5 B). The estimated 137Cs stock without decontamination was modeled to reach 27.1 TBq by 2019, representing a 17% decrease in the 137Cs stock compared to that in 2014. If we only apply decay correction from 2014 onward, the stock would be 28.3 TBq in 2019, corresponding to a decrease of 13.5% compared to the stock in 2014 (Fig. 5 B).

Accordingly, soil erosion reduced the catchment 137Cs stock by a further 3.5% and decontamination operations reduced the catchment by an additional 9% (2.9 TBq). Of note, the average maximum riverine flux was found to be 0.05 TBq $^{-1}$, which remains negligible (0.1%) compared to the initial stock of ~37 TBq of 137Cs deposited in the catchment and is also very low (0.5%) compared to the stock remaining after decontamination (~25 TBq). Although typhoons clearly have a major impact on 137Cs riverine fluxes, as shown in Fig. 5A, during the heaviest rainfall events, these exports are on the order of 0.1 TBq, which is very low compared to the total 137Cs stock in the catchment (~37 TBq). Accordingly, these events had only a very limited impact on the reduction in the total 137Cs stock (Fig. 5).

Discussion

The original goal of the decontamination work in Fukushima was accomplished, as the air dose rates in living areas (i.e., in farmland and residential areas, not in surrounding forests) were reduced by 30 to 50% on average, thus allowing residents theoretically to return home. The decontamination work was also effective in limiting the migration of radiocesium in river systems because it targeted farmlands and residential areas concentrated in river valleys. These areas are the most sensitive to erosion, as they are the most connected to the river network (39). Furthermore, erosion of the topsoil layers (“inter-rill erosion”) enriched in 137Cs largely dominates in farmland and residential areas, which further explains the relevance of targeting these areas in priority for decontamination and the effectiveness of decontamination to reduce overall river 137Cs fluxes. Accordingly, the results of the current research showed that 137Cs activity concentrations in sediment transported in river systems draining the main radioactive pollution plume decreased by ca. 90% between 2011 and 2020 (22, 24, 25). In addition to these results, the modeling approach developed in this study showed that decontamination of 16% of the catchment surface area reduced the 137Cs flux in rivers by 17% compared to estimates without decontamination. This modeling tool may be used to simulate management scenarios for hypothetical future crises.

The limited reduction in the 137Cs inventory observed in Fukushima can mainly be explained by the absence of decontamination in forests, which cover ca. 80% of the landscape in this region. Interestingly, the current research demonstrates that contributions by forests occur mainly during typhoons, given the high
infiltration rates observed in forests that may be exceeded only during high cumulative rainfall (40, 41).

During these heavy rainfall events, the model showed that most sediments from forests are derived from rill and gully erosion processes in contrast to farmland and residential areas where topsoil (inter-rill) erosion dominates. Gully erosion on forested landscapes mobilizes subsoil layers that can be depleted in 137Cs (42); this process explains why, even during typhoons, 137Cs concentrations in the sediments transported by these rivers remain low after decontamination. Diffuse erosion in forests remains a permanent although limited source of 137Cs because it only mobilizes very thin layers of soil and does not reach the maximum contamination depth.

Despite these considerations related to 137Cs fluxes, the form of 137Cs is also important, as the litter exported from forests may supply radioactive materials that are more bioavailable than those transported with mineral particles to downstream rivers and lakes (43–46). This was not incorporated in the current model version and could be included in future work.

Even if the transfer of 137Cs across the landscape due to erosion and riverine transport is very limited now, 12 y after the accident, the fact that 67% of the 137Cs stock remains stored under forests may represent a major obstacle for the return of the local population. Forests are ideal places for hiking, mushroom and plant foraging, hunting, and wood production (including harvesting logs from oak trees for shiitake cultivation). Many of these activities are now limited because these products have 137Cs concentrations that are often above the limits set by the Japanese government (47). The impact of rill and inter-rill erosion in forests will likely continue to dilute 137Cs in sediment exports, and 137Cs concentration in forest products may eventually meet their respective guidelines.

