

Precipitation of cerianite crystals and its effect on the rheology of a simplified nuclear glass melt

Jeanini Jiusti, Elise Regnier, Norma Maria Machado, Vincent Malivert,

Muriel Neyret, François Faure

▶ To cite this version:

Jeanini Jiusti, Elise Regnier, Norma Maria Machado, Vincent Malivert, Muriel Neyret, et al.. Precipitation of cerianite crystals and its effect on the rheology of a simplified nuclear glass melt. International Journal of Applied Glass Science, 2023, 14 (4), pp.502-521. 10.1111/ijag.16639. cea-04244547

HAL Id: cea-04244547 https://cea.hal.science/cea-04244547v1

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Author Query Form

WILEY

Journal IJAG

Article ijag16639

Dear Author,

During the copyediting of your manuscript the following queries arose.

Please refer to the query reference callout numbers in the page proofs and respond.

Please remember illegible or unclear comments and corrections may delay publication.

Many thanks for your assistance.

Query No.	Description	Remarks
Q1	Please spell out the first names of all the authors in the author byline.	
Q2	Please check both the affiliations for correctness and provide the department name for affiliation number 2.	
Q3	Please provide the date and month, and city of the proceeding for reference number 2.	
Q4	Please provide the publisher/organization name and its location, or journal title, volume number, and page rang, or URL link and its accessed month, date, and year for reference number 47.	
Q5	Please check reference numbers 27, 29, 30, and 53 for correctness.	
Q6	Please provide the volume number and page range or URL link for reference number 55.	

3

4

5 6 7

1112

13 14

15 16 17

18

19

21

02

01

RESEARCH ARTICLE

Applied Glass SCIENCE

Precipitation of cerianite crystals and its effect on the 8 9 rheology of a simplified nuclear glass melt 10

J. Jiusti¹ E. Regnier¹ N. M. P. Machado¹ M-L. Ghazzai¹ V. Malivert¹ M. Neyret¹ **F** Faure²

¹Laboratoire d'études de Développement des Matrices de Conditionnement, Centre de Marcoule, Univ Montpellier, Marcoule CEDEX, Bagnols-sur-Cèze, France 20 ²Université de Lorraine, Nancy, France

22 Correspondence

23 J. Jiusti, CEA, DES, ISEC, DE2D, SEVT, 24 Laboratoire d'études de Développement 25 des Matrices de Conditionnement, Centre de Marcoule, Univ Montpellier, BP 17171, 26 Bagnols-sur-Cèze, Marcoule CEDEX 27 30207. France. 28 Email: jeaninijiusti@gmail.com 29 30 31 32 33 34 35 36 37 38 39 40 41

Abstract

In France, high-activity level wastes resulting from nuclear fission are conditioned in a homogeneous sodium-aluminoborosilicate glass by high-temperature vitrification. The tolerance of even a small fraction of crystals could enable an increase in the waste loadings, in addition to promoting process flexibility. If the waste loading were to be increased in French nuclear glass, cerianite (CeO_2) crystals could precipitate. In this study, we investigated the cerianite crystallization in a simplified nuclear glass melt at different temperatures, Ce₂O₃ wt%, and shear conditions. Furthermore, the evolution of the viscosity along with cerianite precipitation was followed. It was found that Ce₂O₃ is highly soluble in the glass melt, as even for a Ce₂O₃ wt% as high as 10% wt, the cerianite fraction in dynamic conditions at 1100°C after 8 h of crystallization was less than 1% vol. In addition, shear strongly accelerates cerianite crystallization and a high Ce₂O₃ content can engender the precipitation of highly branched dendrites. The evolution of the cerianite fraction did not significantly affect the viscosity of the glass melt. Finally, unlike what has been observed in the well-known platinum group metal (PGM)-bearing melts, a glass melt containing .8 vol% of cerianite crystals remains Newtonian.

KEYWORDS conditioning, crystallization, viscosity

42 43

54

44 **1** | INTRODUCTION 45

46 In France, high-activity level wastes resulting from nuclear 47 fission are conditioned in alumino-borosilicate glasses by 48 high-temperature vitrification.¹ In this process, the cal-49 cined waste is mixed with the glass precursor and then 50 heated to the vitrification temperature. For the hot crucible 51 melter, the technology most commonly used in France, the 52 temperature of vitrification is usually around 1100°C, but 53

in other furnace technologies it can be as low as 1000°C, as in the case of the in-can melter,^{2,3} and can reach up to 1250°C¹⁻³ for the cold crucible technique. The wasteto-glass ratio is determined by considering the solubility of species coming from the calcine, in order to obtain a homogeneous melt. Exceeding solubility limits are generally avoided, because this can degrade the long-term behavior of the glass and also because the precipitation of particles can directly affect the physical properties of the

⁵⁵ © 2023 The American Ceramic Society and Wiley Periodicals LLC.

Applied Glass

2

melt, changing or even compromising the technological
feasibility of the vitrification process.^{4,5} The tolerance of
even a small fraction of crystals during vitrification could
lead to a more flexible process, allowing changes in the
composition of the calcine or the immobilization of other
types of nuclear wastes, in addition to increasing the waste
loading.^{4,6}

Previous studies⁷⁻¹² have shown that the presence of 10 11less than 1 vol% of platinum group metal particles (PGM: 12 here, Ru, Rh, Pd) leads to a very shear thinning and 13 thixotropic behavior. The high viscosities shown in PGM-14 bearing melts at low shear rate regimes are associated with 15 its strong tendency for particle aggregation, which can sig-16 nificantly increase the effective particle volume fraction by 17 trapping the liquid inside its aggregates. As well as affect-18 ing the rheological properties of the melt, PGM particles 19 can engender changes in electrical conductivity and are 20 prone to settling.^{8,13} Nonetheless, the extensive studies car-21 ried out in the last decade on the impact of PGM particles 22 on the glass melt physical properties have contributed to 23 a deeper understanding of this particle-melt system and 24 consequently, to better control of the vitrification process. 25 Unlike PGM particles, crystals are soluble in the melt, 26 and their fraction can fluctuate during the vitrification 27 process.¹⁴⁻¹⁶ In the case of multicomponent melts, different crystals can precipitate,^{17,18} and the fraction of a particu-28 lar crystal is a function of temperature and time.¹⁴, ^{19–22} 29 30 In addition, the flow conditions can also affect crystalliza-31 tion. Different theoretical and simulation studies of hard sphere, colloidal, and simple liquid systems²³⁻³² indicate 32 33 that a gentle flow can increase both nucleation and crys-34 tal growth rate due to the increase in matter transport. In 35 agreement with theoretical results, the rare experimental 36 evidence available indicates that the crystallization kinet-37 ics of silicate melts are favored by stirring,^{33–35} but to our 38 knowledge, no study on crystallization under dynamic 39 conditions in nuclear glasses has been reported.

40 Among all the crystalline phases likely to precipitate in 41 the French glassy matrix at higher waste loadings, cerian-42 ite (CeO_2) is the one stable at the highest temperatures, 43 controlling the *liquidus* of the nuclear melt. For instance, cerianite has been reported to be stable up to 900°C for 44 45 compositions containing as little as 1 wt% of Ce_2O_3 .^{17,18} 46 Hence, an increase in the waste loading would potentially 47 stabilize this phase at vitrification temperatures, and there-48 fore the study of cerianite crystallization and its effect on 49 melt properties is essential to properly control the pro-50 cess. Aside from being of interest in vitrification, cerianite 51 presents a simple composition and cubic morphology, 52 which is preferable for an initial study considering the 53 numerous variables involved in crystallization.

In this work, we investigated cerianite crystallization in
 a simplified nuclear glass matrix at different temperatures,

 Ce_2O_3 weight contents, and flow conditions (quiescent and dynamic) to define the cerianite composition-temperature domain, morphology, and effect of shear on crystallization. Furthermore, we studied the evolution of the viscosity along with cerianite precipitation, and compared the effect of cerianite particles on viscosity-shear dependency to that shown by PGM-bearing melts at an equivalent volume fraction.

2 EXPERIMENTAL METHODS

For this study, a simplified nuclear glass series named CXX was used, where XX means the nominal Ce_2O_3 weight content. We elaborated the glasses and carried out crystallization and rheological studies, as shown in Figure 1 and detailed in the following sections.

2.1 | Glass elaboration and characterization

The glasses were synthesized from the following reagents: SiO₂ (Sibelco, 99.4%), Al₂O₃ (Sigma Aldrich, 98%), H₃BO₃ (VWR Prolabo, 100%), CaO (Sigma Aldrich, 99.9%), Nd₂O₃ (Sigma Aldrich, 99.9%), Na₂CO₃ (Acros Organicos, 99.95%), and CeO₂ (Sigma Aldrich, 99.9% and VWR Prolabo, 99.95%). The well-mixed reagents were melted in a platinum-rhodium (90%Pt-10%Rh) crucible (vol $ume = 500 \text{ cm}^3$) in a muffle furnace at the elaboration temperature (T_e, presented in Table 1) for 3 h. After this cycle, the melt was poured onto a stainless steel plate, and the glass obtained was ground. The resulting fine powder was replaced in the crucible and melted twice more. The total elaboration time at Te was 7 h, and after the third plateau, the melt was quenched on a steel plate (at room temperature), and the glass disc obtained was annealed at 550°C for 6 h. Batches of about 200 g of glass were thus obtained.