The current research was particularly timely as it was conducted in an area representative of the conditions present across the entire Special Decontamination Area in which decontamination was completed early in 2017 (32). Across this area covering 1,117 km2, 9,100,000 m3 of waste was generated at a cost of 1.5 trillion yen [~12 billion euros or 10.7 million euros per km2 (32)]. The removal of 137Cs-contaminated soil following the Fukushima disaster appears to have been highly effective in reducing contamination in the treated areas and the river catchments draining these areas. However, due to the difficulty of removing contaminated soil from steep, forested slopes that cover nearly 84% of the affected catchment, the overall 17% reduction of 137Cs fluxes was obtained after treating only 16% of slopes that cover nearly 84% of the affected catchment, the overall 17% reduction of 137Cs fluxes was obtained after treating only 16% of the catchment area. The key question is, was the time, expense, and waste generated to restore 16% of the contaminated area worth the investment? As of 2019, 30% of the population returned to the region (48), which would not have been possible without the remediation effort. In any case, we hope that our results raise questions and lead to robust discussions among scientists, policy makers, and citizens about how to deal with potential nuclear fallout disasters in the future.

Materials and Methods

Materials and methods are summarized below, with details in SI Appendix.

Spatialized Data. A digital terrain model (DTM) derived from a light detection and ranging (LiDAR) survey with an initial resolution of 0.5 m was obtained and resampled to a 5 m grid. This model was then preprocessed following field observations of the runoff network to include small-scale features that may affect the runoff pathways (especially in relatively flat paddy-field regions with ditches).

The soil map was obtained from the National Agriculture and Food Research Organization (NARO) and is freely available at https://soil-inventory.rad.naro.go.jp/. The soils in the study area are mainly Cambisols (66%) and Andosols (21%). The soil map was reclassified to account for two soil groups: thick soils on hillslopes with low runoff potential (mainly forest soils) and soils in thalwegs and valley bottoms with higher runoff potential.

The land use map was based on data from the Japanese Ministry of Land, Infrastructure, Transport and Tourism, maps from the NARO (https://www.eorc.jaxa.jp/ALOS/en/dataset/ lulc_e.htm) and visual observations from Google Maps (https://www.google.fr/maps). The Mano Dam catchment is mainly covered with forests (88.0%), residential areas (5.6%), agricultural land (3.3%), ponds and streams (2.3%), and roads (0.7%).

Rainfall Monitoring. The Fukushima Prefecture is equipped with multiple weather stations. Rainfall data were acquired at 10-min intervals, and one station (Maenori) is located in the Mano Dam catchment (37.73540N, 140.74257E). Data recorded at this station from June 2014 to December 2019 were used in this work. Some gaps in this record were filled with Automated Meteorological Data Acquisition System data from the nearest available station (Litate station: 37.655N, 140.72667E). Individual rainfall events were defined as periods in which more than 5 mm of rainfall accumulated, unbroken by a 3-h period devoid of precipitation. In total, 296 rainfall events were identified between June 2014 and December 2019.

Hydrological Monitoring. A hydrological station was installed immediately upstream of the Mano Dam Lake (Lake Hayama) in June 2014. The water height in the Mano River was measured using an AquiStar PT12 pressure/temperature sensor (INW, Kirkland, WA, USA) at 5-min intervals and then converted into flow rate data using gage curves. A 60- to 100-L river water sample was collected every 2 to 4 wk when the river conditions corresponded to the baseflow rate. Water and SS samples were also collected from the river section using an ISCO 6712 automatic water sampler (Teledyne Technologies, Lincoln, NE, USA) at 1 h intervals during flood events (see the following paragraph for the method for determining flood events). The SSC was determined in the laboratory by filtration using a Whatman GF/F filter with 0.7-μm pores (Cytiva, Tokyo, Japan), and these concentrations were then used to convert the turbidity logs measured by a DTS-12 digital turbidity sensor (FITS Inc., Victoria, BC CANADA) at 5-min intervals into SS logs. This station was damaged by Typhoon Etau in September 2015. Preliminary data analysis revealed some anomalies that persisted until the end of 2016 prompted us to omit the data acquired during this period. The hydrological station was subsequently moved a few hundred meters upstream in 2017. Water flows and SSC were subsequently acquired using the same systems described above at 10-min intervals until the end of 2019 (SI Appendix, Fig. S6).