An additional batch of 800 g of the C10 glass was elaborated in a furnace heated by the Joule effect. The well-mixed precursors were inserted into the furnace crucible at 1200°C slowly in order to control foaming due to reduction of Ce^{4+} to Ce^{3+} . The melt was then heated up to T_e, and remained at this temperature for 3 h before being quenched on a steel plate. A mechanical stirrer was used during the entire process to ensure melt homogeneity. This batch, named C10SG, was used for the experiments on crystallization in dynamic conditions.

A differential thermal analyzer (SETSYS Evolution, Setaram Instrumentation) with platinum crucibles was used to determine the glass transition temperature (T_g). The DTA curves are presented in the Supplementary

11

12 13

FIGURE 1 Flow chart showing the experimental methods used in this work.

TABLE 1 Nominal and measured compositions of the CXX glasses studied in this work in weight content. The nominal compositions are identified with an "N" together with the name of the glass. All glasses were elaborated in a muffle furnace, and one 800 g batch from C10 (C10SG batch) was elaborated in a furnace heated by the Joule effect. Composition was determined by electron probe microanalyzer (EPMA) (see text).

Oxide	C04 N	C04	C10 N	C10	C10SG	C13 N	C13	C15 N	C15
B_2O_3	15.0	14.2	14.0	10.7	13.0	13.6	11.0	13.2	9.7
la ₂ O	14.8	15.7	13.9	13.6	15.8	13.4	12.5	13.1	12.1
l_2O_3	5.3	5.6	5.0	4.5	5.1	4.8	5.2	4.7	5.2
iO ₂	49.3	49.0	46.2	49.7	45.1	44.7	46.8	43.7	46.4
CaO	5.8	5.4	5.4	5.0	5.4	5.2	5.4	5.1	5.4
e_2O_3	4.0	4.2	10.0	11.0	10.1	13.0	13.4	15.0	15.8
Id_2O_3	5.9	5.9	5.5	5.5	5.4	5.3	5.7	5.2	5.5
Sum	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Γ _e		1250°C		1350°C	1350°C		1380°C		1400°C

30

31 Section. The mass density ρ of the glasses was measured 32 at room temperature by the Archimedes principle, using 33 a high precision balance (AT200, Mettler Toledo). Glass 34 homogeneity and the absence of inclusions were verified 35 by scanning electron microscopy (SEM) analyses (Supra 36 55 FEG, Zeiss). The viscosity at high temperature was 37 determined using the rheometer-furnace-rotor setup 38 described in Section 2.3.

39 A Cameca SX Five FE TACTIS electron probe micro-40 analyzer was used to perform elemental analysis of the 41 glasses obtained. Quantifications were carried out at 12 kV, 42 10 nA with a 10 µm beam spot on the glass matrix. A 43 TAP crystal was used to detect the K α of Na, Si, and Al, 44 a LiF crystal to detect the L α of Nd, a PET crystal to detect 45 the K α and L α of Ca and Ce, and a PC3 crystal to detect 46 the K α of B. The compositions measured are presented in 47 Table 1.

48 49

2.2 | Crystallization in static (quiescent) conditions

⁵³ Isothermal treatments from 850 to 1250°C were carried out ⁵⁴ in a tubular furnace with an $80 \times 30 \times 20$ mm chamber that ⁵⁵ ensures a maximal temperature variation of $\pm 2^{\circ}$ C. The glasses were treated in closed platinum capsules to avoid the volatility of Na and B. The heat treatments lasted 24 h each, as it was considered that this duration was enough to reveal the thermodynamically stable crystals in each glass-temperature condition. An additional heat treatment mimicking the thermal cycle used in the dynamic experiments (plateau of 10 min at 1350°C + plateau of 8 h at 1100°C + cooling in air) was performed with the C10SG glass to allow comparison between the quiescent and dynamic conditions. Since the interest was to determine the stable crystals, finely powdered glass was used in order to accelerate crystallization by heterogeneous nucleation. The treated sample was retrieved by cutting the tips of the capsules and collecting the glass pieces. These pieces were then embedded in epoxy resin and polished prior to analysis by SEM (Supra 55 FEG, Zeiss), in order to determine which crystals (if any) were present.

2.3 | Crystallization in dynamic conditions

The dynamic experiments were carried out using the rheometer-furnace-rotor setup shown in Figure 2A. The equipment consisted of a stress-imposed rheometer

FIGURE 2 (A) Rheometer-furnace setup for viscosity measurements: 1-Rheometer, 2-Rheometer support, 3-Multiblade rotor, 4-Standard platinum crucible for viscosity measurements, and 5-Furnace. (B) Photos of the polished sections obtained for each condition of crystallization in dynamic conditions: 1-top and 2-bottom of the crucible, 3 - Multiple pieces that were in contact with the crucible.

(Rheometrics Scientific SR5000)¹ fixed on a support² 40 41 where a rotor³ was attached. This rotor was immersed in molten glass contained in a platinum-rhodium crucible 42 43 (13.5 mm radius and 40 mm length)⁴ placed at the center of 44 a vertical tubular furnace⁵ ($T_{max} = 1500^{\circ}$ C). The geometry 45 used was a multi-blade rotor with a 9-mm radius and 46 27-mm long, detailed in Puig et al.⁹ The pair composed of 47 the crucible and the multi-blade geometry formed a virtual 48 Couette cell, for which an analogy with the concentric 49 cylinder geometry is necessary (i.e., Couette analogy) to extract the viscosity/shear-rate curves from the data.³⁶ The 50 51 rheological parameters (shear stress σ , strain γ , shear rate 52 $\dot{\gamma}$) were obtained from the geometrical factors determined 53 via the calibration procedure described in Puig et al.9

39

In order to observe the crystallization behavior in conditions similar to those encountered in the vitrification

TABLE 2	Conditions of the dynamic crystallization
experiments.	

Glass	Condition	Temperature (°C)	Shear rate (s ⁻¹)	Time (h)
C10SG	1	1100	0.2	8
C10SG	2	1100	2	8
C10SG	3	1100	20	2
C10SG	4	1100	20	4
C10SG	5	1100	20	8
C13	6	1100	20	8
C15	7	1160	20	8

JIUSTI ET AL.

furnace, seven different conditions were created (Table 2) by submitting the samples to three different shear rates

Applied Glass

³ corresponding to three shear regimes: high, medium, and ⁴ low shear (20, 2, and $.2 \text{ s}^{-1}$, respectively).

5 For each experiment, the filled crucible was inserted 6 into the furnace and heated up to the elaboration tem-7 perature (see Table 1) to dissolve crystals that might have 8 formed during the filling step. The temperature was main-9 tained for 10 min, and then decreased by ~30°C/min 10 (controlled by the inertia of the system) to the chosen 11measurement temperature (1100 or 1160°C). After the crys-12 tallization experiments according to the conditions shown 13 in Table, the crucible was removed from the furnace with 14 a controlled descent speed of about 2 cm.min⁻¹ to avoid 15 further crystallization while preserving the furnace com-16 ponents. With this method, the approximate cooling rate 17 was 30°C/min. The samples were then annealed at 550°C 18 for 6 h in order to remove the residual stresses in the glass. 19 The annealed samples were removed from the crucible 20 by drilling, giving cylinders 20 mm in diameter and approx-

21 imately 25 mm in height. Small pieces of glass that were 22 located between the crucible wall and the drilling tool 23 while the core was being removed were also recovered. 24 The cylinders obtained were cut in half along the longi-25 tudinal axis, and one of each resulting semi-cylinders was 26 cut in half along the transversal axis. The two samples thus 27 obtained were embedded in resin and their surfaces were 28 polished before SEM analysis. The glass pieces were also 29 embedded so that the surface formerly in contact with the 30 crucible wall could be analyzed. Three polished sections 31 were obtained for each condition: (1) the top and (2) the 32 bottom half of the crucible, and (3) pieces of the "border" 33 region of the crucible (Figure 2B).

34 35

38

³⁶ 2.4 | *Postmortem* analysis (after ³⁷ crystallization under dynamic conditions)

39 The cerianite fraction of the polished Sections 1 and 2 40 (Figure 2B) for each crystallization condition was deter-41 mined by both image and chemical analyses. SEM images 42 were acquired and processed using the protocol described 43 in ref. [18] and [11]. The entire surface (approximately 44 200 mm²) of each polished section was mapped with a 250x 45 magnification. The crystallized area fraction was obtained 46 from image processing using the ImageJ free software. As 47 the distribution of the cubic crystals was homogeneous 48 within the sample, we considered that the area fraction is 49 equivalent to the volume fraction ($\Phi_{surf} = \Phi_{vol}$).³⁷ We also 50 collected the Feret diameter (the longest distance between 51 two parallel planes restricting the object perpendicular to 52 that direction) and the density per area of cerianite crystals 53 from the ImageJ analysis report.

⁵⁴ The composition of the glass matrix and crystals after ⁵⁵ crystallization was determined by EMPA, as described

TABLE 3 Properties of the CXX glass series. The digits in brackets are the uncertainty of the least significant number.

Ident.	% Ce ₂ O ₃	Density (g/cm ³)	T _g (°C)	T _L (°C)
C4	4.2(1)	2.677(3)	566(3)	$987 < T_{\rm L} < 1011$
C10SG	10.2(1)	2.792(1)	571(3)	-
C10	11.0(1)	2.806(2)	566(3)	$1159 < T_{\rm L} < 1184$
C13	13.6(1)	2.867(1)	576(3)	$1184 < T_L < 1207$
C15	15.8(1)	2.911(2)	577(3)	$1232 < T_L < 1254$

in Section 2.1. To ensure that the crystal was not taken into account by the electrons' interaction volume, the measurements were made a few micrometers from the crystals. About 50 points were measured in order to obtain good accuracy and verify any possible heterogeneity in the glass matrix. Because of the evaporation of B_2O_3 and Na_2O during the dynamic experiments, the Ce_2O_3 variation in the glass matrix composition was determined by the Ce_2O_3/SiO_2 ratio, since SiO_2 is less susceptible to evaporation. The CeO_2 crystal fraction was then determined by Equations 1 and 2, where the cerianite density ($\rho_{cerianite}$) is equal to 7.28 g.cm⁻³.³⁸

 $%Ce_2O_3$ consumed = $%Ce_2O_3$ parent glass

$$-\left(\frac{\%Ce_2O_3}{\%SiO_2}\%SiO_2 \text{ parent glass}\right)$$
(1)

%Cerianite
$$\cong \frac{\rho_{\text{glass}}}{\rho_{\text{cerianite}}}$$
%Ce₂O₃consumed (2)

Polished sections containing the glass pieces previously in contact with the crucible wall (item 3 in Figure 2B) were also analyzed by SEM, applying the same protocol as that used for the other polished sections.

The sample obtained from condition 5 (Table 3) was analyzed by synchrotron X-ray microtomography in order to recreate the 3D shape of the cerianite crystals and their spatial distribution. The microtomograph of the European Synchrotron Radiation Facility (ESRF, ID19 beamline, Grenoble, France) was used to scan pieces a few millimeters thick taken from the bulk and border regions (i.e., one sample from the recovered cylinder and one from the shattered glass). A volume of approximately 1 mm³ with a resolution of 1.6 µm was mapped.

In addition to chemical analyses by EMPA, Raman and XRD analyses were performed after crystallization to confirm the nature of the cerianite crystals. For the XRD analyses, two different samples were involved: (1) Fragments that had been in contact with the platinum crucible wall of an additional sample of C10 glass heat treated in Applied Glass

2

23

38

40

43

3 static conditions in a muffle furnace for 24 h at 1100°C 4 (after an additional treatment, because the sample com-5 ing from the platinum capsule was too small), and (2) a 6 fragment of the sample recovered from the C10SG 20 s^{-1} 7 8 h condition, whose glass matrix was partially dissolved 8 in nitric acid in order to improve the concentration of the 9 crystals. Both samples were ground, and the analyses were 10 performed with an X'Pert PRO PANalytical instrument 11using Cu-Ka radiation ($\lambda = .15406$ nm). XRD patterns were collected in standard (θ -2 θ) geometry between 20 and 80° 12 13 and a step of .013°. The Raman analyses were performed 14 on several crystals in the bulk of the samples C10SG .2 s^{-1} 8 h, C10SG 20 s⁻¹ 8 h, C13 20 s⁻¹ 8 h, C15 20 s⁻¹ 8 h, the sam-15 16 ple of C10SG previously heat treated in a platinum capsule 17 mimicking the thermal cycle used in the dynamic exper-18 iments, and crystals of surface of the condition C10SG 20 19 s⁻¹ 8 h, that is, six samples in total. A Raman Horiba Jobin-20 Yvon HR800 spectrometer equipped with an argon laser as 21 excitation source (532 nm) was used. 22

24 2.5 | Rheological behavior 25

26 A rheology study was carried out simultaneously with the 27 dynamic crystallization experiments described in 2.3, that 28 is, the viscosity data were acquired while the crystallization 29 occurred. In addition, a steady state regime measurement 30 was performed with the C15 glass after crystallization (con-31 dition 7 in Table 2 was repeated) to investigate the existence 32 of non-Newtonian behavior. The measurement consisted 33 in imposing successive shear stress values from 200 Pa to 34 0.8 Pa (after a pre-shear of 200 Pa for 60 s). This test was 35 done to compare the rheological behavior of this system 36 with previous results obtained for a PGM-bearing melt.^{9,10} 37

39 **3** | **RESULTS**

41 3.1 | Glass characterization and crystal 42 domains

44 The measurement results for Ce₂O₃ wt%, density, glass 45 transition, and *liquidus* temperature of each glass 46 are shown in Table 4. The density of the glass rose 47 as the Ce2O3 was increased, due to the high molar 48 mass of Cerium. A linear regression between Cerium 49 content and glass density resulted in the equation 50 $\rho(\pm 0.02 \text{ g.cm}^{-3}) = 0.021[\%\text{wtCe}_2O_3] + 2.58 (r^2 = 0.993).$ 51 The glass transition temperatures for C4, C10, C10SG, C13, 52 and C15 determined based on thermal analysis were 566, 53 571, 566, 576, and 577 \pm 3°C, respectively. Although it is 54 generally accepted that cerium plays a role of network 55 modifier, some studies reported that it can play a dual

role in a glass structure (glass network modifier or a glass network former) depending on its content.^{39,40} The slight T_g increase observed when Ce_2O_3 increased can be an indication that for the Ce_2O_3 content range studied here, cerium can act as a glass network former, or, as proposed by Wang et al.⁴⁰ it can enhance linkage and compactness of the glass structure.

In the interval of T_L shown in Table 4, the minimum value is the highest temperature for which cerianite crystals were observed after the 24 h heat treatment, and the maximal value is the lowest temperature for which no crystals were observed after 24 h. For the composition range studied, the liquidus temperature can be approximated by $T_L (\pm 25^{\circ}C) = -0.73[\%wtCe_2O_3]^2 + 35[\%wtCe_2O_3] + 866$ ($r^2 = 0.97$).

Figure 3 shows the SEM micrographs of the glasses C10, C13, and C15 treated at different temperatures for 24 h. The presence of cerianite (cubic crystals) and apatite (acicular crystals) can easily be identified in the images, as already extensively discussed in previous studies of similar aluminoborosilicate nuclear glasses.^{18,41,42} In Figure 4, the cerianite-only domain is found in terms of temperature and Ce₂O₃ wt% content.

For both apatite and cerianite domains, the maximum temperature increased with the cerium content. The cerianite is stable above 1000° C (the in-can melter vitrification temperature) from about 4 wt% of Ce₂O₃. The results indicate that Ce₂O₃ has a high solubility in the glass matrix at the temperatures explored here (in agreement with what has been found in previous studies⁴³) and that the cerianite crystallization kinetics are very slow for all the conditions of shear and Ce₂O₃ wt% studied. Figure 4 indicates that an increase in the lanthanide content able to be incorporated into the apatite structure can stabilize it at higher temperatures, and possibly at the temperature range of the vitrification process. For the glass system studied in this work, apatite is expected to be stable above 1000° C from about 8 wt% Ce₂O₃.

Based on the interest of this work the composition C10 was chosen to initiate the study in dynamic conditions, since it showed the cerianite temperature domain between 1060 and 1159°C, which is centered within the vitrification temperature of the hot crucible melter (~1100°C).

3.2 | Crystallization in dynamic conditions

As described in Section 2.3, nine different crystallization experiments were carried out in dynamic conditions. The cerianite fractions determined by chemical and image analyses for each of these conditions are presented in Table 4.

4

18

TABLE 4 Cerianite fraction, mean Feret diameter, characteristic crystal size (S), and crystal volumetric density for the different dynamic crystallization conditions. The digits in brackets are the uncertainty of the least significant number.