Flood events were identified from continuous water measurements; the method employed (49) was based on the relative baseflow proportion, which was calculated using a recursive digital filter. Flood events were identified based on an established quick-flow/baseflow proportion threshold and were always associated with rainfall events. The baseflow was removed from the flood events before data processing. For each rainfall event, the following characteristics were calculated: the cumulative rainfall (mm), duration of rainfall (min), maximum intensity of rainfall (mm), antecedent rainfall in the previous 48 h (in mm), and cumulative rainfall since the previous event (mm). These parameters were associated with the characteristics of the corresponding flood event: the volume of water, mass of sediment, and quantity of 137Cs. The volume was calculated by taking the integral of the flow curve. The mass was calculated as the product of the flow and SSC. The radionuclide flux per event was calculated following the same method as that used to reconstruct the high-frequency chronicles.

Radiocesium Measurements. For SS, river water samples collected during baseflow conditions were immediately passed through a nonwoven fabric cartridge filter with 1-μm pores (RP13-011; Japan Vilene, Tokyo, Japan) (50). Each cartridge filter with collected SS was dried at 105 °C for 24 to 48 h. The mass of SS attached to the cartridge was calculated by subtracting the dry weight of the sample filter from the dry weight of an unused filter. The particulate 137Cs concentration in the SS (in Bq kg$^{-1}$) was calculated by dividing the amount of 137Cs found in a cartridge filter with attached SS (in Bq) by the mass of SS attached to the cartridge filter (in kg). Turbid water samples (3 to 15 L) collected with an automatic water sampler under storm–runoff conditions were centrifuged at more than 5,000 rpm for 30 min, and the deposited sediment was then scraped off, packed in a U-8 container, and dried at 60 °C for at least 1 wk to obtain 137Cs concentration per dry weight of SS.
The radiocesium activities (in Bq) of SS were determined using a GC2518 coaxial high-purity germanium detector (Canberra Japan, Tokyo, Japan) and a SEG-EMS GEM 35–70 coaxial high-purity germanium detector (Seiko EG&G, Tokyo, Japan) with Gammasoftware (Seiko EG&G). The radiocesium sources MX033U8PP (The Japan Radiosotope Association, Tokyo, Japan) and EG-ML (Eckert & Ziegler Isotope Products, Valencia, CA, USA) were used to calibrate the system. The cartridge filters were analyzed directly using the system following a method previously described by Tsuji et al. (2014) (50) (Fig. 2 and SI Appendix, Fig. S6).

Spatially Distributed Radiocesium Inputs. A FDNPP 137Cs deposition map showing inventory values expressed in Bq m$^{-2}$ was developed based on data collected during the third and fifth airborne surveys performed by the Ministry of Education, Culture, Sports, Science and Technology (29). This geospatial dataset was resampled to a resolution of 250 m (Fig. 1).

Radiocesium Outputs. Radiocesium concentrations in SS (Bq kg$^{-1}$) were obtained for 76 samples collected during baseline conditions and 66 samples collected during flood events at the hydrological station. As most of the radiocesium fluxes occurred during flood conditions (51, 52), only the flood samples were considered when parameterizing the 137Cs concentration decay trend over time.

To estimate these measured 137Cs outputs, a chronology of particulate 137Cs exports was reconstructed based on the relationship between 137Cs concentrations (in Bq g$^{-1}$) in sediments during flood events as a function of time (Eq. 2) and high-frequency flow and SSC measurements, in mg L$^{-1}$, during the corresponding period (Eq. 1). These high-frequency radiocesium flux estimates were then integrated over the entire duration of the events to obtain the total flux (in Bq) exported during each event.

$$\text{flux}_{^{137}Cs}(t) = Q \times \text{SSC} \times \text{Conc}_{^{137}Cs} \times a_1 \times e^{a_2 t},$$

where:

- $\text{flux}_{^{137}Cs}(t)$: 137Cs flux (Bq s$^{-1}$)
- Q: flow rate (m3 s$^{-1}$)
- SSC: Suspended Sediment Concentration (mg L$^{-1}$)

and:

$$\text{Conc}_{^{137}Cs}(t) = a_1 \times e^{a_2 t},$$

where:

- $\text{Conc}_{^{137}Cs}$: particulate 137Cs concentration in SS (Bq g$^{-1}$)
- t: elapsed time since the accident (years)
- a_1 and a_2: coefficients (cf. Fig. 2A)

Inventory/Mapping of Decontamination Operations. Spatially distributed data on the timing of decontamination operations in the Mano Dam catchment were provided by the Japanese Ministry of the Environment. The information was obtained from the National Institute for Environmental Science in the form of a file containing georeferenced points. Each point corresponded to an individual location within the residential areas, farmlands, grasslands, or roads where radioactive fallout was deposited “instantaneously” over soils at a constant thickness [approximately 2 cm (11)].