Cerianite fraction (vol%)									
Glass	Cond.	Temp. (°C)	Shear rate (s ⁻¹)	Time (h)	Image analysis	Chemical analysis	Mean Feret diameter (µm)	S (μm)	Crystal volumetric density, N_V (10 ² m ⁻³)
C10SG	1	1100	0.2	8	0.011(2)	0.22(1)	3.5(2)	4.8	9(1)
C10SG	2	1100	2	8	0.11(2)	0.36(2)	9.0(5)	13.0	5.0(6)
C10SG	3	1100	20	2	0.006(1)	0.11(1)	3.6(2)	3.7	11(1)
C10SG	4	1100	20	4	0.09(2)	0.36(2)	12(1)	13.2	4.0(5)
C10SG	5	1100	20	8	0.18(3)	0.65(3)	25(1)	21.5	1.8(3)
C13	8	1100	20	8	0.56(5)	0.87(4)	-	-	-
C15	9	1160	20	8	0.82(6)	1.2(1)	-	-	-

Figure 5 shows the cerianite volume fraction (Φ) deter-19 mined by image and chemical analyses for the different 20 conditions studied. Considering the results of the chemical 21 analyses for the shear rate of 20 s^{-1} (Figure 5A), the ceri-22 anite content increased with time, reaching 0.65 vol% after 23 8 h of crystallization. For the same experiment duration, 24 the conditions of crystallization at 0.2 and $2 \, \text{s}^{-1}$ (Figure 5B) 25 resulted in a cerianite volume content of 0.22% and 0.36%, 26 respectively, which means the overall crystallization kinet-27 ics seem to be accelerated by shear. The highest cerianite 28 fraction (1.2 vol%) was obtained for the C15 glass after 29 8 h of crystallization under the highest shear rate (20 s^{-1}) 30 (Figure 5C). 31

The fraction determined by image analysis is always 32 lower than that determined by chemical analysis, but 33 34 roughly the same trend can be observed for both results. The difference between the data is probably due to ceri-35 anite's strong tendency to heterogeneous crystallization, 36 which occurs on the crucible wall and rotor blades, and this 37 is not accounted for in the quantification by image analy-38 sis. In this consideration, the image quantification would 39 give the crystal fraction in suspension in the melt (bulk), 40 and the chemical analysis would give the total amount of 41 cerianite (bulk + surface). In fact, an effect on both bulk 42 and surface crystallization was noticed in the samples, and 43 the results and discussion regarding crystal morphology 44 45 and size are presented separately in the following sections.

46 47

48

49

3.2.1 | Bulk crystallization

In Figure 6, we present mosaics of SEM images of the bulk samples for each crystallization condition. The bigger images (images for the crystallization conditions of 20 s^{-1} and 8 h) represent an area of about 12 mm² each, and the smaller ones are about 6 mm² each. On the left of Figure 6, images of all the crystallization experiment conditions performed with the C10SG glass are presented. From these images, it can be seen that as the time of experiment and shear increased, the cerianite fraction rose, as already shown in the crystal fraction values in Table 4 and Figure 5. Additionally, an evolution of crystal size with both applied shear and time can be observed. On the right of Figure 6, the different Ce_2O_3 wt% is compared, and as well as the obvious increase in crystal fraction, an evolution of crystal morphology is also noticeable.

From the image analyses, the number and size of crystals could also be determined. The volumetric number density of crystals (N_V) can be calculated from the number of crystals per unit of area determined from image analyses (N_A) and the characteristic crystal size (S) as in Equation (3).^{44,45}

$$N_V = \frac{N_A}{S}.$$
 (3)

The characteristic crystal size S is determined by:

$$S = \left(\frac{\phi}{N_A}\right)^{0.5},\tag{4}$$

where Φ is the area fraction determined by image analyses (from Table 4). The calculated values of S, N_V are shown in Table 4. The determination of crystal size based on the image analyses can be subject to errors due to the 2D limitation, and therefore it does not precisely represent the real size distribution. Nevertheless, analyses of crystal size give essential insights into the effect of shear rate on crystal growth. In this work, the Feret diameter was used to compare the conditions studied, and more than 2000 particles were analyzed for each condition. The evolution of the number of crystals per volume unit (N_V) and Feret diameter are shown in figure 7A,B. The cumulative distributions of the crystal Feret diameters are plotted in Figure 8. The crystal density and size distribution were not

FIGURE 3 Scanning electron microscopy (SEM) images of the heat treated samples in static conditions. The compositions and
 temperatures are indicated in the top and left side of the figures. The images were obtained at a magnification of 500 to 2000×.

determined for the C13 and C15 glasses because the complex morphology of the crystals significantly degraded the
image analysis.

46

In Figure 7A, the calculated number of crystals per unit of volume (N_V) at 2 h was about 10^3 mm^{-3} , and this decreased to about 10^2 mm^{-3} at 8 h as crystallization developed. Likewise, the N_v decreased as the imposed shear was increased (Figure 6B). The calculated N_V at 2 h of crystallization at 20 s⁻¹ was similar to that observed after 8 h of crystallization at $0.2 \, \text{s}^{-1}$. In both cases, the decline of nucleated crystals was followed by an augmentation of the mean Feret diameter: the mean Feret diameter was 3.6, 12, and 25 µm for the conditions of 2, 4, and 8 h, respectively, and 3.3, 9.0, and 25 µm after 8 h of crystallization at the shear rates of 0.2, 2, and 20 $\,\text{s}^{-1}$, respectively.

Figure 8A shows a coherent evolution of the crystal size distribution with the duration of the experiment. After 2 h, most crystals (about 88%) had a Feret diameter below

FIGURE 4 Cerianite and apatite domain as a function of
 Ce₂O₃ %wt content and temperature. X :: no stable crystalline
 phase, I: cerianite is the only stable phase, hexagons: apatite +
 cerianite.

24 25 $5 \,\mu$ m, while for 4 and 8 h, the quantities of crystals with a 26 Feret diameter of less than 5 µm were 71 and 40%, respec-27 tively. When comparing the different conditions of shear in 28 Figure 8B, the same overall behavior as that described with 29 time can be observed. For the condition at 0.2 s⁻¹, 96% of 30 the crystals had a Feret diameter below 5 µm, and a few 31 well-developed crystals reaching 100 µm also appeared. It 32 is possible that these big crystals may have originated dur-33 ing the crucible filling and resisted the dissolution step 34 during the beginning of the experiment, hence had more 35 time to grow. For the crystallization at 2 s⁻¹, 88% of the 36 crystals had a Feret diameter of less than 5 µm, and for the 37 20 s^{-1} condition, only 40%.

38 In Figure 9, we present several images of crystals arranged schematically to allow a better comparison of 39 40 their morphology. The top line of the figure shows the 41 three conditions of time (2, 4, and 8 h), and the center line 42 shows the three conditions of shear $(0.2, 2, and 20 s^{-1})$, 43 both for the C10SG glass at 1100°C. The bottom line shows 44 the three different compositions (C10SG, C13, C15) after 8 h 45 of crystallization at 20 s⁻¹. The figure of condition C10SG - $20 \,\mathrm{s}^{-1}$ - 8 h appears three times. For the shortest experiment 46 47 duration at 20 s⁻¹, there are mainly small particles (of 48 about 3 µm) and some star-shaped particles with Feret 49 diameters greater than \sim 50 µm which have eight branches 50 (considering 3D), characteristic of dendritic morphology. 51 The crystals grew as the experiment duration increased, 52 and became concave cubes after 8 h. A 3D view of the crys-53 tals for the condition C10SG 8 h 20 s⁻¹ (Figure 10A) shows 54 multiple hollow cubic crystals randomly distributed in the 55 glass, which means that the different shapes observed in

the 2D images (Figure 9) are distinct planes of concave cubes (Figure 10C). Less frequently, some crystals showing an octapod morphology (Figure 10B), that is, a cube with eight other small cubes developed in the corners, are visible. This morphology suggests that, as well as the increase in crystal size, longer experiment duration leads to crystal overgrowth.

Regarding the different conditions of shear, for the 0.2 s^{-1} condition we see mainly small round particles with diameters of about 3 µm and a few developed crystals whose dendritic nature is obvious. The crystals obtained for the 2 s⁻¹ condition seem to be dendritic crystals that have ripened like those observed for the 20 s⁻¹. The increase in Ce₂O₃ wt% seems to have the greatest effect on the cerianite morphology. Some highly branched dendritic crystals developed for both the C13 and C15 glasses, as can be seen in Figure 9 and also in Figure 6, where a dendritic branch of about 500 µm is visible in the SEM images of the C15 sample.

3.2.2 | Surface crystallization

Figure 11 shows representative regions of the recovered glass pieces that were in contact with the crucible wall during the dynamic experiments. The linear nuclei density and biggest crystal size could be determined by analyzing the crystallized layer from the conditions of the C10SG glass. A length of at least 50 mm was analyzed for each condition, in order to obtain reliable data. The nucleus counting was done manually and considered only the crystals previously in contact with the crucible surface. The results are shown in Figure 7C,D, where the biggest crystal size presented is an average of the size of the 10 biggest crystals measured. The determination of the nuclei density for the C13 and C15 glasses was subject to a considerable error due to the complexity of the crystal layers formed, and therefore it was not determined for these glasses.

As observed for bulk crystallization, the cerianite surface crystallization was affected by the duration of the experiment, applied shear rate, and glass composition. Both Figures 11 and 7C show an evolution in the size of the biggest crystals with time, where crystals reach up to 370 μ m after 8 h of crystallization at 20 s⁻¹. When comparing the number of nuclei per mm, we see an increase from 2 to 4 h, and then a decrease for the condition of 8 h. The crystal morphologies are dendritic in all samples, as observed for the crystals in the bulk, and show a ripened morphology at 8 h, as the branches of the dendrites take on a more cubic shape after 8 h (more obvious in the 3D images shown in Figure 10D). When comparing the samples for the different conditions of shear, an evolution

FIGURE 5 Evolution of the cerianite fraction as a function of (A) time, (B) applied shear rate, and (C) measured Ce_2O_3 wt%. Red squares: fraction determined by image analyses, and green squares: cerianite fraction determined by chemical analyses. The lines are drawn to guide the eye.