The model calculated several output maps for each event including those of

$$C_{^{137}Cs} = \frac{\text{Inventory}}{\text{density}_{\text{soil}}} \times e^{-\lambda t_{1/2}},$$

with:

$$\lambda = \ln(2) \times \frac{t_{1/2}}{1.023 \times \tau_{p}},$$

where:

- $t_{1/2}$: half-life of 137Cs (30 y)
- τ_{p}: time elapsed since the accident (years)

Design of an Additional Radiocesium Module in the WaterSed Model. The assumptions of this module were the following:

- 137Cs is transported in particulate form only,
- 137Cs resulting from post-accident fallout was deposited “instantaneously” over soils at a constant thickness [approximately 2 cm (11)],
- the density of the soil is assumed to be constant at 1,400 kg m$^{-3}$,
- the activity concentrations are decay-corrected to the date of the accident.

The additional input data included a map of the contaminated soil thicknesses ($e_{\text{contaminated}}$) (the initial thickness is constant over the contaminated area) and a 137Cs soil concentration map (Bq kg$^{-1}$). As the 137Cs deposition map was available in Bq m$^{-2}$ (Inventory), it was converted into a concentration map ($C_{^{137}Cs}$) with a spatial resolution corresponding to that of the DTM:

$$C_{^{137}Cs} = \frac{\text{Inventory}}{\text{density}_{\text{soil}}} \times e^{-\lambda t_{1/2}}.$$

After each rainfall event was simulated, the resulting calculated erosion and deposition maps were used to update the contaminated soil thickness map and to calculate a sediment flux map, which was then used to derive the associated 137Cs flux map. The 137Cs soil concentration map was then recalculated after each event simulation, using the updated 137Cs concentration and soil contaminated thickness maps.

In the sediment deposition areas, the updated contaminated soil thickness map was used to calculate an updated 137Cs concentration while considering both the concentration in the deposited sediment layer and that in the underlying soil layer. This recalculated concentration was assumed to be homogeneous throughout the entire contaminated soil thickness (i.e., the mean concentration value was weighted based on the respective depths of these layers). In the erosion zones, the concentration was assumed to remain the same; only the available contaminated soil thicknesses changed. If the entire contaminated soil layer was eroded away and no sediment deposition occurred at that location, the 137Cs concentration became zero (SI Appendix, Fig. S1).

Before the simulation of the subsequent rainfall event, the soil 137Cs concentration was decay-corrected to the date of the next event:

$$C_{^{137}Cs}^{\text{new}} = C_{^{137}Cs}^{\text{old}} (1 - \lambda \times \Delta t) -,$

where Δt is the difference between the date of the new measurement and the date of the previous measurement.
expedited depletion of the local 137Cs contamination was calculated at each model run and remained in the model memory for the subsequent runs.

Model Calibration and Validation Datasets. The model was calibrated and validated on measured data between June 2014 and December 2019 (taking into account decontamination operations). Pedotransfer rules (e.g., the infiltration capacity, storage capacity, imbibition, erodibility, and potential sediment concentration) were assigned to units based on the soil and land use types in the study area. As cultivation was prohibited by the authorities after the accident, vegetation regrowth occurred very quickly following abandonment. This regrowth has been documented in the literature (23) using the normalized difference vegetation index. Thus, the soil cover properties in croplands were modified after abandonment, and these abandoned lands had intermediate infiltration capacities between those of regular croplands and grasslands. As these farmland soils were no longer plowed after the accident, the pedotransfer rules of the farmland did not change over time, except after decontamination operations began. Immediately after the decontamination operations started, the erodibility and potential SSC of farmlands increased (corresponding to sandy soil properties). Indeed, it was suggested in the literature that significant changes in erodibility may impact the catchment-scale sediment dynamics even if it occurs on a restricted size area (34). In contrast, the hydraulic properties of the decontaminated areas were not changed in the modeling because it was expected that variations in, for example, infiltration capacity on restricted size areas would not significantly impact the modeled water fluxes modeled at the catchment scale (35). During winter (November to February), it was assumed that vegetation did not grow, so areas decontaminated in winter were assumed to remain more erodible during this period. During the rest of the year, areas remained erodible for 2 mo before returning to their pre-decontamination state due to the rapid regrowth of vegetation. This rule was also applied to residential areas (including gardens) and grasslands.