42 in crystal size is even more evident. At a shear rate of $0.2\ s^{-1}\,$ a layer of only about 20 μm was formed, while 43 crystals reaching up to 370 µm can be found in the sample 44 45 submitted to a shear rate of 20 s^{-1} (as previously commented). At the same time, the number of nuclei per mm 46 47 decreased as the shear rate increased. The Ce₂O₃ content showed the most pronounced effect on the crystal layer. 48 49 The size of crystals reached up to 650 µm and 1 mm for 50 C13 and C15, respectively. For the C15 composition, the 51 higher temperature of the experiment might also play a 52 role in crystal growth, as the diffusion rate increases with 53 temperature.

3.3 | Cerianite characterization

The XRD of both samples prepared as described in Section 2.4 are shown in Figure 12A. In both of them, cerianite crystals (CeO₂) could be identified (JCPDS 43–1002). The Raman spectra (normalized to the greatest absolute intensity) of the different samples are shown in Figure 12B; the spectrum of cerianite crystal was added to the plot for comparison. The intense band located at 466 cm⁻¹ that corresponds to the F_{2g} phonon symmetry of cerianite is present in all spectra, as well as the weak band at 1180 cm⁻¹.⁴⁶ The weak bands observed at 270 and 315 cm⁻¹

41

20 FIGURE 6 Scanning electron microscopy (SEM) images of the samples recovered for each condition of crystallization carried out in the 21 rheometer. The left images show all five conditions for the C10SG glass, and the right images compare C10SG, C13, and C15 for the same 22 conditions of shear and duration. All the experiments were performed at 1100°C, except for C15 glass.

25 were previously attributed to surface modes. The small bands at 550 cm⁻¹ that appeared in all samples are report-26 27 edly linked to oxygen vacancies, but neither a red shift in the F_{2g} band nor a band at 2300 cm⁻¹ corresponding to the 28 presence of Ce³⁺ in the crystals were observed. Therefore, 29 30 the oxygen vacancies could be due to a few substitutions for 31 Ce^{4+} by Nd³⁺(present in the glass compositions), although a high intensity peak is expected when a major substitution 32 33 occurs and no evidence of Nd substitution was found in the 34 XRD analyses.⁴⁶ More importantly, no difference regard-35 ing composition (C10, C13, C15) or shear condition (static, 36 $0.2 \text{ or } 20 \text{ s}^{-1}$) was observed.

37 38

40

43

2 3

4 5

7 8

11

14

23 24

3.4 | Rheological behavior 39

3.4.1 | Viscosity evolution during 41 crystallization 42

44 The viscosity data acquired simultaneously with the crys-45 tallization experiments in dynamic conditions are pre-46 sented in Figure 13, represented as relative viscosity $\eta_{\rm R}$, 47 which is the apparent viscosity during crystallization 48 divided by the viscosity of the liquid $\eta_{\rm L}$. The experiments 49 performed with the C10SG glass are shown in Figure 13A, 50 and the comparison between the different compositions 51 for the condition at 20 s⁻¹ for 8 h is shown in Figure 13B.

52 Figure 13A shows no significant change in the viscosity 53 of the C10SG glasses for any of the conditions. The viscos-54 ity increment after 8 h was nearly the same (\sim 15%) for the experiments at 2 and 20 s⁻¹, even though the cerianite frac-55

tion was different (0.20 and 0.75%, respectively). For the 0.2 s^{-1} condition, the oscillation of the rotor makes it difficult to estimate the viscosity increment properly, but based on the average value the increase would be \sim 7%. Figure 13A also shows that for the C10SG glass, the relative viscosity curves for the three conditions at 20 s^{-1} overlap, indicating good reproducibility of the experiment.

11

3.4.2 | Postcrystallization behavior

According to the results from Section 3.2.1, condition 9 resulted in a $\Phi = 0.82 \pm 0.06\%$ (or $\Phi = 1.2 \pm 0.1\%$ by chemical analysis), which is comparable to the PGM fractions studied in.9-11 We therefore repeated the crystallization experiment for condition 9 and then evaluated the effect on viscosity as a function of the shear stress (τ). Figure 14 shows the results from the C15 glass together with the results of previous studies for similar conditions of temperature and particle fractions.

The rheograms of all PGM-bearing melts shown in Figure 14 exhibit a Newtonian plateau at low shear, followed by a drop in viscosity and a second Newtonian plateau at high shear. The increase in viscosity from high to low shear occurs from a critical stress (τ_c), and the whole rheogram can be described by a simplified Cross model extensively discussed elsewhere.^{10,11,47} For a volumetric content of 0.7%, Puig et al.¹¹ verified a viscosity at a low shear rate that was 300 times higher than the viscosity at high shear. On the other hand, this work showed that a system containing 0.8 vol% of cerianite

FIGURE 7 Evolution of volumetric nuclei density and mean Feret diameter with (A) time and (B) shear rate, and evolution of linear nuclei density and biggest crystal size with time (C) and shear rate (D). C10SG glass at 1100°C. The lines are included to guide the eye.

crystals continued to show Newtonian behavior, like the glass with no suspended particles studied in.¹¹

4 | DISCUSSION

36

37 38 39

40

41

42

43

44

47

4.1 | Crystallization in dynamic 46 conditions

48 The system studied here can be considered as a solution 49 within which cerianite (CeO₂) crystals precipitate at sub-50 liquidus temperatures. In this case, the cerianite fraction 51 is expected to increase up to an equilibrium fraction that 52 depends on the cerium concentration and the tempera-53 ture at which the crystallization is taking place. Cerianite 54 nucleates on surfaces (such as the crucible wall) and in 55 the bulk (homogeneous nucleation), and the nucleated

crystals grow to reach the equilibrium fraction. Both nucleation (on the surface and in the bulk) and crystal growth happen concomitantly, and their rates depend on the thermodynamic and kinetic parameters of the system.¹⁴, ^{48–50} In addition, the morphology of a crystal evolves from a euhedral to a dendritic morphology by increasing the driving force towards crystallization, that is, the degree of supersaturation.^{50–54}

The overall behavior for both bulk and surface crystallization involved an increase in the cerianite fraction (Φ) with time and shear rate, accompanied by a decline in the number of nuclei (N_v) and an augmentation of crystal size. The decrease in the number of nuclei shown in Figure 7A as the crystallization developed can be explained by the Ostwald ripening phenomenon. As a system advances towards equilibrium, the small crystals dissolve, and the larger crystals continue to grow because larger crystals

FIGURE 9 Cerianite crystal morphologies for the conditions studied. The images are a mosaic of different crystals in order to make the analysis of the morphology possible and <u>do not</u> represent the real size distributions and densities of the crystals. The 150- μ m scale bar is valid for all crystals.

are more energetically favored than smaller ones. This same trend was observed for the conditions with different shear rates, where the condition at 0.2 s^{-1} showed the highest number of crystals for both bulk and surface crystallization. Recent theoretical and experimental studies^{25,32–34,55,56} have suggested that an increase in the stirring speed of melts can in fact increase the crystal nucleation rates. Although our results indicate the oppo-site trend, this could be a consequence of the Ostwald ripening phenomenon. The N_v for the condition of 0.2 s^{-1} after 8 h observed in Figure 7B is similar to that observed after 2 h (a quarter of the time) of crystallization at s^{-1} , thus suggesting that the nucleation happens faster at higher shear. As indicated by the evolution of the ceri-anite fraction with time and shear rate in Figure 5B, the cerianite fraction for the condition of 20 s^{-1} after 8 h was higher, which means the crystallization happened faster and is more prone to Ostwald ripening at short times. In other words, our results do not contradict what has been found in recent studies, and indicate that more data on the evolution of N_v with time for the different conditions of shear would help to clarify this hypothesis.

pplied Glass

Additionally, based on the morphology of the crystals (dendritic to skeletal), the crystal growth at the conditions studied here is diffusion limited.^{51,53} Under quiescent conditions, as a crystal grows within the melt the region around it becomes chemically impoverished, hindering growth. When a solution is stirred, the size of this impoverished region is expected to decrease, and consequently the growth rate increases. In the case of crystals nucleated in the bulk, both the mean Feret diameter and the crystal size distribution curves show an increase in crystal size with shear rate. For the crystals nucleated at the surface, this phenomenon is even more visible. Based on the size of the biggest crystals, the growth rate estimated for the crystals nucleated at the surface for the conditions of 0.2, 2, and 20 s^{-1} are 3, 9, and 47 μ m.h⁻¹, respectively.

Particularly in the case of cerianite crystals, the evolution of the redox equilibrium of cerium in the glass melt is another factor that may affect its kinetics of crystallization. It is well known that the ratio $Ce^{4+}/(Ce^{3+}+$ $Ce^{4+})$ increases as the temperature of the melt decreases,⁵⁷ which could decrease the solubility of the total cerium in the melt,⁴³ that is, favour the precipitation of cerianite.

microtomography images: (A) Crystals dispersed in the glass matrix; (B) crystals showing an octapod morphology found in the bulk; (C) different planes of the hollow cubic crystals and (D) 3D views of one of the crystals from the surface of the crucible showing a ripe dendritic morphology. Condition 5 (C10SG, 8 h, and 20 s⁻¹).

(A)

(B)

FIGURE 11 Scanning electron microscopy (SEM) images of the cerianite layer crystallized on the surface of the crucible wall for the different conditions of the experiments. (A) Different conditions of crystallization for the C10SG glass and (B) crystallization at 20 s⁻¹ for 8 h for the C10SG, C13, and C15 glasses. All experiments were performed at 1100°C, except for C15, performed at 1160°C.

FIGURE 14 Evolution of the relative viscosity with the shear stress (τ) for a glass containing 0.82 vol% of cerianite compared to results for glasses containing PGM particle fractions between 0 and 1.4 vol% studied previously.^{10,11}

31 Because the thermal treatments were performed at tem-32 peratures lower than the elaboration temperature, and 33 the kinetics of the redox reaction are diffusion-controlled, 34 higher shear rates could induce the melt to reach its redox 35 equilibrium at shorter times, and therefore accelerate the 36 precipitation of cerianite.58 Nevertheless, the conclusions regarding the effect of shear on the crystallization kinetics 37 38 of cerianite remain unchanged.

2

4

5

6

7

8

9

10 11 12

18 19

21 22

23 24

25

26 27

28

29 30

39 Regarding condition 5 (C10SG – 1100° C-20 s⁻¹-8 h), the 40 crystals that grew on the surface of the crucible reached 41 a significantly bigger size (370 µm) than those in the bulk 42 (maximum size ~120 µm). As mentioned earlier, the crys-43 tallization experiment was done in a virtual Couette cell, 44 which implies an intrinsic relationship with the concen-45 tric cylinder geometry. A special feature of this type of geometry is that the shear rate is not homogeneous in the 46 47 gap between the cylinders.^{36,59} Considering that the Couette analogy implies a virtual inner cylinder (the rotor) 48 49 and the outer cylinder (the crucible) to determine the cal-50 ibration factors, a speed gradient is also present in the 51 gap. Therefore, unlike the crystals in the bulk that are 52 transported together with the melt, the crystals growing 53 on the surface of the crucible are fixed and submitted to stronger convection,^{60,61} and there is probably a higher 54 55 amount of Ce_2O_3 available to be attached in the growing

crystals. Regarding their morphology, the sections shown in Figure 10C evidence an initial dendritic crystal that changes towards a cubic shape due to the decrease in the supersaturation of the melt (decrease in the $Ce_2O_3\%$). This morphology is also an indication that the system approaches equilibrium.

In the case of the different Ce_2O_3 concentrations, the bigger crystals in the bulk (Figure 6) and on the surface of the crucible of the samples C13 and C15 compared to the C10SG glass can be explained by the higher degree of supersaturation. However in the case of the C15 glass, it might also be related to the higher temperature of crystallization imposed (in order to access the cerianite-only domain), as the kinetics of diffusion accelerate at higher temperatures. The classical dendritic morphologies observed for the C13 and C15 glasses (especially those nucleated on the surface of the crucible), which show a higher degree of branching when compared to the crystals developed in the C10SG glass, are linked to the higher degree of supersaturation. As the driving force for crystallization is higher in these glasses, the morphology is expected to shift towards dendrites, and the degree of branching also increases. This could be an indication that if highly branched dendrites (which could lead to a more pronounced effect on the rheology of the melt, for example due to the higher aspect

22

23

25

 3 $\,$ ratio) need to be avoided, the Ce2O3 wt% has to be limited.

⁴ Nonetheless, the morphology of crystals is very sensitive
 ⁵ to solvent,⁶² so the aforementioned might not be true if the
 ⁶ melt is considerably different chemically.

melt is considerably different chemically. 7 Based on some previous studies [31]-[33] and according to the growth theory,⁶³ a strong enough convection 8 9 could induce a more euhedral morphology for which a 10 maximal growth rate is displayed. The conditions used in 11this work did not permit any observation of such a phe-12 nomenon, as for all conditions dendritic crystals (more or 13 less ripened) appeared and, thus, supersaturation seems 14 to be the only factor controlling their morphology. Per-15 haps if higher shear rates had been used, this phenomenon 16 would be visible, but there are equipment limitations at 17 high temperatures due to the low viscosity of the melt.

Furthermore, the XRD and Raman analyses showed no
 difference between the cerianite crystals precipitated in the
 different conditions, indicating that the shear conditions
 do not affect the crystal chemistry.

4.2 | Rheological behavior

26 The viscosity increase caused by the presence of dispersed 27 particles in suspension in the melt can be estimated by 28 different models proposed in the literature.^{64–69} An esti-29 mation using Quemada's model⁶⁹ and considering 1 vol% of monodispersed spherical particles⁷⁰ (a fair approxima-30 tion for cubic particles^{71,72}) would result in a 3% increase in 31 32 viscosity. The fact that the viscosity increase observed was 33 superior to the estimated value, and that both 2 and 20 s^{-1} 34 conditions of shear showed similar behavior, even though 35 the resulting cerianite fraction was significantly different, 36 indicate that something other than crystallization is con-37 tributing to the phenomenon. One of the reasons for this 38 increase could be the evolution of the redox equilibrium of 39 cerium. It is possible that it causes an effect similar to that 40 observed for glasses containing iron, where the oxidation of the network modifier Fe²⁺ to the network former Fe³⁺ 41 42 leads to an increase in the viscosity.³⁴ Because the glasses 43 were elaborated at higher temperatures, at the tempera-44 tures of crystallization used in this study (1100 and 1160°C) 45 part of the cerium will oxidize ($Ce^{3+} \rightarrow Ce^{4+}$).⁴³ As Ce^{4+} 46 leads to a more compact glass structure,⁴⁰ an increase in 47 the viscosity could occur. Another possible reason (per-48 haps occurring simultaneously) is the evaporation of B_2O_3 49 and Na_2O during the experiment. In Figure 15, we show 50 the evolution of the Na₂O/SiO₂ and B₂O₃/SiO₂ ratio (in 51 weight %) in the C10SG glass matrix with time and shear 52 rate. The oxide/SiO₂ ratio allows an accurate comparison, 53 because the consumption of Ce₂O₃ due to crystallization 54 can mask the evolution of the Na_2O and B_2O_3 contents, 55 and SiO₂ is much less susceptible to evaporation. The evoApplied Glass 19

lution of the Ce_2O_3/SiO_2 is also shown to evidence the ongoing crystallization.

Figure 15A shows that the evaporation of Na₂O and B_2O_3 occurred mainly in the first 2 h of the experiment, and then this rate reduced. Such behavior could be linked to the steeper increase in viscosity in the first hours of the experiment. Figure 15B shows that for the conditions of 2 and 20 s⁻¹, the B_2O_3 and Na₂O contents were the same, suggesting they underwent the same degree of evaporation, and which could explain the same increase in viscosity observed in Figure 13A. The B_2O_3 content was slightly higher for the 0.2 s⁻¹ condition, which indicates that evaporation was less significant for this sample.

When comparing the viscosity change for the different compositions in Figure 13B, we can observe that the increase took place with two different slopes for conditions C13 and C15: a steeper increase during the first 2 h of the experiment, followed by a more moderate slope. After this, the slope shown by the C13 and C10SG glass are the same. However for the experiment with C15 (at a higher temperature), there is a more pronounced slope, backing the evaporation hypothesis as the kinetics of evaporation increase with temperature. The formation of the crystal layer on the surface of the crucible, more accentuated for C13 and C15 glasses, may also play a role in the viscosity measured, but its effect cannot be estimated.

In summary, no significant change in relative viscosity was observed for any of the conditions. The greatest change was observed for the C15 glass (Figure 13B), which reached an $\eta_{\rm R}$ of 1.35 after 8 h. The gross increase for this condition was from 9.2 to 12.3 Pa.s, which is negligible in the context of the vitrification process.⁷³ The results suggest that the increase in viscosity was mainly due to evaporation, as only an increase of about 3% would be expected due to crystallization.