The WaterSed model was calibrated by comparing the measured and simulated water volumes, peak flows, and SS at the catchment outlet corresponding to a selection of 21 significant rainfall events that occurred between June 2014 and September 2015. The calibration results were then evaluated using the coefficient of determination (R^2), Nash-Sutcliffe index ($Nash$), percentage bias (PBIAS), and Root Mean Square Error (RMSE) (SI Appendix, Fig. S2). In addition, the pedotransfer rules were adjusted by comparing the modeled sediment fluxes and runoff coefficients for each land cover type with values from the literature (4, 13, 16, 53). The parameters retained were those that achieved the best performance criteria. The Nash for the model outputs (water volumes, peak flows, and SS) varied between 0.62 and 0.75, and the PBIAS values remained lower than 0.7% (SI Appendix, Fig. S2). Consequently, the quality of the calibration was assessed to be good to very good (54). The model underestimates the water volumes (SI Appendix, Fig. S24) by about 17% but reproduces well on average, Fig. S2. This validation demonstrates the good quality of model predictions for both sediment ($R^2 = 0.79$; Nash = 0.68) and 137Cs fluxes ($R^2 = 0.80$; Nash = 0.69) mainly for the heaviest events that supplied most of the flux (SI Appendix, Fig. S4). In contrast, more scattering is observed for the lowest intensity events due to their high variability, although they contribute only to a minor proportion of the flux.

Quantification of the Impact of Decontamination. To quantify the effects of decontamination, all rainfall events that occurred between June 2014 and December 2019 were simulated without decontamination by not modifying the pedotransfer rules in the decontaminated areas. As WaterSed is an event-based model, its results were compared with the data resulting from 137Cs concentration monitoring carried out until the end of 2019 following two methods: i) comparison of modeled concentration values with the measured concentrations and ii) comparison of modeled 137Cs fluxes per event with the fluxes estimated from the measured point-based concentrations. The results of each simulation were then used to calculate the evolution of the 137Cs stock in the catchment area as a function of time.

Data, Materials, and Software Availability. Monitoring data have been deposited in Zenodo (30). All other data are included in the article and/or SI Appendix.

ACKNOWLEDGMENTS. This research was funded by the AMORAD (ANR-11-RSNR-0002) project (ANR, Agence Nationale de la Recherche, Programme des Investissements d’Avenir). The support of the CNRS International Research Project–IRP–MIRATE Lab is also gratefully acknowledged. This work was also supported by the Environmental Radioactivity Research Network Center through grants I-21-22 and I-22-24. We acknowledge Y. Onda for providing LiDAR data produced by the Geographical Institute of Japan. We would like to thank the two anonymous reviewers for their constructive comments which helped us to improve this paper.

Author affiliations: Risk and Prevention Division, Bureau de Recherches Géologiques et Minières (BRGM), F-45060, Orléans, France; Fukushima Regional Collaborative Research Center, National Institute for Environmental Science, Miharu, Tamura, Fukushima 963-7700, Japan; Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Institut Pierre Simon Laplace (IPSL), Unité Mixte de Recherche 8212 Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Université de Versailles Saint-Quentin (UAVSQ), Université Paris-Saclay, Gif-sur-Yvette F-91191, France; Airshered and Watershed Stewardship Branch, Environment and Protected Areas, Government of Alberta, Calgary, AB T2L 2K8, Canada; and Radioisotope Geoscience Division, Institute of Environmental Radioactivity, University of Fukushima, Fukushima 960-1296, Japan.