In a comparison of the viscosity versus shear behaviors for a PGM-bearing melt and the cerianite-bearing melt, the differences between them can be explained by the distinct morphology and nature of cerianite and PGM particles. While cerianite has a cubic shape, Platinum Group Metal particles have acicular and spherical shapes (RuO₂ needles and PdTe intermetallic spherical beads), and they are frequently found aggregated in small units of about 50 μ m,⁷ even at high shear. The PGM particles' strong interactions engender the formation of bigger aggregates (reaching up to 500 μ m¹³) in the melt when submitted to low shear stress. Both the aggregation and the acicular shape of RuO₂ particles are assumed to be responsible for the critical stress and viscosity augmentation observed in PGM-bearing melts.¹¹

Compared to PGM particles, the chemical nature of cerianite particles is much more similar to that of the melt, and cerianite presents itself as nearly cubic crystals (with some

23

24

26

3 overgrown to form dendritic crystals). A study carried out by Saar et al.⁷⁴ estimated the critical crystal fraction (Φ_c) 4 5 needed for particle percolation (that promotes yield stress) 6 to occur for different particle shapes in crystal-bearing 7 melts. They found that for more equant shapes (spheri-8 cal or cubic), this critical fraction is higher than for oblate 9 and prolate particles, and according to their study parti-10 cle percolation of cubic crystals is expected to occur from 11 $\Phi_c = 0.22$ (particle volume of 22%). Therefore, the New-12 tonian behavior of the cerianite particle fraction studied 13 here could be expected. The non-equant cerianite crystal 14 morphology reported in the previous section for high lev-15 els of supersaturation could strongly decrease Φ_c , but this 16 critical fraction could not be assessed due to the high solu-17 bility of Ce₂O₃ in the melt. To summarize, our results show 18 that such a small cerianite crystal fraction will not affect 19 the operation of the vitrification process due to viscosity changes.⁷³ A study on the settling of cerianite crystals in 20 21 static and dynamic conditions would be the next step to 22 verify its effect on the process.

25 5 | CONCLUSIONS

27 This work studied the effect of temperature, Ce₂O₃ weight 28 content, and shear rate on the crystallization of a simu-29 lated nuclear glass enriched with Ce₂O₃. The increase in 30 Ce₂O₃ increases the liquidus temperature of the melt, sta-31 bilizing the cerianite phase at typical waste vitrification 32 temperatures (above 1000° C) from about 8 wt% of Ce₂O₃. 33 This increase in Ce₂O₃ content also shifted the apatite 34 domain to higher temperatures, meaning that a significant 35 increase in Ce2O3 content could also stabilize apatite at the 36 vitrification temperature.

37 Based on both static and dynamic experiments, it can be 38 seen that cerianite is prone to show heterogeneous nucle-39 ation, and both its morphology and fraction depend upon 40 the Ce₂O₃ wt% and shear conditions. Cerianite crystalliza-41 tion kinetics were slow for all conditions studied. Even 42 for a Ce₂O₃ content as high as 10 wt%, the cerianite frac-43 tion after 8 h of crystallization at 1100°C (the approximate 44 vitrification temperature in the hot crucible melter) was 45 less than 1 vol%. Nevertheless, the kinetics were acceler-46 ated as the applied shear was augmented. The increase in 47 the Ce₂O₃ wt% led to higher cerianite fractions and to the 48 precipitation of highly-branched dendritic crystals, reach-49 ing a length of 1 mm. No significant increment in viscosity 50 due to the crystallization of cerianite was observed for the 51 conditions studied.

For 15 wt% Ce_2O_3 glass compositions, a fraction of 0.8 vol% (in bulk) of cerianite was obtained, but such a particle fraction did not show any effect on the rheology of the melt. This result differs significantly from what has been observed for PGM particles. The results can be explained by the different nature and morphology of the particles. A study on sedimentation and aggregation phenomena is still needed to completely understand the effect of cerianite on the vitrification process.

ACKNOWLEDGMENTS

The authors would like to thank Emmanuelle BRACKX (CEA-Marcoule) for the microprobe analyses, Sylvain MURE (CEA-Marcoule) for his invaluable support for the rheological measurements, and our Orano and EDF partners for financial support.

ORCID

J. Jiusti https://orcid.org/0000-0001-9923-2503

REFERENCES

- 1. Vernaz É, Bruezière J. History of nuclear waste glass in france. Procedia Mater Sci. 2014;7:3–9.
- Didierlaurent R, Prevost T, Hugon I, Lemonnier S, Girold C, Maneglia F, et al. Applicability evaluation of the in-can vitrification process to Fukushima waste. In: Proceedings of the 27th international conference on nuclear engineering (ICONE-27); 2019; Japan.
- 3. Toshiro O, Yasutomo T, Takeshi M, Toyonobu N, Toshiki F. Applicability of vitrification technology for secondary waste generated from contaminated water treatment systems at fukushima daiichi nuclear power station. IHI Eng Rev. 2020;53(1):7.
- 4. Vienna JD. Nuclear waste vitrification in the United States: recent developments and future options. Int J Appl Glass Sci. 2010;1(3):309–21.
- Riley BJ, Hrma PR, Vienna JD, Schweiger MJ, Rodriguez CP, Crum JV, et al. The liquidus temperature of nuclear waste glasses: an international round-robin study. Int J Appl Glass Sci. 2011;2(4):321–33.
- Matyáš J, Vienna JD, Peeler DK, Fox KM, Herman CC. Road map for development of crystal-tolerant high level waste glasses. 2014. Accessed May 11, 2021. Available from: https://www.osti. gov/biblio/1133389
- Krause Ch, Luckscheiter B. Properties and behavior of the platinum group metals in the glass resulting from the vitrification of simulated nuclear fuel reprocessing waste. J Mater Res. 1991;6(12):2535–46.
- Simonnet C, Grandjean A, Phalippou J. Electrical behavior of platinum-group metals in glass-forming oxide melts. J Nucl Mater. 2005;336(2):243–50.
- Puig J, Penelon B, Marchal P, Neyret M. Rheological properties of nuclear glass melt containing platinum group metals. Procedia Mater Sci. 2014;7:156–62.
- Hanotin C, Puig J, Neyret M, Marchal P. Platinum group metal particles aggregation in nuclear glass melts under the effect of temperature. J Nucl Mater. 2016;477:102–9.
- Puig J, Hanotin C, Neyret M, Marchal P. High temperature rheological study of borosilicate glasses containing platinum group metal particles by means of a mixer-type rheometer. J Nucl Mater. 2016;469:112–9.

Applied Glass

2

7

8

9

15

17

18

- 3 12. Nuernberg RB, Machado NMP, Jouglard D, del Campo L, Malki M, Nevret M. The origin of hysteresis in the electrical 4 behavior of RuO2-glass composite melts. J Non-Cryst Solids. 5 2021;557:120596. 6
 - 13. Pereira Machado NM, Pereira L, Neyret M, Lemaître C, Marchal P. Influence of platinum group metal particle aggregation on the rheological behavior of a glass melt. J Nucl Mater. 2022;563:153618.
- 10 14. Avrami M. Kinetics of phase change. I General theory. J Chem 11Phys. 1939;7(12):1103-12.
- 12 15. Alton J, Plaisted TJ, Hrma P. The kinetics of Al-Si spinel phase crystallization from calcined kaolin. J Solid State Chem. 13 2010;183(11):2565-9. 14
 - 16. Hrma P. Crystallization during processing of nuclear waste glass. J Non-Cryst Solids. 2010;356(52):3019-25.
- 16 17. Orlhac X, Fillet C, Phalippou J. Study of crystallization mechanisms in the French nuclear waste glass. MRS Online Proc Libr. 1999;556(1):263.
- 19 18. Delattre O, Régnier E, Schuller S, Allix M, Matzen G. Image analysis study of crystallization in two glass compositions of nuclear 20 interest. J Non-Cryst Solids. 2013;379:112-22. 21
- 19. Levine IN. Physical chemistry. 6th ed. New York: McGraw-Hill; 22 2009. 23
- 20. Ferro P, Bonollo F, Timelli G. Sigma phase precipitation mod-24 elling in a UNS S32760 superduplex stainless steel. Metall Ital. 25 2012;140:7-12.
- 26 21. Fournier J, Régnier E, Faure F, Le Goff X, Brau HP, Brackx 27 E, et al. Application of the JMAK model for crystal dissolution kinetics in a borosilicate melt. J Non-Cryst Solids. 2018;489:77-28 83. 29
- 22. Fournier J, Régnier E, Faure F, Le Goff X, Brau HP, Brackx 30 E, et al. Modeling of dissolution kinetics of rare earth crystals 31 in a borosilicate glass melt. J Non-Cryst Solids. 2018;481:248-32 53.
- 33 23. Allen RJ, Valeriani C, Tănase-Nicola S, ten Wolde PR, Frenkel 34 D. Homogeneous nucleation under shear in a two-dimensional Ising model: cluster growth, coalescence, and breakup. J Chem 35 Phys. 2008;129(13):134704. 36
- 24. Lander B, Seifert U, Speck T. Crystallization in a sheared 37 colloidal suspension. J Chem Phys. 2013;138(22):224907. 38
- 25. Richard D, Speck T. The role of shear in crystallization kinetics: 39 from suppression to enhancement. Sci Rep. 2015;5(1):14610.
- 40 26. Shao Z, Singer JP, Liu Y, Liu Z, Li H, Gopinadhan M, et al. 41 Shear accelerated crystallization in a supercooled atomic liquid. 42 2015. Accessed May 30, 2022. Available from: http://arxiv.org/ abs/1407.2078 43
- 27. Mura F, Zaccone A. Effects of shear flow on phase nucleation 44 and crystallization. Phys Rev E. 2016;93:042803. 45
- 28. Peng HL, Herlach DM, Voigtmann T. Crystal growth in 46 fluid flow: nonlinear response effects. Phys Rev Materials. 47 2017;1(3):030401.
- 48 29. Luo S, Li C, Li F, Wang J, Li Z. Ice crystallization in shear flows. 49 J Phys Chem C. 2019;123:21042-9.
- 30. Richard D. Classical nucleation theory for the crystallization 50 kinetics in sheared liquids. Phys Rev E. 2019;99:062801 51
- 31. Goswami A, Dalal IS, Singh JK. Seeding method for ice nucle-52 ation under shear. J Chem Phys. 2020;153(9):094502. 53
- 32. Goswami A, Dalal IS, Singh JK. Universal nucleation behavior 54 of sheared systems. Phys Rev Lett. 2021;126(19):195702. 55

- 33. Kouchi A, Tsuchiyama A, Sunagawa I. Effect of stirring on crystallization kinetics of basalt: texture and element partitioning. Contr Mineral and Petrol. 1986;93(4):429-38.
- 34. Chevrel MO, Cimarelli C, deBiasi L, Hanson JB, Lavallée Y, Arzilli F, et al. Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador). Geochem Geophys Geosyst. 2015;16(3):870-89.
- 35. Kolzenburg S, Giordano D, Hess KU, Dingwell DB. Shear ratedependent disequilibrium rheology and dynamics of basalt solidification. Geophys Res Lett. 2018;45(13):6466-75.
- 36. Aït-Kadi A, Marchal P, Choplin L, Chrissemant AS, Bousmina M. Quantitative analysis of mixer-type rheometers using the couette analogy. Can J Chem Eng. 2002;80(6):1166-74.
- 37. Underwood EE. Stereology, or the quantitative evaluation of microstructures. J Microsc. 1969;89(2):161-80.
- 38. Kilbourn BT. Cerium: a guide to its role in chemical technology. White Plains, NY: Molycorp, Inc.
- 39. Mansour E. Structure and electrical conductivity of new Li2O-CeO2-B2O3 glasses. J Non-Cryst Solids. 2011;357(5):1364-9.
- 40. Wang Z, Cheng L. Structural evolution of CeO2-doped alkali boroaluminosilicate glass and the correlation with physical properties based on a revised structural parameter analysis. RSC Adv. 2016;6(7):5456-65.
- 41. Delattre O, Régnier E, Schuller S, Poissonnet S, Massoni N, Allix M, et al. Crystallization kinetics of apatite and powellite in a borosilicate glass under thermal gradient conditions. Phys Procedia. 2013;48:3-9.
- 42. Abdelouas A, Crovisier JL, Lutze W, Grambow B, Dran JC, Müller R. Surface layers on a borosilicate nuclear waste glass corroded in MgCl2 solution. J Nucl Mater. 1997;240(2):100-11.
- 43. Cachia JN, Deschanels X, Den Auwer C, Pinet O, Phalippou J, Hennig C, et al. Enhancing cerium and plutonium solubility by reduction in borosilicate glass. J Nucl Mater. 2006;352(1-3):182-9.
- 44. Hammer JE, Rutherford MJ. An experimental study of the kinetics of decompression-induced crystallization in silicic melt: kinetics of decompression-induced crystallization. J Geophys Res. 2002;107(B1):ECV 8-1-ECV 8-24.
- 45. Couch S, Harford CL, Sparks RSJ, Carroll MR. Experimental constraints on the conditions of formation of highly calcic plagioclase microlites at the Soufrieáre Hills Volcano, Montserrat. 2003;44(8):21.
- 46. Loridant S. Raman spectroscopy as a powerful tool to characterize ceria-based catalysts. Catal Today. 2021;373:98-111.
- 47. Machado NMP. Rheological study of nuclear glass melts containing platinum group metals aggregates bibliographic report. 2020 p. 77.
- 48. Zanotto ED, James PF. Experimental tests of the classical nucleation theory for glasses. J Non-Cryst Solids. 1985;74:373-94.
- 49. Uhlmann DR. Crystallization and melting in glass forming systems. In: Kinetics of Reactions in Ionic Systems Proceedings of an International Symposium on Special Topics in Ceramics; June 18-23, 1967; Alfred, New York.
- 50. Kirkpatrick RJ, Kuo LC, Melchior J. Crystal growth in incongruently-melting compositions: programmed cooling experiments with diopside. Am Mineral. 1981;66(3-4):223-41.
- 51. Sunagawa I. Characteristics of crystal growth in nature as seen from the morphology of mineral crystals. Bull Minéral. 1981;104:81-7.

- 52. Faure F, Trolliard G, Nicollet C, Montel JM. A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Mineral Petrol. 2003;145(2):251–63.
 53. Berg WF. Crystal growth from solutions. Proc R Soc A. 1938;164. https://doi.org/10.1098/rspa.1938.0006
 - 54. Garcia-Ruiz J, Otalora F. Crystal Growth in Geology: Patterns on the Rocks. Handbook of Crystal Growth. Amsterdam, Netherlands: Elsevier; 2015. p. 1–43.
- 55. Goswami A. Homogeneous nucleation of sheared liquids:
 advances and insights from simulations and theory. Phys Chem
 Chem Phys. 2021.
- 56. Campagnola S, Vona A, Romano C, Giordano G. Crystallization kinetics and rheology of leucite-bearing tephriphonolite magmas from the Colli Albani volcano (Italy). Chem Geol. 2016;424:12-29.
 57. Pinet O, Hugon J, Mure S, Redox control of nuclear glass.
 - 57. Pinet O, Hugon I, Mure S. Redox control of nuclear glass. Procedia Mater Sci. 2014;7:124–30.
- Schreiber HD. Redox processes in glass-forming melts. J Non-Cryst Solids. 1986;84(1):129–41.
- 59. Dou HS, Khoo BC, Yeo KS. Instability of Taylor-Couette
 flow between concentric rotating cylinders. Int J Therm Sci.
 2008;47(11):1422–35.
- 60. Barresi AA, Marchisio D, Baldi G. On the role of micro- and mesomixing in a continuous Couette-type precipitator. Chem Eng Sci. 1999;54(13–14):2339–49.
- 61. Abou-Ziyan H, Ameen R, Elsayed K. Fluid flow and convection heat transfer in concentric and eccentric cylindrical annuli
 of different radii ratios for Taylor-Couette-Poiseuille flow. Adv
 Mech Eng. 2021;13(8):16878140211040732.
- 62. Zhao X, Bao Z, Sun C, Xue D. Polymorphology formation of Cu2O: a microscopic understanding of single crystal growth from both thermodynamic and kinetic models. J Cryst Growth. 2009;311(3):711–5.
- 63. Dhanaraj G, Byrappa K, Prasad V, Dudley M. Springer handbook of crystal growth. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. Available from: http://link.springer.com/10. 1007/978-3-540-74761-1
- 64. Einstein A. Eine neue bestimmung der moleküldimensionen.
 Ann Phys. 1906;324(2):289–306.
- 65. Vand V. Viscosity of solutions and suspensions. I. Theory. J Phys
 Chem. 1948;52(2):277–99.

- 66. Mooney M. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci. 1951;6(2):162–70.
- Krieger IM, Maron SH. Rheology of synthetic latex. I. Test of some flow equations. J Colloid Sci. 1951;6(6):528–38.
- Roscoe R. The viscosity of suspensions of rigid spheres. Br J Appl Phys. 1952;3:267–9.
- 69. Daniel Quemada. Modélisation rhéologique structurelle. Paris: Lavoisier; 2006.
- 70. Mueller S, Llewellin EW, Mader HM. The rheology of suspensions of solid particles. Proc R Soc A. 2010;466(2116):1201–28.
- Cwalina CD, Harrison KJ, Wagner NJ. Rheology of cubic particles suspended in a Newtonian fluid. Soft Matter. 2016;12(20):4654–65.
- Vetere F, Iezzi G, Perugini D, Holtz F. Rheological changes in melts and magmas induced by crystallization and strain rate. C R Géosci. 2022;354(S1):1–22.
- Advocat T, Dussossoy JL, Petitjean V. Vitrification des déchets radioactifs. Verres et céramiques. 2008. Accessed June 20, 2022. Available from: https://www.techniques-ingenieur.fr/doi/ 10.51257/a/v1/bn3664
- 74. Saar MO, Manga M, Cashman KV, Fremouw S. Numerical models of the onset of yield strength in crystal-melt suspensions. Earth Planet Sci Lett. 2001;187(3):367– 79.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Jiusti J, Regnier E, Machado NMP, Ghazzai M-L, Malivert V, Neyret M, et al. Precipitation of cerianite crystals and its effect on the rheology of a simplified nuclear glass melt. Int J Appl Glass Sci. 2023;1–23. https://doi.org/10.1111/ijag.16639

Q5

2

8

9

10

18

06